
Revisea de 1a 
Union Hatematica Argentina 
Vo1umen 28,-1977. 

MICROLOCAL ESTIMATES FOR A CLASS OF PSEUDODIFFERENTIAL 

OPERATORS 

Jorge G. Hounie 

141 

INTRODUCTION. This work is devoted to the proof of microlocal es­
timates for a certain class of pseudodifferential operators that 
had been studied in [11 • Here we give a geometric characterization 
of these operators in terms of the characteristic variety of their 
principal symbol. 

We want to say two words about the relationship between the esti­
ma tes proved in [11 and in this work.. In the former, a canonical 
transformation, and a related Fourier integral operator were used, 
in order to bring the pseudodifferential operator in question to 
a particularly simple form and then energy methods were employed, 
yielding a priori estimates in certain caies. 

Here we do not make use of Fourier integral operators, in their 
stead, energy methods are applied directly and a priori estimates 
are obtained in all cases. Estimates in [11 are essentially par­
ticular cases of estimates obtained here. 

Let 0 be an open neighborhood of the origin in Rn+l, T~(O) its 

tangent bundle, n: T*(O) -+ 0 the canonical projection. We shall 
denote by t(O)* the complement in T*(O) of the zero section. 

Usually we are' going to select coordinates in 0 in such a way that 
one of the variables will playa distinguished role '. In such cases, 
the variable point in 0 will be denoted. (x 1 , ••• ,xn ,t) or'simply 

(x,t) in that system of coordinates. The variables along the fi­
bres in T*(O) will be denoted (~I""'~n,T) = (~,T). The canonical 

symplectic form on T*(o) will be called w; in terms of the coordi-
n 

nates w = r d~." dx. + dT " dt 
j =1 J J 

When no distinguished variable is needed we change the notation 

to x = (x 1 ,· .. ,xn+1 ) = (~l""'~n+l)' 

A subset r of T(O)* is said to be conic if it is stable under di­
lations (x,~) '-+ (x ,p~),p > O. 

Consider two conic, closed, smooth submanifolds 1:1 , 1:2 of T(O)* 

of codimension .one, and assume that they ·.are· in .general posit.ion. 
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That means that their normals are linearly independent at any point 
of the intersection 1:1 n 1:a . As a consequence 1:1 n 1:a is a conic sub­
manifold. of T(n)* of codimension two, unless it is empty. We shall 
always assume that·this is the case. 

We wish to make two assumptions about 1:1and 1:a ; one involves the sym­
plectic form and the other the projection n(1:1 n 1:2) c O. 

We require 

a) n(1:1 n 1:a ) is a smooth submanifold of aodimension one of 0 aontai­

ning the origin. 

Now take a point p in 1:1 with n(p) = O. Let VI be the linear subspace p . 
()f the tangent space to 1:1 at p, defined by X E VI ....... dn.X E 

E To (n(1:I .n l:a))' That is v~ is made up of the ve~tors wich are mapped 
into. the tangent space to n(1: I n 1:a) at the origin by the differential 
of the canonical projection. . 

For a point p in 1:a wi t·h n (p) = 0, we define Va in a similar way. 
. . PIa 

Using the inclusions 1:1 C T(O)*, l:2 C T(n)* we identify Vp and Vp 
with linear subspaces of T (T(n)*). 

p 

Our second assumption is 

b) The sympLeatia form w is non-degenerate when restricted to VI 
a p p 

(V ). 
p 

That means that for every X in VI (Va) there exists Y in VI (Va) such p p p p 
/that w (X,Y) # o. 

p 

n+1 .., PROPOSITION 1. Let n ~ R n ;;;. 2. Let 1:1 '""a be smooth submanifolds 

of t(n)* of aodimensiOn one. in generaz, position, satisfyir;tg (Jonditi­

ons a) and b). 

Then, there exist a system of aoordinates (x,t) in an open nbhd .. of 

the origin U and C'" real functions a(x,t,n, b(x,t,O defined on 

U x eRn-tO}) such that 

i) a and b are positive homogeneous in 

ii)~l/U = {(X,t,~.T) s.t. T a(x,t,~) 

Ea/U = {(x,t,~,r) s.t. T = b(x,t,~) 

iii) a(x,t,O = bex,t,O ....... t = O. 

~ of degree one. 

(x,t) in U} 

(x,t) in U} . 

REMARKS. 1) Once the coordinates (x,t) have peen chosen they induce 
coordinates (x,t,~ ,T) in a canonical way. By means of this trivializa­
tion of T(n)*/U we identify it with U x(Rn+I_{O}). 

2) Property ii) in Proposition 1 implies that for a given coordinate 
system (x, t,~ ,T)., the. funttions a and b are uniquely determined by l:1 
and·1:a , so there is at most one pair of such functions. 

Prooj. \'Ie cnoose coordinates (x,t) -in a nbhd. U' of the origin so that 
U'n n(1:1 n 1:2) = {(x,t) in U' s.t. to}. 

Let p E 1:1 , n(p) = 0 i.e. p = (O,O'~O,To)' The vectors 
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form a basis of the tangent space to the cotangent bundle at p and 

31· .. ·• 31 formabasisofTo(n(~ln~2))· 
;rx:-l ox o n· 0 

The linear map dn is given by 

dn·hl = hi 
p 0 

dn .~I = dn ·}':'I = 0 
~ p p 

n 
Thus; if X L Q. a!.1 + Pi ~Ip + Q hi + p},:.1 . we have 

i=1 ~ 
~ P P P 

X E VI iff 
P 

Q = o. 

Hence wp (x.}':'1 ) = 0 whenever X E VI and we conclude that 
p 

p 

~I ~ T (~1)· 
P P 

In particular. ~1 being conic. E 
0 

1- o. 

Now there is a positive E = E(p) and a unique C~ function a (x.t.E) 
P . 

defined for ixl.ltl < E. IE-Eol < E. such that q E ~1 and q close 
enough to p implies q = (x.t.~.a (x.t.E)). 

P 

The uniqueness of a in a nbhd. of p has two consequences. 
P 

First. we see that two such functions necessarily coincide in overlap-
I 

ping domains so that they define a function a(x.t.~) in an open subset 
of T = o. 

Secondly. using the conicalness of ~l we derive that a(x.t.n is posi­
tive homogeneous of degree one. 

In consequence. we may construct a(x.t.E) patching together.a finite 
number ~f functions a •••.• a defined on cones of U'x(Rn-{O}). after 

PI P r 
shrinking the nbhd. U'. 

We can find a nbhd. U of the origin and a cone r such that a(x.t.E) is 
defined on Uxr. Now we see that actually r = Rn-{O}; Fix (x.t) inU 
and consider the set of points such th~t (x.t.E .a(x.t.E)) E ~1. There 
is an E> 0 s.t. Ix-x'i • It-t'l • IE-E'I < E" (x'.t'.t'.a(x'.t'.t'H 
is in ~1' so r is open. Now if t j is a sequence in r with I·t j I = 1 

and tj --+ ~~ we find (passing through a subsequence if necessary) 

. 2 I" 12 -1/2 . real numbers T j such that (x.t.~ j.T j) E ~1' and (T j + Ii j) .1' j + l' ~ 

as j .... 00 • 

~ is conic and closed ~o 
(x. t. (I t .. 12+1'!) 1/2 

Since n > 2. Rn-{O} is connected and r = Rn~{O}. 
The function b is determined in the same way. with Ez in the place of 

~1· 
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To prove iii) we observe that for t ~ 0, a(x,t,~) = b(x,t,~) .. 
- (x,t,La(x,t,O) = (x,t,~,b(i,t.n) b.elongs-to ~1 n ~2 - n(p) 

(x.t,O,O) E n(~l n ~2) - t = 0. 
Q.E.D. 

REMARK. Since ~1 and ~2 are in general position we may assume, shrin­

king U, that ilt(a-b)(x,t,O ~ 0 , (x,t) E U, ~ ,; O. 

Let us write op(x,~) = a(x,O,n = b(x,O,n. If we consider the finite 

Taylor expansion of a(x,t,n and b(x,t,n with respect to the variable 

t, we can write 

a(x,t,n 

b (x, t, ~) 

op(x,n + ta'(x',t,n 

op(x,n + tb'(x,t,n 
(x,t) E U, ~ E Rn_{O} 

where all the functions are smooth in all arguments and positive homo 

geneous with respect to ~. 

In view of the remark we made after the proof of Proposition 1, we may 

assume that a' (x,t,n - b' (x,t,n ,; 0 for (x,t) in U and ~ ~ o. 

PROPOSITION 2. Let n ~ 2 and Q ~ Rn+l. Let p:tCQ)* --+ C be a C~ posi­

t·ive homogeneous funation of deg:roee m. Assume that the aha:roaate:roistic 

va:roiety C = {q € TCQ)* s.t. p(q) = O} is the union of two closed co-
p . 

nia subman·ifolds 1:1 and ~2 satisfying the hypothesis of .P:rooposition 1. 

If 

a) p vanishes on ~l U 1:2 - 1:1 n ~2 of order one 

b) p vanishes on E1 n E2 of orde:ro two 

then, there exist 

i) a system of aoordinates (x,t) in a nbhd. U of the o:roigin 

ii) COO real positive homogeneous funations op(x,~), a(x,t,~),b(x,t,~) 

of degree one, and a C~ positive homogeneous fun~tion e(x,t,~,T·) of 

deg:roee m-2, aU of them defined fo:ro (x,t) in U and ~ ,; 0 , 

such that 

p(x,t.~ ,T) 

T(o)*/U. 

Fu:rothermo:roe 

(T -.p(x,O -ta(x, t,O) (T -op(x,O -tb (x, t,O)e (x ;t,~ ,T) on 

iii) a(x,t,O-b(x,t,O ,; 0 for (x,t) in U , ~ ,; 0 • 

iv) e(x,t,~ ,T) ~ 0 for (x,t) in U , ~ ,; 0 • 

v) e(x,t,~ ,T) is real if P(X,t,~ ,T) is :roeal. 

vi) Once the aoordinate system is fixed, the funations a,b, e(x,t,~ ,T) 

are completely determined. 

Proof. We choose coordinates (x,t) and determine functions 

op(x,n + ta'(x,t,~), op(x,tJ + tb'(x,t,n according to Proposition 

and· then drop the prime, so as to have op (x ,tl + ta (x, t ,t) , 
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"oex,o + tb(x,t,n. 

In the complement of I:l U I:2 we define e(x,t,~ ,r) .by 

e(x,t,~ ,r) pex,t,e ,r) ~ -# 0 
(r -"o-ta) (r-"o-tb) 

We only need to define e(x,t,~ ,r) in a nbhd. of ~l U I:2 . 

It is enough to reason microlocally. Let (xo,O'~o,r 0) E I:l n I:2 and 

set zl = r-"o-ta z2 = r-"o-tb. We can find functions z3, ... ,z2n+2 in 

a nbhd. of (xo,O'~o,r 0) W, such t~at q ~ f(q) = (z1(q)"",z2n+2(q)) 

is a diffeomorphism of W onto a nbhd. W' of the origin in R2n+2. 

The mapping f takes I:l into zl = 0 and I:2 into z2 = O. 

The finite Taylor expansion of p a f- 1 in the .variables zl' zzaround 
- -·1 

the oTlgln gives fez1, ... ,z2n+2) = (paf )(z1, ... ,z2n+2) = 

z1 J:fZlesz1,sZ2'Z3~···'Z2n+2)dS + z2 f:fzz(SZl,SZ2'" .,zZn+2)ds = 

= zlF 1 (z) + z2F2(z), 

F1 vanishes on'z2 = 0 and F2 vanishes on zl = O. Therefore we may ex­
press F1ez) = z2Gl(Z) and F2 (Z) = zl G2 (z) with Gl , G2 in C-(W'), 

so fez) = zlz2H(z). 

Since p vanishes of order one on I:l U I:2 - I:l n I:z and of order two 
on I:l n I:2 we conclude that H(z) does not vanish on W' , 

We define e(x,t,~ ,r) on W as e = Hof. 

In a nbhd. of point J,ying on (I:1 - I:2) U (I:2 - I:'l) we reason simi larly. 

This gives a bonafide definition of e(x,t,~ ,r), since e(x,t,~ ,r) is 
determined in the dense set T(o)* - I:1 U I:2 . 

Q.E~D. 

So far we have assumed that I:l and I:2 are submanifoldsof T(n)*, If 
I: 1 , I:2 are only submanifolds of a conic open subset of 1(0)* proper­
ties a) and b) .still make sense and we have analogues of Propositions 
1 and 2, valid in a conic nbhd. of the origin in T(il)*. We stl:),te them 
without proof. 

PROPOSITION 1 I. Let r ~ r(o)* be a aonia open 8ub8et. 0 E nCr). 
o ~ Rn+1, n> 2. Let I:1• I:2 be 8modth 8ubmanifoLd8 of r o~ aodim~n8ion 
one in generaL p08ition 8ati8fying a) and b). 

Then.there exi8t a 8y8tem of aoordinate8 (x,t) in an open nbhd. U of 

the origin and CQ) reaL funation8 a ex, t,~), b (x ,tA) defined on U x bon 
(bo a aonia open 8ubset of Rn~{O}) Buah that 

n 

i) aex.t,~), b(x,t,~) are positive homogeneouj in ~ ofdeg'l'ee dne, 

~ E bon • 

11) I:1/U {ra(x,t,O s.t. (x,t) E U, e e bon} 
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1:2/U = {7' = b(x,t,O s.t. (x,t) E U, E E t.n}. 

iii) a(x,t,O = b(x,t,O .- t = O. 

iv) ilt(a-b)(x,t,O'; 0 foro (x,t) in U and E E t.n 

PROPOSITION 2'. Let r be a ,conic open subset of f(o) *, 0 ~' Rn+1, n ~ 2 
and p:r --+ C a C~ positive homogeneous function of degroee m. 

Assume that {q E r s. t. p (q) = Olis the union of two submanifo Zds ~p 
~2 satisfying the hypothesis of Prooposition 1'. 

If 

a) p vanishes on 1:1 U 1:2 - 1:1 n 1:2 of orodero one 

b) p vanishes on 1:1 n 1:2 of orodero two 

then, theroe exist 

i) a system of coorodinates (x,t) in a nbhd. U of the oroigin 

ii) C~ roeaZ positive homogeneous functions <p(x,n , a(x,t,n, b(x,t,n 
of degroee one defined on U x t.n , foro a cerotain open cone of Rn-{O} , 

and a C~ positive homogeneous function e(x,t,E ,7') of degroee m-2, 
defined on U'x t.n+1 (t.n+1 an open cone of Rn+1_{O} that proojects into 

t.n ) such that 

p(x,t,E ,7') = (7'-<p(x,E)-ta(x,t,E)) (7'-<p(x,E)-tb(x,t,~))e(x,t,E ,1') on 

U x t.n+1 . 

Furotheromoroe 

iii) a(x,t,O-b(x,t,n .; 0 (x,t) E U, E E t.n . 

iv) e(x,t,E ,1') .; 0 on U x t.n+1 

v) e is roeal if p is roeal. 

vi) Once the coorodinate system (x,t) is chosen the functions a,b,e 
aroe completely deteromined. 

REMARKS. 1) Wh'en r = T(O)*, Proposition l' specializes to a weak form 

of Proposition 1, since the latter states that in fact t.n+1 can be 
taken as {(E,7') s.t. E .; OJ. A simple example shows that in general, 
under the hypothesis of Proposition 1, it is not possible to extend 
smoothly the factorization to E = O. For instance p(x,t,E,7') = 

= 7'2 - t 2 (E2+t 2 ) (n=2) factors into (T_t(E2+E2)1/2)(T+t(~2+E2)1/2) 1 2 1 2 1 2 
which is not smooth at E = O. 

2) We only used the hypothesis n ~ 2 in Proposition 1 and 2 to conclu­
de that Rn-{O} is connected. This fact is not used in the proof of Pro 
positions l' and 2', where we work microlocally, so they are still va­
lid for n=1. 

We now introduce a certain class of pseudodifferential operators defi-
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ned on an open cone of TCn)*, n ~ Rn+l. 

All pseudodifferential operators of order m considered here have asym­
ptotic expansions .. 

PCx,D) - ~ P .Cx,D) 
j =0 m-J 

where P .cx,e) is in c"Cn x~) for a certain conic open subset ~ of 
m-J 

Rn+1_{O} and it is positive 

e. PCx,D) acts on functions 
XCO'in C"CRn+l) ,suppX ~ ~, 
ro for lei> 1/2. 

homogeneous of degree m-j with respect to 
of the form v = XCD)u; with u in c:cn), 
and X is positive homogeneous of degree z~ 

The class of pseudodifferential operators of order m defined on 
r. = n x ~ is denoted I/Im Cr) and the class of corresponding symbols 

·slll(r). When r = TCn)* we write I/Imcn) rather than I/Im(T(n)*). 

DEFINITION 1. Let r £ T(n)* be an open cone. n £ Rn+l. P(x,D) E SmCr}. 

We say that P(x,D) E Am'Cr) if its pzoincipal. symbol. Pm(x,e) vezoifies 

the hypothesis of Pzooposition 2'. 

We observe that this definition is coordinate free. 

If P E Amcn) andQ E I/Im' Cn) is elliptiC it is easy to check that the 
transpose t p , the adjoint P belong to Am(n) and the composites PQ,QP 
belong to Am+m' (n). 

Suppose that r 1 , r 2 are two open cones of T(n)* such that Tl U r 2 
= TCn)* and P E I/ImCn) is both in Am(r 1) and Amcr 2). 

In·general P need not belong to Amcn). 

Consider the homogeneous partial differential operator of order four 
in two variables 

P(x,t,Dx,D t ) CDt-tDx)CDt+tDx)CDx-xDt)CDx+XDt) 

defined on n = {x 2+t 2 < lIZ}. If we set ~{ = n x {T=tle I} 

~~ = n x £E=xIT,I}, 1:; = Q x {T=-tlel} , ~~ = n x £E=-xITI} 

it is clear that· the characteristic variety of P(x,t,Dx,D t ) is the 
union ~~ U~; U ~~ U 1:;. If we define ~. = n x {ITI < 31Z'le I} 

r 2= n x {Ie I < 3/21TI} then r 1 U r 2 = T(n)*, P/r i E A4 (r i ) for 

i= 1,Z but P fit A4 Cn), since it projects into the set xt = O. 

However in the simple case of a second order partial differential ope­
rator in two variables, we have 

THEOREM 1. Let P = A(x,t) D~+ZB(X.t) DxDt+CCx,t) D!+ .•• be in A2 cr) 

fozo acezotain cone r. Then P E A2 CU) fozo a c8zotain nbhd. of the ozoigin 
U. 

pzooof. We may find a system of coordinates Cx,t) in a nbhd. of the 
orlgln U = UCO); c .. positive homogeneous functions of degree one 
'I (x,"!;) , aCx,t,e) ,bCx,'t,O and an elliptic C .. positive homogeneous func-
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tion.e(x,t,~ ,1') of degree zero, defined in a cone 
ro U X< {(LT) s.t. ~ > 0, IT-k~ 1< e:} , k a real number, e: positive 
such that 
P 2 (x, t ,~, l' ) ~-.(x,~)-ta(x,t,~))~-.-tb) e(x,t,~ ,1') on the corie roo 

We can write a(x,t,~) = a(x,t)~,b(x,t,~) = b(x,t)~,.(x,~) = .(x)~ for 
~ >0. When (x,t) E u, ~ > 0 the points (L(.+taH) and (L(.+tbH) 
are roots of P2 = AT2 + 2BT~ + C ~2. 

Expressing the discriminant in terms of the ;oots we get B2 - AC = 
= t 2 (a_b)2 which is a square in C~(U). 

When t -# 0, ~ > 0, (.+taH, (.+tbH are distinct roots of P 2 as a poly­
nomial in 1', so A cannot vanish. The sum of the roots is 
(2. + t(a+b))~ = -(BfA)~ for t -# 0, and it follows that A divides B in 
C~(U). Therefore (-BfA + t(a-b))~ ," (-BfA - t(a-b))~ are C· functions 

of x,t,~, homogeneous of degree one in ~ . 

We can factor 

A 1'2 + 2BTE + C e2 = A(T +(BfA + t(b-aH)(T + (BfA - t(b-a)O 

and it follows right away that P is in A2 (n). 
Q.E.D. 

This section is devoted to the proof of a priori estimates fOT opera­
tors in ~(r). We begin with a factorization result. 

PROPOSITION 3. Let P E Am(r); r a aonia open subset of T(n)* suah 

that 0 E n(r), Q ~ Rn+l. Then there exist ar open subaone ro c r anq 

a system of aoordinates (x,t) defined on nero) suah that the following 

faatorization is valid on ro 
2 P(x,t,Dx,D t ) - E(x,t,Dx,Dt)(Dt-R1 (x,t,Dx)D t +R2(x,t,Dx)) 

Here" E is eZliptia of degree m-2. and R1• R2 are pseudodifferentiaZ 

operators in Dx depending smoothly on t. of degree one and two respea­

tivel-y. The prinaipal symb"ols r 1 , r 2 of Rl' R2 aan be written 

r1(x,t,n t(a(x,t,n + b(x,t,n) + 2c(x,n 

r 2 (x, t ,e ) (ta(x,t,n + c(x,n).(tb(x,t,n + c(x,O) 

with a,b,c positive homogeneous real- funations of degree one. c(x,~) 

" independent of t and a(x,t,~)-b(x,t,~) -# 0 on r . 
o 

Proof. We use Proposition 2' to factor the principal symbol of P. This 
factorization of the principal symbol of P implies that 
P - E(D~-RIDt+R2) with E elliptic (see [2]). 

Comparing principal symbols on both sides of the equivalence relation 
we obtain the expression for r 1 and r 2 . 

Q.E.D. 

REMARKS. 1) If r = T(Q)*, ro can betaken as U x a -# O} with U a 
nbhd. of the origin in n. 
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2) The hypothesis implies that (see the proof of Proposition 1) the 
characteristic variety of Pm(x,t,~,7') does not contain points of the 
form (x,.t,O,7'), so r can always be taken to avoid the ray ~ = O. Then 

o 
the pseudodifferential operators in Dx can be. regarded as pseudodif-
ferential operators in Dx,Dt with symbol independent of 7'. 

In view of Proposition 3 we consider operators of the form. 
_ 2 

L - Dt-Rl(x,t,Dx)Dt+R2(x,t,Dx) with r 1 = t(a+b) + 2c 

r 2 = (ta+c)(tb+c) as in Proposition 3. 

For the .sake .of simplicity we assume that a,b,c are defined for all 
~ i 0, but all reasonings would also hold if we were dealing wi th any 
open cone, say, U x 6. In that case operators act on functions of the 
form v = X(D)u, with u E C~(U) and X(~) a smooth positive homogeneous 

c 
function of degree zero for I~ I > 1/2 and suppX ~ 6. The class of 
such functions will be denoted C~(U)/6. 

c 

Define pseudodifferential operators A,B,C with principal symbols a,b,c 
respectively and consider the operator 

L = (at-it.A;B - i C)2 + (t.(~-B))2 + S(x,t,Dx) 

with S of degree one in D depending smoothly on t. We see that choo-_ x 

sing S conveniently L - L. 

We use the following notation 

a = a t -it.1/2.(A+B)-iC 2P = A-B 

We observe that P is real elliptic in Dx' Redefining S if necessary, 
we may assume that P = P*. All pseudodifferential operators occurring 
in L are assumed to be properly supported and its associated kernels 
to have support in a sufficiently thin nbhd. of the diagonal so that, 
speaking loosely, they transform functions of small support in func­
tions of small support. 

When f,g E C;(an +1) we denote 

(f,g) = J fg dx dt IIfII2 = (f,f) 

We now list some properties of the operator which will be used in the 
sequel. 

d1) a+a* = B(x,t,Dx) is of degree at most zero in Dx.depends smoothZy 

on t and does not aontain Dt . BriefZy. B E ~o(t,Dx)' 

d2) Let a = aCt) be a reaZ C: funation of one variabZe. Then 

2Re(au,au) = - (a'u,u) + (Bu,au) u E C~(U)/6 
c 

d3) If we regard a as a muZtipZiaation operator. we have [a,a]=a'=ata 
where the braakets indiaate the aommutator of a and a. 

d 4) [a,p] E ~l(t,Dx)' i.e. [a,p] does not aontain Dt • 

Our estimates for L .will be expressed in terms of certain nol'1l}s that 
we define now. 



Let ~ E C:(U)/A , we write 

Hlull! IIull 2 + IItPull 2 

1 SO 

"'ul.~ IIa 2ull 2 + IItPull 2 + IIPull 

IIIulU~ IIak+l ull 2 + IItpa kull 2 + llpak-Iull 

k=O 

k=l 

k= 2,3, ••• 

LEMMA 1. Given e: > 0 and k E Z+ thel.'e e:J:i8t8 a nbhd. U U(e: ,k) 8uch 

fol.' u in C"(U)/A • 
c 

From now on we will write 0(1) to {ndicate a constant relating two 
norms defined on C:(U)/A , that can be taken arbitrarily smal;l. if the 
nbhd. U shrinks around the origin. 

For instance , the conclusion of Lemma 

III u"'k or;;;; 0 (1) IIIulllk+1. 

is written 

Pl.'oof. k=O) It is enough to see that lIaull .;;; 0(1) lIa 2uII since it is ob­
vious that IItPull ';;;o(l)IIPull (in fact we only need to narrow U in the 
·t-direction). 

Using dl ) with aCt) = t we g~t 

IIull 2 = (Bu,tu)-2Re(au,tu) .;;; Kllulllltull + 211aulllltull .;;; 

.;;; 0(1)lIuIl 2 + o(l)l!aullllull 

where we have used that B is bounded in L 2 (U) with norm K. 

The last estimate implies lIull';;; o(l)lIaull. Applying this result to 
the function au we get what we needed. 

k > 1) The same argument proves that lIa k+1ull .;;; o(l)lIakull 
It is also clear that 

II tpakull .;;; o(1)IIl'il k ull .;;; 0(1) IIlulll k+1 

Finally, taking account of d4) and the fact that P is elliptic of de­

gree one in Dx~ 

IIP3~-lull .;;; o(l)liapak-lull .;;; 0(1) (IIpakull+II[p,a]ak-lull) 

so 
Q.E.D. 

Now we will look into two bilinear forms: 

Re(ak~u,aku) and 2Re(a kLu,ta k+l u) u E C"'(U)/A. 
c 

It is easy to verify that 

akt 2 = t 2ak + 2kt ak- 1 + k(k-l) ak- 2 k=1,2, ••• 

so we obtain 

BI ) Re(akLu,aku) = Re(ak+2u,aku)+Re(t2akp2u,aku) + 

+ 2kRe(ta k- Ip2u,a ku) + k(k-l) Re(a k- 2p2u,a ku) + Re(akSu,aku) 
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Our objective is now to introduce suitable commutators in each one of 

the right-hand sides of B1) and B2) so as to produce those norms that 

appear in the defini tion of III ull k • 

We will make use of properties d 1), d 2), d 3) several times, to obtain 

the following identities 

II) Re(a k+2u,a ku) = _lIa k+1uIl 2 + Re(Bak+lu,aku) 

1 2) Re(t 2a kp 2u,a ku) Re(t2p 2a ku,a ku) + Re('t;2[(lk,p2ju,a ku) 

II tpa kull 2 + 'Re (t 2[ a k,p2j u ,a ku) 

13) 2Re(ta k - 1p 2u,a ku) 2Re(tPa k - 1u,Pa ku)+2Re(t[ ok-I ,pZju,aku) 

2Re(tpak-lu,apak-lu)+2Re(tpak-lu,[p.ajak-lu)+ 

+ 2Re(t[ ak-1u.pZju,aku) = 

_II pak-luIl Z+ (tBak-1u,pak-lu ) + 

+ 2Re(tPa k- 1u.[ p,aj a k- 1u)+2Re(t[ a k - 1 ,pZju.aku) 

In the same manner we obtain 

14) Re(ak-ZpZu.aku) _lIpk-luIlZ_Re([ak-l,pZju,ak-lu) + 

+ (Bak-2pZu,ak-lu) 

Is) Re(aksu.aku) = Re(saku.aku) + Re([ak,Sju,aku) 

1 6) 2ReCak+ Zu.ta k+lu) = _lIak+luIl2+(Bak+lu,tak+lu) 

17) 2Re(t3a kp Zu,a k+ 1u) = _3I1tpakuIlZ+(Bpaku,t3paku) + 

+2Re(t3paku,[p,ajaku)+2Re(t3[ak.pZju,ak+lu), 

Is) Re(tZak-lpZu,ak+lu) = f!pak-luIlZ_lItpakull_(tBPak-lu.pak-lu) -

_2Re(tpak-lu,[p.alak-lu)_Re(tZ[ak,pZju.aku)­

_2Re(t[ak-l.pZ]u.aku)+(BtZak-lpZu,aku) 

1 9 ) 2Re(tk-ZpZu.ak+lu) = Ilpak-luIlZ+2I1pak-luIlZ+(Btak-ZpZu,aku) -

_ (tBPa k-lu .pa k-lu ) _ 2Re (tpa k-l[ p ,oj a k-lu ) -

_2Re(t[ak-l.p2ju,aku)_2(Bak~Zp2u,ak-lu) + 

+2Re([a k - 1 .pZju.a k - 1u) 

1 10) Re(aksu.tak+1u) = Re(saku.tak+lu)+Re([ak.s]u.tak+lu) 

We wish now to estimate all terms that appear on identities II) ...... 

1 10), 

LEMMA 2. The foUobJing expressions aan be dominated by 0(1) 11I\.lIlIZ: 

E1) I (Bak+lu.aku) I 
E2) I (t 2[a k .p2ju.a ku) I 
E3) i) I (tBPll k-lU .pak-lU )I 

iii) I (t[ ok-I ,pZj"u.aku) I 
ii) I (tpa k- 1u.[p.a k - 1 ju) I 



E4) i) I ([ak-l.p2ju.ak-lU) I 

ES) 

E6) I (Ba k+1u • ta,k+lu) I 

E7) i) I (BPa ku.t3pa ku) I 
iii) I (t3[ a k .p2j u.a k+1u) I 

Ea) i) I (tBpak-lu.pak-lu ) I 
iii) I (d ak- 1.p2ju.a ku) I' 
v)1 (Bt2ak-lp2u.aku) I 

E9) i) I (tBPak-1u.pak-1u) I 
iii) I (d ak- 1.p2ju,a ku) I 
v) I (Bak-2p2u,ak-lu) I 
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ii) 

ii) 

ii) 

ii) 

iv) 

ii) 

iv) 

vi) 

ii) 

I (~ak-2p2u.ak-lu)1 

I ([ak,s]u.aku) I 

I (t3pa ku.[P.a]a ku) I 

I (tpa k- 1u.[p,aja k- 1u) I 
I (t2[ak .p2ju.a ku)1 

l(tpak-1u.[p,ajak-1u) I 
I ([ak-l.p2ju,ak-lu) I 

I CtBa k- 2p2u.a ku) I 
I ([ ak • Sj u. ta k-lu ) I 

We observe that expressions collected under E.) i=1,Z.3 ..... 10 are 
~ 

thoSe appearing in identity Ii). That makes that some expressions 
like E3)i) andE9 )i) appear twice. 

PT'oof. If R El/I2(t,D) , 
x 
k-l 

[ a k , RJ = L 
i=O 

we can express 

H.a i with 
~ 

This is easily proved by induction. 

~ince all estimates are proved essentially in the same way. we'prove 
some of them and leave the rest to the reader. 

Now, for i=l •..• ,k-l 

I (tH.aiu,taku) I OS;;; const. Cf t 2na i un 2(t) dt) 1/2(ft2nakun2(t) dt) 1/2 
~ 1· 1 

where naiun1(t) denotes the Sobolev I-norm in the x-variables. 

Hence I (tHiaiu.taku) I OS;;; const.ntPaiunntpakun OS;;; 0(1) Inuln~. 

E 7) iii) 
k-l k-l 

I (t3[ak,p2Ju.ak+lu) I OS;;; L I (t3Hiaiu.ak+lu)los;;; L I (3t2Hiai,aku) I + 
i=O i=O 
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Furthermore 

I (t3aH.a i U,a kU) I .;;; I (t 3H.ai+lU,a kU) I + (t3[a,H.la i u,a kU) .;;; 
1 1 1 

.;;; 0(1)lItpai+1UlllitpakUIi + 0(1) lIIulll;';;; 

.;;; 0 (1) III ulU ~ i = 1 , .•• ,k - 1 

Also 

Q.E.D. 

We estimate Es)i) and E10)i) in a separate lemma. 

LEMMA 3. Let S E ~1(t,D ). Then there exist C > 0, k E Z+ and a nbhd. 
x 

U of the origin, suah that 

I (saku,aku) I .;;; 2l1a k+1ull + (2k-1)lItpa kuli 

I (sa ku,ta k+1u) I .;;; 2l1a k+1ull + (2k-1)lItpa kull 
U E Cco(U)/~ 

c 

Proof. Since P is elliptic and P = P* we may find a pseudodifferential 
operator Q E ~1(t,D ) such that Q* = Q and Q2 - P. 

x 

We observe that 

1) 2Re(taQa ku,Qa ku) 

On the other hand 

2) (aQaku,tQaku) = (tPa k+1u,a ku) + (t[a,Qlaku,Qaku) 

Since [a,QI E ~1/2(t,D ), it is clear that 
x 

I (t[ a ,QI aku,Qaku) I .;;;; CII akulIlI tpakull .;;; 0(1 )lIa k+1ullll tpakull 

From 1) and 2) we get 

3) II Qakull 2 .;;; I (pa k+1u,ta ku) I + 0(1)lIa k+1ulllitPil kuli 

II Qakull 2 .;;; lIa k+1ulllitPa kull.(1+0(1))';;; 2l1a k+1ulllitPa kuli .;;; 

.;;; all ak+1ull 2 + a- 1l1tPil kull 2 

with u E Cco(U)/~ and U small enough so 0(1) .;;; 1. c 

Furthermore, using the Sobolev dual norms II " 1/ 2 ' 

4) k k k k k 2 I (Sa u,a u) I .;;; lisa ul ... 1/ 2"a uIl 1/ 2_';;; CIIQa uli o 
for a certain constant C independent of k. 

From 3) and 4) it follows that 

"11-1/2 we have 

u E Cco(U)/~ 
C " 

I (Saku,aku) I .;;; Calla k+1ull 2 + Ca- 111 tpa kull 2 .;;; 211a k+1u1l 2 + (2k-l}1I tPa kull 2 

if we choose a so that Ca .;;; 2 and then K ~ l/Z(Ca- 1+1). 

E10)i) is proved in the same way. 
Q.E.D. 

THEOREM 2. Let L = a 2+t 2p2+S be defined on a aone V(O) x ~, liJith 

a,p,s defined as above. Then given e> 0, there is a nbhd. U of the 

origin and k E Z+ suah that 
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for every 

Proof. Using 1 1), ... ,1 10) we obtain 

4Re(a kLu,a ku+(1/Z) ta k+1u) = -5I1ak+luIl2-(4k-1)lItPa~1I2 -

_k(k_1)lIpa k- 1uIl 2 + 7(U,U). 

We indicate with l(u,u) all terms in 1 1), ..• 1 10) which do not reduce 
to the square of a norm. In view of Lemmas Z and 3 we have the esti­
mate 

11(u,u) I .;;; Z(ZlIa k+1uIl 2 + (Zk-1)lItP.a~1I2) + 0(1) IIIUII~ 

for a certain k E Z+. 

Hence 

14Re(a kLu,a ku+(1/Z) ta k+1u) I ;;. lIak+luIl2+lItPakuIl2+k(~_1)lIpak-luIl2 -

- 0 (1) III ulR ~ 

Therefore 

lIIulR~ .;;; const.llakLull lIaku+ (1/Z)ta k+1ull .;;; 0(1)lIa kLull IIlu lR k 

so that IlIuJll k .;;; 0(1)lIa kLuli. 
Q.E.D. 

REMARK. Theorem Z implies estimates in terms of more familiar norms. 
For instance in the proof of Lemma 1, we saw that all norms 11\ IlIk are 
stronger than the L2-norm. In fact, they stronger than the norm 

N (u) = (f I G (~ ,r) I ~ 11/ 212 d~ dr) 1/2. 
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