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MICROLOCAL ESTIMATES FOR A CLASS OF PSEUDODIFFERENTIAL
OPERATORS

Jorge G. Hounie

INTRODUCTION. This work is devoted to the proof of microlocal es-
timates for a certain class of pseudodifferential operators that
had been studied in [1] . Here we give a geometric characterization
of these operators in terms of the characteristic variety of their
principal symbol.

We want to say two words about the relationship between the esti-
mates proved in [1] and in this work. In the former, a canonical
transformation, and a related Fourier integral operator were used,
in order to bring the pseudodifferential operator in question to
a particularly simple form and then energy methods were employed,
yielding a priori estimates in certain cases,

Here we do not make use of Fourier integral operators, in their
stead, energy methods are applied directly and a priori estimates
are obtained in all cases. Estimates in [1] are essentially par-
ticular cases of estimates obtained here.

Let 2 be an open neighborhood of the origin in Rn+1, T*(Q) its

tangent bundle, n: T*(Q) — Q the canonical projection. We shall
denote by T(@)* the complement in T*(Q) of the zero section.

Usually we are: going to select coordinates in @ in such a way that
one of the variables will play a distinguished role. In such cases,

the variable point in 9 will be denoted (x ..,xn,t) or simply

1
(x,t) in that system of coordinates. The variables along the fi-

bres in T*(Q) will be denoted (El,...,En,T) = (¢,7r). The canonical
" symplectic form on T*(Q) will be called w; in terms of the coordi-
n
nates w= 7 dEj A dxj + dr A dt

j=1 .
When no distinguished variable is needed we change the notation

0 X = (Xp,eeanX ) = (Epaeensb )

A subset T of T(n)* is said to be conic if it is stable under di-
lations (x,§) — (x,pt),p > 0.

n *
" of T(Q)

of codimension one, and assume that they 'are in.general position.

Consider two conic, closed, smooth submanifolds El, z
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That means that their normals are linearly independent at any point
of the intersection Z; N Z,. As a consequence 2, N Z, is a conic sub-
manifold. of T(2)* of codimension two, unless it is empty. We shall
always assume that- thls is the case.

We wish to make two assumptlons about Z and 22, one 1nvolves the sym-
plectic form and the other the pro3ect1on H(E nZz ) c Q.

We require

-a) II(E1 n 22) i8 a smooth submanifold of codimension one of Q contai=
ning the origin.

Now take a point p in Z with m(p) = 0. Let vi be the linear subspace
of the tangent space to E at p, defined by X € V . dn.X €

eT (R(Z nz )) That is V is made up of the Vectors wich are mapped
1nto the tangent space to n(E nz ) at the origin by the dlfferentlal
of the canonical projection.

For a point p in E with n1(p) = 0, we define V in a similar way.
Using the 1nc1u51ons E c T()*, E c. T(a)* we 1dent1fy V and V§
vw1th linear subspaces of TP(T(Q)*)

Our second assumption is

b) The symplectic form u% is non-degenerate when restricted to V
vs 2y,

That means that for every X in V; (Vﬁ) there exists Y in V; (Vﬁ) such
that u&(X,Y) # 0.

PROPOSITION 1. Let @ C R®! n > 2. ILet Z,,Z, be smooth submanifolds
of T(8)* of codimension one, in general position, satisefying conditi-
ons a) and b).

'Then, there exist a system of coordinates (X,t) in an open nbhd. of
‘the origin U and C” real functions a(x,t,£),b(x,t,t) defined on
U x (R®-{0}) such that
i) a and b are positive homogeneous in £ of degree one.
ii)El/U {((x,t,&,7) s.t. 7 = a(x,t,§) (x,t) <n U}
EZ/U f(x,t,t,7) s.t. 7 = b(x,t,¢) (x,t) <n U} .
iii) a(x,t,t) = b(x,t,f) <= t = 0.

REMARKS. 1) Once the coordinates (x,t) have been chosen they induce
‘coordinates (x,t,t,r) in a canonical way. By means of th1s trivializa-
tion of T(Q)*/U we 1dent1fy it with U x(R™1-{o}).

2): Property ii) in Proposition 1 implies that for a given coordinate
system (x,t,t,7), the funttions a and b are uniquely determined by Zl
ahd.Ez, so ‘there is at most one pair of such functions.

Prooy. We cnoose coordinates (x,t) in a nbhd. U' of the origin so that
Uu' n n(E1 n 22) = {(x,t) in U' s.t, t = 0}.

Let p € 21, n(p) =0 i.e. p = (0,0,Eo,ro). The vectors
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’ a } LR a ‘ ,.a

d , d
ax_ it
n'p P

form a basis of the tangent space to the cotarngent bundle at p and
0 seees O
3x1 o 9x

n

form a basis of TO(H(E1 N 22)).

o

The linear map dn is given by

0 0 9 0 a9 ) -
dH.aT’ = X H dn.rt' = 3t H dH.a—t—. = dH'F 0
i'p i'o P o i'p
Thus,; if X = ? a. 3%— + B Hg; +a 3?| + B 3 we have
i=1 * Tilp P gly P P :

X e v; iff o« = 0.

Hence w (X,%— ) = 0 whenever X € V1 and we conclude that
P T P P

%? , "3 Tp(zl). In particular, Z, being conic, & _# 0.

Now there is a positive € = e(p) and a unique C” function ap(x,t,f)_
defined for |x|,|t| <€, IE—EOI < €, such that q € El and q close
enough to p implies q = (x,t,E,ap(x,t,E)).

The uniqueness of ap in a nbhd. of p has two consequences.

First, we see that two such functions necessarily coincide in overlap-
1

ping domains so that they define a function a(x,t,£) in an open subset
of 7 = 0.

Secondly, using the conicalness of 21 we derive that a(x,t,t) is posi-
tive homogeneous of degree one.

In consequence we may construct a(x,t,f) patching together a finite

number of functions ap ,...,ap defined on cones of U'x(Rn-{O}), after
: 1 r

shrinking the nbhd. U'.

We can find a nbhd. U of fhe origin and a cone I such that a(x,t,t) is
defined on Uxr'. Now we see that actually T = R®-{0}. Fix (x,t) in'U
and consider the set of points such that (x,t,t,a(x,t,f)) € 21. There
is an e > 0 s.t. |x-x'| , |t-t'| , |E-§'| <e = (x',t',E',a(x',t",E"))
is in El, so I 1is open. Now if §, is a sequence in T with IEjl =1
and Ej — ¢_ we find (passing through a subsequence if necessary)
2)'1/2.%, -7

2
real numbers 74 such that (x,t,Ej,rj) € Z; and (Tj + |Ej| 3

as j = o ,

£, v

2 is conic and closed so (x,t, ' )
1
e 1 24r 227 (g |2 T2

€2z .

Since n » 2, R®-{0} is connected and I = R®-{0}.

The function b is determined in the same way, with 22 in the place of

21.
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To prove iii) we observe that for & # 0, a(x,t £) = b(x,t,f) =
= (x,t,f,a(x,t,k)) = (x,t,f,b(x,t,§)) belongs to 2, N Z, < 1n(p) =

(x,t,0,0) € 11(21 n 22) <t =0,
Q.E.D.

REMARK. Since 2 and 2 are in general position we may assume, shrin-
king U, that 0 (a b)(x t,k) #0,(x,t) €U, £ # 0.

. Let us write ¢ (x,¢) = a(x,0,{) = b(x,0,¢). If we consider. the finite
Taylor expansion of a(x,t,t) and b(x,t,t) with respect to the variable
t, we can write

a(x,t,f) = ¢(x,§) + ta'(x,t,§)

b(x,t,§) = P (x,E) + tb'(x,t_:s)

x,t) eU , & € R"-{0}

where all the functions are smooth in all arguments and positive homo
geneous with respect to £.

In view of the remark we made after the proof of Proposition 1, we may
assume that a'(x,t,t) - b'(x,t,£) # 0 for (x,t) in U and £ # 0.

PROPOSITION 2. Let n > 2 and @ C R™?L. Let p:f(a)* — C be a C” posi-

tive homogeneous function of degree m. Assume that the characteristic
variety Cp = {qe T(@)* s.t. p(q) = 0} Zs the union of two closed co-
nie submanifolds 21 and 22 satisfying the hypothesis of Proposition 1.

If

a) p.vanishes on 21 V] 22 - 21 n 22 of order one

b) p vanishes on £, NZ,of order two

then, there extst

i) a system of coordinates (x,t) ¢n a nbhd. U of the origin

ii) €% peal positive homogeneous. functions ¢(X,£), a(x,t,t),b(x,t,§)
of degree one, and a C” positive homogeneous function e(x,t,t,r) of
degree m-2, all of them defined for (x,t) in U and § #0,

such that

P(X,t,f )T) = (T"P(x9£)'ta(x’tys)) (T-W(X,E)-tb(X,t,E))‘e(X,'t,E :f) on
T(a)*/u.

Furthermore

iii) a(x,t,t)-b(x,t,§) # 0 for (x,t) 2n U , & # 0.
iv) e(x,t,t,r) # 0 for (x,t) in.U , § # 0.

v) e(x,t,t,7) is real if p(x,t,t,7) is real.

vi) Once the coordinate system is fixed, the functions a,b, e(x,t,t,7)

are completely determined.

Proof. We choose coordinates .(x,t) and determine functlons
p(x,g) + ta'(x,t,g), o(x,§) + tb'(x,t,t) according to Proposition 1
and then drop the prime, so as to have p(X,§) + ta(x,t,t),
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p(x,€) + th(x,t,§).

In the complement of Z, U Z, we define e(x,t,t,r) by

e(x,t,b,7) = —BROOGEE,T) £ 40
(r-¢-ta) (r-¢-tb)

We only need to define e(x,t,£,7) in a nbhd. of 21 U 22.
It is enough to reason microlocally. Let (xo,O,Eo,To) € 21 N 22 and

set z, = T-p-ta z, = 7-¢-tb. We can find functions ZyseeesZyiyy AN

a nbhd. of (xo,O,Eo,ro) W, such that "q —> f(q) = (zl(q),...,22n+2(q))
is a diffeomorphism of W onto a nbhd. W' of the origin in R29+2,

The mapping f takes El into z, = 0 and 22 into z, = 0.

1 2

The finite Taylor expansion of p°f—1 in the -variables 2y zzwaround
. . . ~ =1 _

the origin gives f(zl,...,22n+2) = (pef )(Zl""’22n+2) =

1 1
=z, JOfZI(szl,szz,z3,.i.,22n+2)ds * oz, Jofzz(szl,szz,...,22n+2)d§;—
lel(z) + ZZFZ(Z).
Fl vanishes on'z2 = 0 and F2 vanishes on z; = 0. Therefore we may ex-
press Fl(z) = zzGl(z) and Fz(z) = zlGZ(z) with Gl’ G2 in T (W"),
so f(z) = zlzzH(z). ‘
Since p vanishes of order one on 21 U 22 - 21 N 22 and of order two
on 21 N 22 we conclude that H(z) does not vanish on W',
We define e(x,t,£,7) on W as e = Hof.
In a nbhd. of point lying on (21 - 22) U (2, - Z;) we reason similarly.
This gives a bonafide definition of e(x,t,t,r), since e(x,t,t,r) is
determined in the dense set T(Q)* - Zl U] 22
Q.E.D.
So far we have assumed that El and 22 are submanifolds of T(R)*. If
21, 22 are only submanifolds of a conic open subset of T(Q)* proper-
ties a) and b) .still make sense and we have analogues of Propositions

1 and 2, valid in a conic nbhd. of the origin in T(a)*. We state them
without proof. :

PROPOSITION 1', Let T C© T(ﬂ)* be a conic open subset, 0 € I(T),
2 C R“+1, n > 2, Let Zl, 22 be smooth submanifolds of T of codimegnsion
one in general position satisfying a) and b).

Then,there exist a system of coordinates (x,t) in an open nbhd. U of
the origin and C® real functione a(x,t,t), b(x,t,t) defined on U x An
(An a conte open subset of Rn;{O}) guch that

i) a(x,t,t), b(x,t,t) are poéitive hamogénedué in ¢ of degree one,
ten . .

ii) EI/U ={r = a(x,t,t) s.t. (x,t) e U, &t € An}
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22/U = {r = b(x,t,t) s.t. (x,t) €U, ¢ € An}.
iii) a(x,t,t) = b(x,t,f) = t =0.
iv) at(a-b)(x,t!{) #0 for (x,t) Zn U and & € Al
PROPOSITION 2'. Let T be a conic open subset of T(2)*, a € K™Y, n > 2
and p:T — C a C” positive homogeneous function of degree m.
Assume that {q € T s.t. p(q) = 0} s the union of two submanifolds Z,,
22 satisfying the hypothesis of Proposition 1'.
If
a) p vanishes on 21 U 22 - 21 n 22 of order one
b) p vanishes on 21 n 22 of order two
then, there exist
i) a systém of coordinates (X,t) in a nbhd. U of the origin

ii) C” peal positive homogeneous functions ¢ (x,£), a(x,t,£), b(x,t,)
of degree one defined on U x An’ for a certain open cone of R™®-{0} ,
and a C” positive homogeneous function e(x,t,f,7) of degree m-2,
defined on U-x An+1 (An+1 an open cone of Rn+1
An) such that
P(X,t,f ,T) = (‘r—‘p(x,E)—ta(x,t,E))(1'-<p(x,€)-tb(x,t,£))e(x,t,é ’T) on
U x A .

n+1

-{0} that projects into

Furthermore

iii) a(x,t,f)-b(x,t,t) # 0 (x,t) €U, & € An.
iv) e(x,t,f,7) # 0 on U x An+1.

v) e ¢s real if p is real.

vi) Once the coordinate system (X,t) is chosen the functione a,b,e
are completely determined.

REMARKS. 1) When T = T(R)*, Proposition 1' specializes to a weak form
of Proposition 1, since the latter states that in fact An+1 can be
taken as {(¢,7) s.t. § # 0}. A simple example shows that in general,
under the hypothesis of Proposition 1, it is not possible to extend
smoothly the factorization to ¢ = 0. For instance p(x,t,t,r) =

=72 . t2(£§+£§) (n=2) factors into (r-t(£f+ig)1/2)(r+t(£%+£§)1/2)

which is not smooth at ¢ = 0.
2) We only used the hypothesis n > 2 in Proposition 1 and 2 to conclu-
de that R®-{0} is connected. This fact is not used in the proof of Pro

positions 1' and 2', where we work microlocally, so they are still va-
1lid for n=1.

We now introduce a certain class of pseudodifferential operators defi-
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ned on an open cone of T(@)*, a C Rn+1.

All pseudodifferential operators of order m considered here have asym-
ptotic expansions

P(x,D) ~ f P . (x,D)
icg m-d

where Pm_j(x,i) is in C”(2 x A) for a certain conic open subset A of

R“+l-{0} and it is positive homogeneous of degree m-j with respect to

¢. P(x,D) acts on functions of the form v = X(D)u, with u in C:(n),

‘X (§) in C"(Rn+1),suppx € A, and X is positive homogeneous of degree ze

ro for |&| > 1/2.

The class of pseudodifferential operators of order m defined on
I = 2 x A is denoted Y™ (r) and the class of corresponding symbols
‘S®(r). When 1 = T(a)* we write Y™ (@) rather than V™ (T(2)*).

DEFINITION 1. Let T C T(Q)* be an open cone, 9 C Rn+1, P(x,D) € S®(r).
We say that P(x,D) € AF(F) if its prineipal symbol Pm(x,E) verifies
the hypothesis of Propogition 2'.

We observe that this definition is coordinate free.

If P € A%(a) and Q € ¥™' (2) is elliptic it is easy to check that the

transpose tP, the adjoint P belong to A®(Q@) and the composites PQ,QP
1]

belong to ARt Q).

Suppose that ry, I, are two open cones of T(n)* such that T
= T(a)* and P € ¥™(a) is both in A"(r;) and A®(r

1 VI =

2)'
In-general P need not belong to A"(Q).

Consider the homogeneous partial differential operator of order four
in two variables
P(x,t,Dx,Dt) = (Dt-th)(Dt+th)(Dx-th)(Dx+th)

2

defined on @ = {x2+t? < 1/2}. If we set Ei =9 x {r=t]¢|}

Il =@ x tk=x|r|} , Z, = ax {r=-t|t|}, Z)=ax {E=-x|7|}

it is clear that-the characteristic variety of P(x,t{Dx,Dt) is the

union I} U 2, U 2] U Zj. If we define 1, = a x {|r| < 3/2¢[}

r,= @ x (|§] <3/2|r|} then 1, U, = T(a)*, P/r, € A*(r;) for

i=1,2butP ¢ Aé(n), since it projects into the set xt = 0.

However in the simple case of a second order partial differential ope-
rator in two variables, we have

THEOREM 1. Let P = A(x,t) D2+2B(x,t) DD +C(x,t) D2+ ... be in A*(r)
for a certain cone TI'. Then P € AZ(U) for a certain nbhd. of the origin‘

u.

Proof. We may find a system of coordinates (x,t) in a nbhd. of the
origin U = U(0); c” positive homogeneous functions of degree one
¢(x,t), a(x,t,t),b(x,t,t) and an elliptic C” positive homogeneous func-
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tion, e(x‘t ¢£,7) of degree zero, defined in avqpnek

r,=Ux {(¢,7) s.t. £ >0, |7-k&| < e} , k a real number, ¢ positive
such that

P(xtsr) (-0 (x,E)-ta(x,t,£)) (T-¢-tb) ﬂxttr)mlmeCMer.

We can write a(x,t,f) = a(x,t)¢,b(x,t,f) = b(x, t)E,0(x,E) = v (X)E fOT
£ > 0. When (x,t) € U £ > 0 the p01nts &, (¢+ta)$) and (E (¢+tb)€)
~are roots of P, = Ar? o+ 2BtE + C t

Expressing the discriminant in terms of the roots we get B2 - AC =
= t%(a-b)? which is a square in C*(U).

When t # 0, £ > 0, (p+ta)f, (p+tb)f are distinct roots of P2 as a poly-
nomial in 7, so A cannot vanish. The sum of the roots is

(20 + t(a+h))t = -(B/A)E for t # 0, and it follows that A divides B in
C”(U). Therefore (-B/A + t(a-b))¢, (-B/A - t(a-b))§ are C” functions

of x,t,t, homogeneous of degree one in §.

We can factor
A2 4 2BrE + C£2 = A(r +(B/A + t(b-a)E)(r + (B/A - t(b-a)E)

and it follows right away that P is in Az(ﬂ).

Q.E.D.
This section is devoted to the proof of a priori estimates for opera-
tors in ¥(r). We begin with a factorization result.

PROPOSITION 3. Let P € A®(r); I a conic open subset of T(Q)* such
that 0 € 1(T), @ € Rn+1. Then there exist an open subcone r, cr and
a system of coordinates (x,t) defined on n(r ) sueh that the following
factorization is valid on T,

2
P(x,t,D,D,) ~ E(x,t,D ,D t)(Dt'Rl(X,t,Dx)Dt*‘RZ(X,t,DX))

¢

Here E is elliptic of degree m-2, and Rl’ R2 are pseudodifferential
operators in DX depending smoothly on t, of degree one and two respec-—

tively. The principal symbols T, T, of Rys R, can be written

r (x,tE) = talx,t,g) + b(x,tE)) + 2e(x,E)
T, (x,t,8) = (ta(x,t,f) + c(x,£)). (tb(x,t,8) + c(x,8))

with a,b,c positive homogeneous real functions of degree one, c(x,t)
_independent of t and a(x,t,f)-b(x,t,£) # 0 on r,

Proof. We use Proposition 2' to factor the principal symbol of P. This
factorization of the principal symbol of P implies that
P ~ E(D2-R D +R,) with E elliptic (see [2]).

Comparing principal symbols on both sides of the equivalence relation

we obtain the expression for r, and r,.
1 2 Q.E.D.

REMARKS., 1) If T = ’I‘(n)*,»ro can be ‘taken as U x {§ # 0} with U a
nbhd. of the origin in Q.
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2) The hypothesis implies that (see the proof of Proposition 1) the
characteristic variety of P (x,t,t,r) does not contain points of the
form (x,t,0,7), so r, can always be taken to avoid the ray § = 0. Then
the pseudodifferential operators in D_ can be regarded as pseudodif-
ferential operators in Dx,Dt with symbol independent of 7.

In view of Proposition 3 we consider operators of the form .

2 .
L = Dt-Rl(x,t,Dx)Dt+R2(x,t,Dx) with T, = t(a+b) + 2¢ ,

r, = (ta+c) (tb+c) as in Proposition 3.

For the sake .of simplicity we assume that a,b,c are defined for all

¢ # 0, but all reasonings would also hold if we were dealing with any
open cone, say, U x A, In that case operators act on functions of the
form v = X(D)u, with u € C:(U) and X(¢) a smooth positive homogeneous
function of degree zero for |£| > 1/2 and suppx C A. The class of
such functions will be denoted C:(U)/A.

Define pseudodifferential operators A,B,C with principal symbois a,b,c
respectively and consider the operator

- a2
L= (at-it.5§§ il 1241%—§Ll + S(x,t,Dx)

with S of degree one in D depending smoothly on t. We see that choo-
sing S conveniently L~ L

We use the following notation

3 =9, -it.1/2.(A+B)-iC , 2P = A-B , L= a2 + t2%2 + s

We observe that P is real elliptic in D_. Redefining S if necessary

we may assume that P = P*, All pseudodifferential operators occurring
in L are assumed to be properly supported and its associated kernels

to have support in a sufficiently thin nbhd. of the diagonal so that,

speaking loosely, they transform functions of small support in func-
tions of small support.

When f,g € C:(Rn+1) we denote

(£,8) = J £g dx dt , 1£1% = (£,f)
We now list some properties of the operator which will be used in the
sequel. '

d,) o+d* = B(x,t,D o) 78 of degree at most zero in D_, depends smoothly
on t and does not contatn D, . Briefly, B e ¥° (t,D )

dz) Let a = a(t) be a real C funetion of one variable. Then
2Re(du,au) = -(a'u u) + (Bu,au) ue Cc” (U)/A

d ) If we regard a as a multiplication operator, we have [3,al] a'—a a
where the brackets indicate the commutator of 9 and a.

dk) [da,P] € ! (t,D), Z.e. [3,P] does not contain D.

Our estimates for L will be expressed in terms of certain norms that
we define now.
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Let u € C:(U)/A , We write

Wu? = nul? + Nepun? k=0
Wul? = 13%ui? + neeul® + npul k=1
W2 = na*¥*tun? + pepa*ur? + 4pa*Tlul k=2,3,...

LEMMA 1. Given € > 0 and k € 2" there existe a nbhd. U = U(e,k) such

that ull, < e lull for u in C:(U)/A.

k+1

From now on we will write o(1) to indicate a constant relating two
norms defined on C:(U)/A , that can be taken arbitrarily small if the
nbhd. U shrinks around the origin.

For instance , the conclusion of Lemma 1 is written

lIIuIIIk < 0(1) Mumk+1.

Proof. k=0) It is enough to see that lldull < o(1) HazuH since it is ob-
vious that lltPull < o(1)IIPull (in. fact we only need to narrow U in the
"t-direction).

Using d,) with a(t) = t we get
Hu"2 =-(Bu,tu)-2Re(au,tu) < Kilultli tull + zildulilitull <
< o(Mull? + o(1)N3ulllul
where we have used that B is boﬁnded in L2(U) with norm K.

The last estimate implies llul < o(1)l3ull. Applying this result to
the function du we get what we needed.

k > 1) The same argument proves that nok+lul < 0(1)HakuH
It is also clear that

IePa¥ull < o (1DIPA¥ul < 0 (1) Mull,,

" Finally, taking account of d4) and the fact that P is elliptic of de-
gree one in Dx?

1Pa% " Yul < o(1)iaPa* " Lul < o(1) (NP3 ull+H(P,a13% Lull)

so 1pa* tul < o (1) Mull,,
, Q.E.D.

Now we will look into two bilinear forms:
Re(akpu,aku) and ZRe(BkLu,tak+lu) u e C:(U)/A.
It is easy to verify that '
a%e2 = £20% + 2kt %1 4 k(k-1) 952 k=1,2,...
so we obtain
B,) Re(¥*Lu,dku) = Re (3¥*+2u,aku)+Re (t205p2y,0ku) +
+ 2kRe (t3%"1p2%y,0%0) + k(k-1) Re(d* 2p%u,2%u) + Re(@*su,2*u)

B,) 2Re(@“L,td%*lu) = .2Re(@%*Zu,td**lu)+2Re(t32%P2u, 0k lu) +



151

+4kRe (£20%~1p2u 0%+ 1y) 42k (k-1)Re (£3 %7 2P2%u,0 %+ u) + 2Re (8% su, ta ¥ u) .

Our objective is now to introduce suitable commutators in each one of

the right-hand sides of Bl) and Bz) so as to produce those norms that
appear in the definition of Wull,

We will make use of properties dl)’ dz), d3) several times, to obtain
the following identities

1) Re(@**%u,0%u) = -pa**lui? + Re (B2 ¥+ 1y,aku)
1,) Re(t?*P%u,2%u) = Re(t 2p23ky aky) + Re(t23%,PHu,3%u) =
= Ntpakun? + Re(t [Bk,P lu,o u)
I,) 2Re(td*'p?u,0%u) - 2Re (tP3%~1u,Pa*u)+2Re (t 2571, P21u,;0%u)
= 2Re(tPa* 1u,0P0 % Lu)+2Re (tP2* 1y, [P,010% Tu)+
+ 2Re (t[ 25 u,P21u,0%u)
= -ipak Luy 2+ (tBak " lu,pak tu) +
+ 2Re(tPd* lu,[P,310% Lu)+2Re (t[ 2%, P?u,0"u)
In the same manner we obtain
1,) Re(@* 2p%u,0%u) = -IP* tul?-Re(10%71, PPy, ak-1y) +
. (Bak—-zpzu,ak-lu)
1) Re(d“su,d%u) = Re (S2¥u,0%u) + Re([9%,51u,d%u)
1) 2Re (3%+2u, ta* u) = -fa %+ uy 2+ (BakHu, ta ¥t ly)
1) 2Re (t30%p2u, 0%+ ) = -311tpakull 2+ (BPa ¥y, t3Poku) +
+2Re (t3P2%u,[P,0]8%u) +2Re (t3[3%,P2]u, 3% 1u),
1) Re(tZ* !p?y, ak*lyy = pa%~lu) 2.y tpa¥ul - (¢BPa % 1u,Pa* tu) -
-2Re (tPa%"tu,[P,0]0% 1u) -Re (t2[2%,P2]1u,0%u) -
~2Re (t[3%7 1, P2 u,0%u)+ (Bt 20X 1P 2,0 %u)
19) ZRe(tk 2p2y ak+1u) = HPak'luH2+2HPak' uII2+(BtBk 2p2 u,d u)
-(tBPak 1y, pak-ly) -2re (tPa ¥ "1 P,013% 1)
-2Re (t[3%71, P2 u,0%u) -2(Ba X" 2P %, 0% 1) +
+2Re ([2%"1,p21u,0% 1)
I,,) Re(@su,ta**lu) - Re (53 %u,ta ) +Re ([2%,51u, ta % )

We wish now to estimate all terms that appear on identities Il),...;

Ilo) .

LEMMA 2. The following éxpressions cén be dominated by 0(1)|"u"ﬁ

E,) | (Ba%*1u,0ky) |

B,) | (t%0%,P%1u,0%) |

E,) 1) I(tBPak—Lu,Pak—lu){ ii) I(tpak-lu,[P,ak'l]u)|
iii) | (t[a%"1,P2]u,aku)|
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E,) i) [(a%t,p%1u,0% tu)| ii) | (B3% 2p%u,a% tu)|

E,) ii) | (ak,slu,0%u)|

B) | (8% 1y, rak+lyy | '

E;) i) |(BPo*u,t’paku)| ii) | (t3pa¥u,[P,019%u) |
iii) | (£319%,p%1u,0% y) |

Eg) 1) | (tBPa* tu,pak 1y | ii) | (tPa* tu,[p,010% tu) |
iii) | (L%}, p21u,0 0y | iv) | (t%19%,P%1u,0%u)|
v) | Bt2a¥ 12y aku)|

Eg) i) |(tBPO*'u Ly, paklyy| i1) | (tpa* tu,Ip,010% 1) |
iii)l(t[ak— ,P ]u,aku)l iv) ‘([ak-l,leu,ak'lu)I
v) | (B3% 2p2y, 0k ty) | vi) | (tBa%~2p2y, aky) |

E),) 1) | (13%,s1u,t0% u) |

We observe that expressions collected under Ei) i=1,2,5,...,10 are
those appearing in identity I;). That makes that some expressions
like E3)i) and ,Eg)i) appear twice.

Proof. If R € wz(t,D ) , we can express
k-1

[a%,R] = z H,d1  with H e v?(t,D)
This is easily proved by induction.
Since all estimates are proved essentially in the same way, we prove
some of them and leave the rest to the reader.
E)) | (B u 0| < Bo**uina®ul < o(12*  ul? < o (1) Hun?
u € C(U)/A.

E,) Writing [2%,P%] = 20 H' ,  H, € y(t,D) we get
i=

k-1 .
[(e29%,p1u,0%) | < ,Zolctzﬂialu,a“u) B
i

Now, for i=1,...,k-1

|(tHiaiu,t3kU)| < const. (.J t2||aiu||§(t) dt)l/Z(Jtzuakuuf(t) at)l/2
where uaiuul(t) denotes the Sobolev l1l-norm in. the x-variables.
Hence |(tH a%u,ta*u)| < const.|tPalujtPo*uy < o(1) wun?

7) 111)

| (t3a%,pu,05 ) | < Z |(t3H alu,ok u)I< Zol(StZH at,aku)| +
i=

+ | (t%H 0 u,0%u) | + | (BtH 2% ,0%u) |

We already proved that |(t2Hiaiu,&ku)| <:°(1j MuM§ i=1,...,k-1
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Furthermore

|(t3aHibiu,8ku)| < |(t3HiBi+1u,aku)| + (t3[a,Hi1aiu,aku) <
< o(DItPa * uliero*ul + o (1) Mun? <
< o(1) lul? i=1,...,k-1

Also

| (£*BH0Mu,0%0) | < o (1) Hun?
i Q.E.D.

We estimate E5)i) and Elo)i) in a separate lemma.

LEMMA 3. Let S € ¥'(t,D ). Then there ewist C >0, k € 2* and a nbhd.
U of the brigin, such that

E)) i) | (sa%u,0%u)| < 210%tul + (2k-1)0tPakul

uecTu/a
Ejp) 1) (8%, 0% tuy| < 200%*tul + (2k-1)0tpakull c

Proof. Since P is elliptic and P = P* we may find a pseudodifferential
operator Q € ¢1(t,Dx) such that Q* = Q and Q2 ~ P,

We observe that
1) 2Re(tdQd%u,Qd%u) = -(Qd%u,Qd%u) + (BQd*u,tqd*u)
On the other hand
2)  (9Qa%u,tQd%u) = (tPa®*lu,0%u) + (t[,Q13%u,qd%u)
Since [9,Q] € wllz(t,Dx), it is clear that

| (t12,Q10%0,Q%u) | < cla®ullltPoXull < o(1)13%*  ullll tpa*ul
From 1) and 2) we get
3) 1Qa%ul? < | (Pa¥+lu,taku)| + o(1)N0% Lyl tpa ul

1Qd*ul 2 < na** iy tpakull . (1+0(1)) < 208%* Lupitrakul <

< alla®* 1y 2 + a7y tpakul?

with u € C:(U)/A and U small enough so o(1) < 1.
we have

Furthermore, using the Sobolev dual norms I |l

o

1/2° 1/2

1%, | < isatul ok, < claful? e cT)/a

-1/2
for a certain constant C independent of k.

From 3) and 4) it follows that

| (saku,a%u)| < calla®*lui2 + ca~lierakul? < 200+ w2 + (2k-1)I £P2*ul 2

if we choose a so that Ca < 2 and then K > 1/2(Ca'1+1).

E, )i) is proved in the same way.
10 Y Q.E.D.

THEOREM 2. Let L = 32+t2P2+S be defined on a cone V(0) x B, with
9,P,S defined as above. Then given € > 0, there is a nbhd. U of the
origin and k € Z° such that
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Wil < cld¥Lull for every u € C_(U)/A

Proof. Using Il)""’Ilo) we obtain
4Re (25Lu,0%us (1/2) ta¥*lu) = -sia**lun2- (ax-1)nepakun? -
ok k-1NPa* M2 + y(u,u).

We indicate with y(u,u) all terms in Il)""llo) which do not reduce
to the square of a norm. In view of Lemmas 2 and 3 we have the esti-
mate

ly(u,u) | < z2Ia®+lun? + (2k-1Itea%ul?) + o(1) MunZ , u € Co(V)/A

for a certain k € z*

Hence

|4Re (3%Lu,0%u+ (1/2) ta¥*u)| > 1%+ Luy 241 tPa*ull 24k (k- 1) PO * " tul? -

- 0(1)|Humi
Therefore
un? < const.la%Lullla®u+ (1/2)ta* Tull < o (1IN Lull Wull,

so that lull, < o(1)lI2"Lull. '

Q.E.D.

REMARK. Theorem 2 implies estimates in terms of more familiar norms.
For instance in the proof of Lemma 1, we saw that all norms |l mk are
stronger than the L2-norm. In fact, they stronger than the norm

N(u) = (jiﬁ(e,r)m”zlz dat aryt/2,
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