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ABSTRACT. Suppose that A is a ring with 
clic if' all modules M with a generating 

ii = li+lXi' xi E A, are in fact cyclic 

identity. Then A is cy

set {i. Ii E w} such that 
~ 

modules. Perfect rings 

are cyclic rings. All our examples of cyclic rings are ·perfect. 
Several properties of cyclic rings are established including 
other ways of characterizing cyclic rings. We believe that cyclic 
rings if not. identical to the class of rings whose modules have 
minimal generating sets are very closely related to this class. 

CYCLIC RINGS. 

In the discussion below, all rings A have an identity and all 
modules are right unitary. A Steinitz ring is a local ring A who
se ,Jacobson radical is T-nilpotent, i.e., given any sequence of 
elements {x. Ii E w}, where x. E R, the Jacobson radical of A, 

~ ~ 

there is some integer n such that xn",x l = 0, A perfect ring is 
a ring A such that the Jacobson radical R of A is T-nilpotent 
and such that AIR is a semi-simple Artinian ring. For more infor
mation concerning these rings, see [21, [3], [41, 

For a ring A, if {x., i E w} is any sequence of elements of A, 
~ 

then we define F ({x. liE w }) to be the quotient of the free mo
~ 

dule generated by the countable set {u.1 i E w} modulo the fr·ee 
~ 

module generated by the countable set {v. Ii E w}, where 
~ 

v. = u. - u.+·1x .• A sequence {x.li E w} is T-nilpotent provided 
1 1 ~ 1 1 

the module F({x.li E w}) = O. A subset of A is seen to be T-nil-
1 

potent if and only if every sequence {x. Ii E w} with x. E A for 
1 1 

all i E W; is T-nilp.otent, 

Thus one can certainly describe some properties 
ving properties of some (or all) of the modules. 

of rings by gi
F({x.li E w}) 

1 

where {xiii E w} is a sequence in A. If F({xili E w}) is always 
a cyclic module, then we shall call A a cyclic ring, It is the 
purpose of this paper to establish some properties of cyclic 
rings. We note that as we are actually talking about right 
Steinitz rings. right perfect rings so we are talking about right 
cyclic rings. With the modules taken to be right unitarY we shall , 
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suppress the terminology right cyclic ring and use the terminology 

cyclic ring instead. 

Our main classification is contained in the following theorem 

THEOREM 1. A ping A is ayalia if and only if fop any sequenae 

{xiii E w} of elements of A thepe is an index i o' suah that for 

aZl i > iO there is an index n> i+l and an element mi of A fop 

whiah xn",x i +1 = xn",xi+lximi' 

From this it follows almost immediately that the epimorphic image 
of a cyclic ring is a cyclic ring and a direct sum of two cyclic 
rings is a cyclic ring. All Steinitz rings are cyclic rings. To 
enlarge the class of examples further one shows that 

THEOREM 2. If A is a ping fop whiah ·thepe exists an integep k suah 

that evepy properly asaending ahain of ppinaipal right ideals aon

tains at most k tepms. then A is ayalia. 

From this we see that if A is any algebra over a division ring D 
such that A is finite dimensional as a right vector space over D, 
%hen A is a cyclic ring since right ideals are subspaces. 

From this we find that any semi-simple Artinian ring is a cyclic 
ring. We show that over a perfect ring A, a module M has m gene
rators if and only if M/MR has m generators, where R is the 
Jacobson radical of A, and so perfect rings are cyclic as well. 
One also shows without much difficulty that 

THEOREM 3. If A is a ayalic ping. then the Jaaobson radiaal R of 

Ais T-nilpotent. and A satisfies the asaending ahain acndition 

on pight prinaipal ideals. If xy = 0 implies y = O. then x is a 

unit. AZso. if xy = 1, then yx = 1. 

Another way of identifying perfect rings is by stating that A is 
perfect provided the descending chain condition on left principal 
ideals holds. Thus rings of the type described in theorem 2 are 
not only cyclic but also left perfect. If D is a division ring 
and if G is a finite group, then D G = A is an algebra over D 
which is finite dimensional as a right and left vector space and 
hence the descending chain condition on right and left principal 
ideals holds with an upper bound k = IGI. This way we can cons
truct perfect (cyclic) rings which are neither semi-simple 
Artinian nor Steinitz. Indeed, let D = GF(p), the field with p 
elements and let G be a finite group whose order IGI is. divisible 

by p and a prime qwith (p,q) = 1. Since G is not a p-group D G 
is not a Steinitz ring [1] and since G cQntains elements of order 
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p, D G is not a semi-simple Artinian ring by Maschke's theorem. 
If A = B G is the group ring of the group G with coefficients in 
the ring B, then if A is a cyclic ring, B is also cyclic since it 
is an epimorphic image of A by the norm homomorphism (For relevant 

information see [51 , pp. 86-87). 

A local cyclic ring is a Steinitz ring. Steinitz rings are those 
local rings whose modules have minimal generating sets. It is a 
question of some interest to give conditions identifying those 
rings whose modules have minimal generating sets. A necessary con
dition is that the Jacobson radical be T-nilpotent. If we require 
that every generating set of a,module M over A contain a minimal 
generating set, then the ring A is in fact cyclic, since a module 
F({x. Ii E w}) contains a minimal generating set which is a subset 

1. 

of {h.li E w} with h. = u. + V, V generated by {v. Ii E w}, if and 
~ ~ ~ ~ 

only if it is cyclic. This suggests that possibly cyclic rings are 
those rings for which modules have minimal generating sets. This 
last property would make cyclic rings a very interesting class of 
rings indeed. 

If we let E(A) be the collection of idempotents of the. ring A, and 
if e ~ f provided ef = fe = e, then it follows easily from theorem 
3 that 

THEOREM 4. If A is a oyoZio ring, then E(A) equipped with the par

tiaZ order ~ satisfies both the asoending ohain oondition and the 

desoending ahain aondition. 

From this we find that every cyclic ring A is in fact a unique di

rect sum A = A1+ ... +An of cyclic rings Ai' where Ai contains only 
central idempotents 0 and 1. Furthermore it follows that a commu
tative ring is cyclic if and only if it is a finite direct sum of 
Steinitz rings which is so if and only if the ring is in fact per
fect. One also shows that cyclic regular rings satisfy the des~en
ding chain condition on leftprincipal ideals and are thus perfect. 
Finally, we have no examples of cyclic rings which are not also 
perfect. 

Proof of theorem 1 and aonsequenaes. Suppose that the conditions 
stated in theorem 1 hold, and that {Xi liE w} is any sequence of 
A. Let F{Xili E w} be the corresponding module and suppose i ~ i o' 
Let hi be the image of u i in F({Xili E W}), as above. Then 

hn+1xn ·· ,x i + 1 = hn+1xn ·· .ximi implies h i +1 = him i and since 

hi = hi+1x i , it follows that h i +1A = hiA, whence, since this is so 

for all i ~ i O' F({xili E w}) is generated by {h1, ... ,h. } and thus 
~O 

by {h. }. Hence A is cyclic. 
~O 
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On the other hand, if A is cyclic, then F({xili E w}) = gA, and 
since g = h. a for some i o ' we may take g = h .. Then, if we use 

~o ~o 

the fact that F({x~ Ii E w}) h. A '" h.A for i ~ i o ' letting • ~o ~ 

X.~.) '" O. If h.a = 0, then u.a is 
~b ~ J J 

an element of V, whence u.a I v~a~, i.e~, a 1 = ... '" aJ'- 1 = 0, 
"J i=I·· 

a j '" a,xn ..• xja '" O. Applying this to a = (1 - ximi ) with j = i+1, 

we obtain the statement xn " ,x i +1 (1 - ximi ) =0, which .is preci-

sely the condition gi~en in the theorem. 

Since the conditions of theo.rem 1 are preserved unller homomorphism, 
it follows that the epimorphic image of a cyclic ring is also cy
clic. Similarly, if A and B are cyclic rings, and if 
{(xpy~)li Ew} is a sequence inA + B, then if x ... X. l(l-x.m.)=O 

~ • s ~+ ~ ~ 

and Yt"' Yj+l(l - yjn j ) '" 0 for all i ~ i o ' j ~ jo and for suita-

ble s ~ i+1, t ~ j+1, selecting kO '" max(io,jo)' i,j ~ko and 

r '" max(s,t), we have 

(xr'YrJ ... (Xi+1'Yi+l) (1·· (xi,yi)(mi,n i )) 

cyclic. 

o and A+B is also 

If A is a Steinitz ring, then A is a local ring with aT-nilpotent 

Jacobson radical R. Thus, if {xiii E w} is any sequence of elements 
of A, then either there is an index io such that i ~ io implies 
xi is a unit, or the sequence and all segments are themselves T-

nilpotent. In the first case take m. '" x.- l for i ~ i , in the 
~ ~ 0 

second case select n such that x ... X. I'" O. It follows that A 
n . ~+ 

is a cyclic ring. 

Proof of theorem 2. Suppose that A is not a cyclic ring. Then the
re is a sequence {x. Ii E w} of elements of A, such that fOT all i 

~ 

there is a j(i) > i with xn ' "x j (i)+I(l - xj(i)m) ~ ~ for all 

mEA and all n ~ j (i) + 1. This means that x ... X.(.) ~ 
n J ~ 

xn " ,x j (i)+IXj(i)A, and thus xn ' "xj(i)+IA C xn " ,xj(i)A (proper 

containment). 

Suppose now we select il '" 1, i2 = j(i l ),·· .,il = j (ii_I)' and 

n ~ i l + 1. Then let Ys '" x ... X. . It follows readily that we 
,n ~s+l 

have a proper ascending sequence x ... X. A C Y2A c ... C YoA con-
n ~2 .... 

taining t elements. 

Hence if we let l ~ k + 1, we obtain a contradiction. From this 
the claims made above, following the statement of theorem 2, are 
virtually immediate. 
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PERFECT RINGS ARE CYCLIC. 

Suppose now that M is a right A-module with RaT-nilpotent. ideal. 
Then if M/MR has generators gl+MR •...• gk+MR (as an A-module or an 
AIR module). it follows that if mO E M. then some linear combina

tion gl+alO+ .•. +gkako is congruent to mo module MR. Thus 

mO-(glalO+ •.. +gkakO) =m1r1 • Repeating this process with respect 

to mI' we find mO-(gl(alO+all)+ .•. +gk(~O+akl)) = m2r 2r l . It is 

easy to see that we may in this way generate sequences {r i } 

(r i E R) {mil and {b1i •...• bki } such that mO-(glbli+ ... +gkbki) 

= miri".r l • Since R is T-nilpotent, taking i such that ri".r 1= O. 

it follows that M is generated by {gl •...• gk}. Clearly if 

{gl ••.. 'gk} generates M. then {gl+MR •...• gk+MR} generates M/MR. 

Now if A is perfect and if R is its Jacobson radical. then R is 
T-nilpotent and AIR is a semi-simple Artininian ring, i.e .• AIR 
is a cyclic ring. If we consider the module 
F({x.li E w})/F({x.li E w})R, then it is an AIR-module. and as an 

1 1 

AIR-module it is isomorphic to the cyclic module F({x.+RI i E w}). 
1 

Since this latter module is cyclic, it follows that F({x. Ii E wI) 
1 

is a cyclic module and thus A is also a cyclic ring. 

PY'oof of theoY'em 3. An A-module M is quasi-cyclic if and only if 
it has a generating.set {i.li E w} with i.= i.+lx. for some x. EA. 

1 111 1 

It follows that there is a canonical epimorphism F({x.}) -+ M 
1 

given by h. -+ i. for each quasi-cyclic module M. Hence A is cy-
1 1 

c1ic if and only if all quasi-cyclic modules are cyclic. 

Now suppose ilA C i2A c ... C iiA C li+lA ... is an ascending 

chain of prinCipal right ideals. Then ii = ii+lxi' i.e .• the 

right ideal Ui.A generated by {i. Ii E w} is a quasi-·cyclic module 
1 1 

and hence cyclic with generator i. A. Hence A satisfied the ascen-
10 

ding chain condition on principal right ideals. 

Next. if x. is not a left zero-divisor of A. then x i (l - mx) = 0 

and xi (l • xm) = 0 implies xm = mx = 1. Also, if xi = xl+lm. then 

xi+l = xi+lmx. so that the first condition isa consequence of the 

second. for suitable i. Hence if x has a left inverse it is a unit. 
Thus if x has a right inverse x, then x, is a unit and x is a unit. 
If we let U = {x I 1 - mx and 1 - xm is a non-unit for some m} • 
then x ~ U provided for each mEA. 1 - mx or 1 - xm is a unit. 
Thus the Jacobson radical of A is precisely the complement of U. 

Now. if {x.li E w} is any sequence of elements of R. then 
1 
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x .•. x. 1(1 - x.m) = 0 fori> i o' implies x ... x·+1 = 0 and 
n 1+ 1 n 1 

{x. I i E w} is a T-nilpotent sequence. But then R is ,a T-nilpotent 
1 

set as asserted. 

Proof of theorem 4. If e ~ f, then ef = fe = e, and thus eA 

=feA- ~ fA, while if eA= fA, then f = ex, whence ef = ex = e f. 

Hence a properly ascending chain of idempotents e 1 <: e 2 < ... < ek 
implies a properly ascending chaift of right principal ideals 

elA < e 2A < ... < ekA. Since A satisfies the ascending chai~ co~
dition for right principal ,ideals, E(A) satisties the ascen~ing 
chain condition as a partially ordered se~. 

Also, if e ~ f, then (1 - e) (1 - f) = 1 - e - f +ef = 1 - f = 
= (1 - f) (1 - e), so that (1 - f) ~ (1 - e). Since an ascending 

chain e 1 < ... < ek gives rise to a descending chain (1 - ell > 
> (1 - e 2) > .' .. > (1 - ek) and conversely, it follows that E(A) 
also satisfies the descending chain condition. 

If we have an infinite orthogonal set of central idempotents, say 

{eili E w}, let fi = e1 + ... + e i · Then f i f i +1 = fi+lf i =f i , 

and fl < f2 < ... is an infinite ascending chain in E(A), an impo~ 
sibility if A is cyclic. Thus there exist minimal central idempo

tents, and these form a finite orthogonal set, say {el, ...• enl. 

It follows that A = Al + ... + An' where Ai = Ae i , and that Ai 
is a cyclic ring with no central idempotents other than 0 or 1. 

The uniqueness of the decomposition follows from the uniqueness 
of the minimal central idempotents. 

If A is a commutative cyclic ring, then A = Al + ... + An' where 
A. is a commutative, cyclic and has no idempotents other than 0 

1 L . L . 
or 1. Suppose A = AI'. If x (1 - mx) = 0, then (x(1 - mx)) = 0, 
i.e., x(1 - mx) is nilpotent. In particular xCl - mx) is an ele
ment of the prime radical R of A. and thus every prime ideal is 

maximal, while AIR is a regular ring. Hence, since A = AI' it fo1:, 
lows that AIR is a field and that R is the Jacobson radical of A. 

Hence A = Al is a Steinitz ring. Thus commutative cyclic rings 
are perfect. 

If A is a regular cyclic ring, then given any element x of A, 
there is an element x, such that xx'x = x. From this, one conclu
des that xx, = e is idempotent, and that xA • eA. Similarly, 
Ax = Ae where x'x e is an idempotent. Thus, suppose eA ~ fA, 

where e and fare idempotents. For the idempotents 1 - e and 
1 - f we have a relation (1 - f) (1 - e) = 1 - e - f + fe = 1 - f 
since e • fx implies fe = e, and thus A(l - e) > A(l - f). In 
particular, if A does not satisfy the ascending chain condition 

on right principal ideals, then A is not cyclic. Hente if A is 
cyclic it satisfies the descending chain condition on left prin
cipal ideals. But this means that A is perfect. More directly, if 
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A is a regular cyclic ring, then if x E R, (x'x)n = 0 for some n, 
whence x = x(x'x)n = 0 as well, i.e •• A is semi-simple and perfect, 
i.e.,.A is semi-simple Artinian. 

Thus it seems not at all impossible that all cyclic rings are per
fect. On the other hand cyclic rings, as we mentioned above, may 
well be those rings whose modules have minimal generating sets. 
So, in conclusion, we conjecture that the class of rings whose 
modules have minimal generating sets is the class of cyclic rings 
and that this class of rings is precisely the class of perfect 
rings. 
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