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CYCLIC RINGS

Joseph Neggers

ABSTRACT. Suppose that A is a ring with identity. Then A is cy-
clic if all modules M with a generating set {Lili € w} such that
Li = £i+1xi’ x; € A, are in fact cyclic modules. Perfect rings
are cyclic rings. All our examples of cyclic rings are perfect.
Several properties of cyclic rings are established including
other ways of characterizing cyclic rings. We believe that cyclic
rings if not identical to the class of rings whose modules have

minimal generating sets are very closely related to this class.

CYCLIC RINGS.

In the discussion below, all rings A have an identity and all
modules are right unitary. A Steinitz ring is a local ring A who-
se Jacobson radical is T-nilpotent, i.e., given any sequence of
elements {xili € w}, where xX; € R, the Jacobson radical of A,
there is some integer n such that X oouX) = 0. A perfect ring is
a ring A such that the Jacobson radical R of A is T-nilpotent

and such that A/R is a semi-simple Artinian ring. For more infor-
mation concerning these rings, see {21, (31, [4].

For a ring A, if {xili € w} is any sequence of elements of A,

then we define F({xili € w}) to be the quotient of the free mo-
dule generated by the countable set {uili € w} modulo the free
module generated by the countable set {vili € w}, where '

v, T upo-oug X A sequence {xi|1 € w} is T-nilpotent provided

the module F({xili € w}) = 0. A subset of A is seen to be T-nil-
potent if and only if every sequence {xili € w} with x; € A for
all i € w; is T-nilpotent.

Thus one can certainly describe some properties of rings by gi-
ving properties of some (or all) of the modules,F({xi|i € w})
where {xili € w} is a sequence in A. If F({xili € w}) is always

a cyclic module, then we shall call A a cyclic ring. It is the
purpose of this paper to establish some properties of cyclic
rings. We note that as we are actually talking about right
Steinitz rings, right perfect rings so we are talking about right
cyclic rings. With the modules taken to be right unitary we shall,
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suppress the terminology right cyclic ring and use the terminology
cyclic ring instead.

Our main classification is contained in the following theorem

THEOREM 1. 4 ring A ie ceyclic if and only <¢f for any sequence
{xili € W} of elements of A there is an index io, such that for
all i > i, there s an index n > i+1 and an element m; of A for
which X _...X; =X .. X.m..,

+1 XXMy

From this it follows almost immediately that the epimorphic image
of a cyclic ring is a cyclic ring and a direct sum of two cyclic
rings is a cyclic ring. All Steinitz rings are cyclic rings. To
enlarge the class of examples further one shows that

THEOREM 2. If A is a ring for which there exists an integer K such
that every properly ascending chain of principal right ideals con-
tains at most k terms, then A ig cycliec.

From this we see that if A is any algebra over a division ring D
such that A is finite dimensional as a right vector space over D,
then A is a cyclic ring since right ideals are subspaces.

From this we find that any semi;simple Artinian ring is a cyclic
ring. We show that over a perfect ring A, a module M has m gene-
rators if and only if M/MR has m generators, where R is the
Jacobson radical of A, and so perfect rings:are cyclic as well.
One also shows without much difficulty that

THEOREM 3. If A Z8 a cyclic ring, then the Jacobson radical R of
A s T-nilpotent, and A satisfies the ascending chain cendition
on right principal ideals. If Xy = 0 implies y = 0, then X ig a
unit. Also, tf xy =1, then yx = 1,

Another way of identifying perfect rings is by stating that A is
perfect provided the descending chain condition on left principal
ideals holds. Thus rings of the type described in theorem 2 are
not only cyclic but also left perfect. If D is a division ring
and if G is a finite group, then D G = A is an algebra over D
which is finite dimensional as a right and left vector space and
hence the descending chain condition on right and left principal
ideals holds with an uppér bound k = |G|. This way we can cons-
truct perfect (cyclic) rings which are neither semi-simple
Artinian nor Steinitz. Indeed, let D = GF(p), the field with p
elements and let G be a finite group whose order |G| is divisible
by p and a prime q with (p,q) = 1. Since G is not a p-group D G
is not a Steinitz ring [1] and since G contains elements of order
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p, D G is not a semi-simple Artinian ring by Maschke's theorem.

If A = B G is the group ring of the group G with coefficients in
the ring B, then if A is a cyclic ring, B is also cyclic since it
is an epimorphic image of A by the norm homomorphism (For relevant
information see [5], pp. 86-87).

A local cyclic ring is a Steinitz ring. Steinitz rings are those
local rings whose modules have minimal generating sets. It is a
question of some interest to give conditions identifying those
rings whose modules have minimal generating sets. A necessary con-
dition is that the Jacobson radical be T-nilpotent. If we require
that every generating set of a.module M over A contain a minimal
generating set, then the ring A is in fact cyclic, since a module
F({xili € w}) contains a minimal generating set which is a subset
of {hi|i € w} with h; = u;, +V, V generated by {vili € w}, if and
only if it is cyclic. This suggests that possibly cyclic rings are
those rings for which modules have minimal generating sets. This
last property would make cyclic rings a very interesting class of
rings indeed. '

If we let E(A) be the collection of idempotents of the ring A, and
if e < f provided ef = fe = e, then it follows easily from theorem
3 that

THEOREM 4. If A s a cyclic ring, then E(A) equipped with the par-
tial order < satisfies both the ascending chain condition and the

descending chain condition.

From this we find that every cyclic ring A is in fact a unique di-
rect sum A = A1+...+An of cyclic rings Ai’ where Ai contains only
central idempotents 0 and 1. Furthermore it follows that a commu-
tative ring is cyclic if and only if it is a finite direct sum of
Steinitz rings which is so if and only if the ring is in fact per-
fect. One also shows that cyclic regular rings satisfy the descen-
ding chain condition on left principal ideals and are thus perfect.
Finally, we have no examples of cyclic rings which are not also
perfect. ' o ’ h

Proof of theorem 1 and consequences. Suppose that the conditions
stated in theorem 1 hold, and that {xili € w} is any sequence of
A. Let F{xili € w} be the corresponding module and suppose i > io.
Let hi be the image of u, in F({xi|i € w}), as above. Then

h 1 Xpe X5y = hpgx,cooxymy implies h;,, = hym, and since

h; = hy x;, it follows that hi+1A = hiA, whence, since this is so

for all i > iy, F({x;|i € w}) is generated by {hl""’hio} and thus

- by {hio}. Hence A is cyclic.



On the other hand, if A is cyclic, then F({xili € w}) = gA, and
since g = hioa for some io, we may take g = hio. Then, if we use

T

the fact that F({xili € w}) = hioA = hiA for i > iy, letting
hi+1 = himi’ we have hi+1(1 - xi?&) = 0. If hja =0, then‘uja is
an element of V, whence u.a = ] v,a;, i.e., a3y = ... =2, ; =0,

i=1 .
aj = a,'xn...xja = 0. Applying this to a = (1 - ximi) with j = i+1,

we obtain the statement X ...X. ., - ximi) = 0, which is preci-
sely the condition given in the theorem.

Since the conditions of theorem 1 are preserved under homomorphism,
it follows that the epimorphic image of a cyclic ring is also cy-
clic. Similarly, if A and B are cyclic rings, and if

{(x;,y;)|i € w} is a sequence in A + B, then if x_...x  , (1-x;m)=0

and yt...yj+l(1 - yjnj) = 0 for all i > io, j > jo and for suita-

ble s = i+1, t > j+1, selecting k0 = max(io,,jo),'i,j > k0 and

r = max(s,t), we have

(xr,yt)...(xi*l,yi+1) - (xi,yi)(mi,ni)) = 0 and A+B is also
cyclic.

If A is a Steinitz ring, then A is a local ring with a T-nilpotent
Jacobson radical R. Thus, if {xi|i € w} is any sequence 0f elements

of A, then either there is an index i, such that i > iO implies

0
X is a unit, or the sequence and all segments are themselves T-
nilpotent. In the first case take m, = xi’1 for i > iO, in the

second case select n such that X oo Xy = 0. It follows that A

i+l
is a cyclic ring.

Proof of theorem 2. Suppose that A is not a cyclic ring. Then the-

re is a sequence {xili € w} of elements of A, such that for all i

there is a j(i) > i with X .. - xj(i)m) # 0 for all |
¢
A (proper

'xj(i)+1(1
me€ A and all n > j(i) + 1. This means that x_...x, .

A n i)
Xpee Xy 14155 (1) C xn...xj(i)

containment).

A, and thus xn"'xj(i)+1

1

n> il + 1, Then let y_ = X_...X, . It follows readily that we
s n T+l !
have a proper ascending sequence xn...xizA C yzA Cc ... C YLA con- ]

taining £ elements.

Suppose now we select i, =1, i, = J(11),...,1£ = j(iﬂ—l)’ and

Hence if we let £ > k + 1, we obtain a contradiction. From this

the claims made above, following the statement of theorem 2, are ;

virtually immediate. - ;
i
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PERFECT RINGS ARE CYCLIC.

Suppose now that M is a right A-module with R a T-nilpotent.ideal.
Then if M/MR has generators g1+MR,...,gk+MR (as an A-module or an
A/R module), it follows that if m, € M, then some linear combina-
tion 813 0%+ *81 30 is congruent to m, module MR. Thus

mo-(g1a10+...+gkako) ='mr,. Repeating this process with respect
tom,, we find mo-(gl(a10+all)+...+gk(ako+ak1)) = m,T,T,. It is

easy to see that we may in this way generate sequences'{ri}
(ri € R) {mi} and {bli""’bki} such that mof(glbli+"f+gkbki) =

=mT....Ty. Since R is T-nilpotent, taking i such that T ... 0,
it follows that M is generated by {gl,...,gk}. Clearly if
{gl,....gk} generates M, then {g1+MR,...,gk+MR} generates M/MR.

Now if A is perfect and if R is its Jacobson radical, then R is
T-nilpotent and A/R is a semi-simple Artininian ring, i.e., A/R
is a cyclic ring. If we consider the module

F({xili € w})/F({xili € w})R, then it is an A/R-module, and as an
A/R-module it is isomorphic to the cyclic module F({xi+Rli € w}).
Since this latter module is cyclic, it follows that F({xili € wl)
is a cyclic module and thus A is also a cyclic ring.

Proof of theorem 3. An A-module M is quasi-cyclic if and only if

it has a generating set {£i|1 € w} with £i= Li+1

It follows that there is a canonical epimorphism F({xi}) — M
given by hi — Li for each quasi-cyclic module M. Hence A is cy-

x. for some x, € A.
1 1

clic if and only if all quasi-cyclic modules are cyclic.
Now suppose £,A C £,A C ... C liA c £i+1A ... is an ascending

chain of principal right ideals. Then L, = L , i.e., the

s
i+l71i
right ideal ULiA generated by {Lili € w} is a quasi-cyclic module
and hence cyclic with generator LioA. Hence A satisfied the ascen-

ding chain condition on principal right ideals.

Next, if x. is not a left zero-divisor of A, then x2(1 -mx) =0

and x£(1 - xm) = 0 implies xm = mx = 1. Also, if xZ = x£+1m, then

xI'+l = x£+1mx, so that the first condition is a consequence of the

second, for suitable £. Mence if x has a left inverse it is a unit.
Thus if x has a right inverse x' then x' is a unit and x is a unit.
If we let U ={x | 1 - mx and 1 - xm is a non-unit for some m} ,
then x ¢ U provided for eachm € A, 1 - mx or 1 - xm is a unit.
Thus the Jacobson radical of A is precisely the complement of U.

Now, if {xi|i € w} is any sequence of elements of R, then
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xn...x.+1(1 - x.m) = 0 for i > i, , implies x e Xi4 < 0 and
{x |i € w} is a T- n11potent sequence. But then R is:.a T- n11potent

. set as asserted.

Proof of theorem 4. If e < f, then ef = fe = e, and thus eA =

= feA < fA, while if eA = fA, then f = ex, whence ef exv= e = f
Hence a properly ascending chain of idempotents € < e < ..;’< e
1mplles a properly ascending chain of right principal 1deals
e A < e A < ....<e A Since A satisfies the ascendlng cha1n con-
d1t10n for right pr1n01pal ideals, E(A) satisfies the ascendlng
chain condition as a. partially ordered set.

Also, if e <f, then (1 - e)(1 - £) =1 -¢e - f +ef =1 - f =

= (1 - £)(1 - e), so that (1 - f) < (1 - e). Since an ascending
chain e, < ... <e gives rise to a descending chain (1 - el) >
> (1 - ez) > 00> (1 - ek) and conversely, it follows that E(A)
also satisfies the descending chain condition.

If we have an infinite orthogonal set of central idempotents, say

{e;]i€w}, let £, = e + ... + e,. Then fif0 fiflfi = £,

and f1 < fz <'... is an infinite ascending chain in E(A), an impos

sibility if A is cyclic. Thus there exist minimal central idempo-
tents, and these form a finite orthogonal‘set,‘say {el;...;en}.
It follows that A = A1 L An, where Ai = Aei, and that Ai
is a cyclic ring with no central idempotents other than 0 or 1.
The uniqueness of the decomposition follows from the uniqueness

of the minimal central idempotents.

If A is a commutative cyclic ring, then A = A oo+ A , Where
Ai is a commutative, cyc11c and has no 1dempotents other than 0
or 1. Suppose A = A If x (1 - mx) = 0, then (x(1 - mx)) =0,
i.e., x(1 - mx) is nilpotent. In particular x(1 - mx) is an ele-
ment of the prime radical R of A, and thus every prime ideal is
maximal, while A/R is a regular ring. Hence, since A4= Al’ it fol
lows that A/R is a field and that R is the Jacobson radical of A.
Hence A = A1 is a Steinitz ring. Thus commutative cyclic rings
are perfect.

If A is a regular cyclic ring, then given any element x of A,
there is an element x' such that xx'x = x. From this, one conclu-
des that xx' = e is idempotent, and that xA = eA. Similarly,

Ax = Ae where x'x = e is an idempotent. Thus, suppose eA < fA,
where e and f are idempotents. For the idempotents 1 - e and

1 - £ we have a relation (1 - £)(1 - e) =1 - e - f + fe =1 - f
since e = fx implies fe = e, and thus A(1 - e) > A(1 - £f). In -
particular, if A does not satisfy the ascending chain.condition
on right principal ideals, then A is not cyclic. Hence if A is
cyclic it satisfies the descending chain condition on left prin-
cipal ideals. But this means that A is perfect. More directly, if
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A is a regular cyclic ring, then if x € R, (x'x)® = 0 for some n,
whence x = x(x'x)™ = 0 as well, i.e., A is semi-simple and perfect,
i.e., A is semi-simple Artinian.

Thus it seems not at all impossible that all cyclic rings are per-
fect. On thé other hand cyclic rings, as we mentioned above, may
well be those rings whose modules have minimal generating sets.
So, in conclusion, we conjecture that the class of rings whose
modules have minimal generating sets is the class of cyclic rings
and that this class of rings is precisely the class of perfect
rings.
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