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In tllis short Note we intend to give a slightly different proof, from 

the known ones, of the simplicity of the alternating group An' n ;;;. 5. 

The proof results by a direct application of Sylow theorems. In the 
literature on the subject this is always done before proving Sylow 

theorems. Although, perhaps, this ~hould be (or not) the case, we 
found very instructive and natural proceed "via" the Sylow theorems. 

The proof resulted in a course taught at the I.M.A.F. of the Univers! 
dad Nacional de C6rdoba, in trying to give a simple proof of the non

existence in A4 of subgroups or order 6. In 1. we recall this proof 

and using same ideas we give in 2. the proof of the simplicity of An' 
n ;;;. 5. 

We wish to thank H. O'Brien his kind remarks on this Note. 

I. NON EXISTENCE IN A4 OF SUBGROUPS OF ORDER 6. 

In fact, let H be a subgroup of A4 of order 6. Then H is an invariant 

subgroup. Let H3 be a 3-sylow subgroup of H. Since A4 has order 
12 = 3x4, H3 i~ also a 3-sylow subgroup of A4 . Notice that every tri

cycle (abc) in A4 generates a 3-sylow subgroup. By the conjugacy of 

sylow subgroups it follows that every tri-cycle is conjugated to an 

element of H3 and "a fortiori" of H. But since H is invariant in A4 
we conclude at, once, that Hcontains all the tricycles in A4 . These 

are 8, so H has order greater than 8, a contradiction. This proves 
our claim. 

2. SIMPLICITY OF An' n ;;;. 5 . 

• We shall proceed inductively in n. We first prove it for n = 5 aqd 

next we prove for n = 6. The main ideas of the proof shall be taken 

ftom the case n = 6. 

a) Simplicity of As' 

Let H be an invariant subgroup of As' Let h be the order of H, 1 < h. 

We distinguish the following situations: 

i) S divides h. Therefore H contai~sa 5-sylow subgroup which is also 

a sylow subgroup of As . Thus by the argument used in 1. it {ollows 

that H contains all the elements of As of order 5. These are 4~ = 24. 
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By divisibility reasons H must have order 30 or 60. H contains there
fore a 3-'sylow subgroup (which is abo a 3-sylow subgroup of As) and 
hence H contains the (;).2! = 20 tricycles. This clearly implies that 

H = As' 

ii) 3 divides h. By the same argu~ent above, H contains the 20 tri
cycles of As' so its order might be 20, 30 or 60. But then 5 divides 
the order of H, and we are consequently in situation i). So again 

H = As' 

iii) H has order a power of 2. That is to say, H has order 2 or 22. 
In the first case it follows that.J\s has center" (n.· It is easy to 
see that this is not so. So, H has order 4. This implies that H is a 
2-sylow subgroup. Since any element of As of order 2 is contairiedin 
a 2"sylow subgroup H must contain the' t. (;) . (~) = 15 elements of or
der 2in As' a nonsense. This concludes the proof of the simplicity, 

of As' 

b) SimpZiaityof A 6 • 

Assume the simplicity of As' .Let us fix some notation. Let for any 
index i, i = 1,2,3,4,5,6 , A~ denote the alternanting group in the 
letters 1, .. :,t, ... ,6 where t means that the index i should be exclu
ded. We identify the A~ 's to the corresponding subgroups of A6 . Let 
H be an invariant subgroup of A6 , H " (1). Then H behaves respect to 
each Ai as follows: 

S 

(l)=HnAi 
s or Ai C H S • 

T~is clearly fs con:equence of the simplicity of A~ "" As' Assume that 
for some index i, A~ is contained in H. So 5 divides the order ofH 
and by the usual argument, H contains all the 5-sylow subgroups of A6 
or the same, H contains 'all the elements of A6 of order 5. These are 
6. . . . 1 (s).4! = 144 elements. But as A6 has order 2.6! = 360, we conclude, 

by looking the divisors df 360, that H should have order 180 or 360. 
In any case this would imply that 3-sylow subgroups of A6 would be 
in H. In particular all the elements of Qrder 3 should be in H. These 
are as many as .(~). 2! + t. (~) .2!. 2! = 80. In conclusion H contains at 
least 144 + 80 = 224. H = A6 is the only possible case. 

Therefore 
(1) for all i i 1,2, ... ,6 

holds. 

Call A ~ ASi. Then H n A = (1). It follows that the elements bf H 
i=l 

different from the identity, must be representable as product of dis-
joint cycles involving aU the letters 1,2,3,4,5,6. Let x E H be an 
element of prime order p. Assume p = 2. Then x has the following re
presentation 

x = (ab).(cd).(ef) 
with all distinct letters~. But then x is odd, so x f/; A6 a contra4ic
tion. 
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So p # 2. Notice that p = 5 is impossible, since any element of A6 of 
orde'r 5 is a cycle (abcde) omitting one letter ~ so can not be. in H. 
We are therefore reduced to study the case p = 3. More precise,ly we 
have to consider the case where H has order a power of 3. According 

2 2 with the order of A6 , the order of H can be 3 or 3 . In case 3., H 
would be a sylow subgroup, so H would contain all· the elements of A6 
of order 3, so as many as 80 elements. So H might have order 3. Then 
would be generated by an element of the form 

x = (abc). (efg) 
-1 with all distinct letters. But clearly (abe).x.(abe) = (bec). (afg) 

does not belong to H. We have proved the simplicity of A6 . 

a) Simpliaity of An' n > 6. 

Let i,j be two i~d~ces in the natural interval In = {1,2,3, ... ,n} , 
i , j. We call A~:~ the alternating group in the letters 
1, •.•• t, ... ,j, .. "n with i and j omitted, included in An' Let H be 
an invariant subgroup of An and H ~ (1). As in b) we have 

(l)=HnA i ,j n-2 Cir Ai,j C H 
n-2 . 

Assume that some A!:~ is contained in H. We claim that all the A~:~ 
are in H. In fact, let r,s be a pair of indices in In' r ~ s. 

If r = i, s = j, then A~:~ C H. If r i, s ~ j then 

( . ) Ar,s (. )-1 Ai,j 
Jsr . n-2' Jsr n-2 

and therefore Ar '2s C H. Assume r ~ i,j and s ~ i,j. Then n-

U S ).(ir).Ar ,S2.(U s ).(ir))-1 = Ai ,J2' • 
n- n-

So again A~:.~ C H. Hence H contains all the A!:~, which implies 
that H contains all the tri-cycles of A . Since. A is generated by 

n n 
tri~cycles, we conclude that H = A . 

n 

Let A!_1 denote the alternating gr~up in the letters 1, .. :,i, ... ,n. 
T~en by the simplicity of An _ 1 ~ A~_l' we have that H n A~_l = (1) or 
A1 1 C H. The latter is impossible since Ai 1 contains all the Ai,j. 

n- n- n-2 
Consequently any element of H is representable as a product of dis-
jOint cycles involving an the letters 1,2,. ',' ,no Let x E H be an el~ 
ment of prime order p. As in b) we can exclude the case p 2. We 
have to analyze only ,two possible representations of x as product of 
disjOint cycles. Namely 

i) x = (a1 ..• ap).(bl ... bp) ..• (cl"'cp) 

ii) x = (a1 •.. ap) 

p<n, 

Assume i). In case p > 3 we can c~oose an element y, in the alterna
ting group in the letters a1 , ... ,ap such that 1 ~ [y (a1 .... ,8p)l. 
Therefore 

1 , [y , (a l , ••. ,ap ) I = [y ,xl E H 
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a contradiction, sinl:tl [y,x] involves at most p < n letters, Let p=3. 
'Since n> 6,x contains at least 3 tricycles. We then repeat the pre
vious argument by choosing an element y in the alternating group in 

the. letters al,a2,a3,bl,b2,b3 such that 1 # [y , (ala2aj).(blb2b3)]' 

Assume ii). This means that p = n and that H is a p-group. Sincep is , , 
the liighes t power of p dividing ¥ = ~. ,we have that H has order p. 
MOTeover it is a sylow subgroup of An' whence it contains all the 
elements of order p, which are (p-1)!, a number clearly greater than 
p. 

The simplicity of An is completely·proved. Pace e Bene. 
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