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INTRODUCTION. This work is devoted to the proof of microlocal es
timates for a certain class of pseudodifferential operators that 
had been studied in [11 • Here we give a geometric characterization 
of these operators in terms of the characteristic variety of their 
principal symbol. 

We want to say two words about the relationship between the esti
ma tes proved in [11 and in this work.. In the former, a canonical 
transformation, and a related Fourier integral operator were used, 
in order to bring the pseudodifferential operator in question to 
a particularly simple form and then energy methods were employed, 
yielding a priori estimates in certain caies. 

Here we do not make use of Fourier integral operators, in their 
stead, energy methods are applied directly and a priori estimates 
are obtained in all cases. Estimates in [11 are essentially par
ticular cases of estimates obtained here. 

Let 0 be an open neighborhood of the origin in Rn+l, T~(O) its 

tangent bundle, n: T*(O) -+ 0 the canonical projection. We shall 
denote by t(O)* the complement in T*(O) of the zero section. 

Usually we are' going to select coordinates in 0 in such a way that 
one of the variables will playa distinguished role '. In such cases, 
the variable point in 0 will be denoted. (x 1 , ••• ,xn ,t) or'simply 

(x,t) in that system of coordinates. The variables along the fi
bres in T*(O) will be denoted (~I""'~n,T) = (~,T). The canonical 

symplectic form on T*(o) will be called w; in terms of the coordi-
n 

nates w = r d~." dx. + dT " dt 
j =1 J J 

When no distinguished variable is needed we change the notation 

to x = (x 1 ,· .. ,xn+1 ) = (~l""'~n+l)' 

A subset r of T(O)* is said to be conic if it is stable under di
lations (x,~) '-+ (x ,p~),p > O. 

Consider two conic, closed, smooth submanifolds 1:1 , 1:2 of T(O)* 

of codimension .one, and assume that they ·.are· in .general posit.ion. 
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That means that their normals are linearly independent at any point 
of the intersection 1:1 n 1:a . As a consequence 1:1 n 1:a is a conic sub
manifold. of T(n)* of codimension two, unless it is empty. We shall 
always assume that·this is the case. 

We wish to make two assumptions about 1:1and 1:a ; one involves the sym
plectic form and the other the projection n(1:1 n 1:2) c O. 

We require 

a) n(1:1 n 1:a ) is a smooth submanifold of aodimension one of 0 aontai

ning the origin. 

Now take a point p in 1:1 with n(p) = O. Let VI be the linear subspace p . 
()f the tangent space to 1:1 at p, defined by X E VI ....... dn.X E 

E To (n(1:I .n l:a))' That is v~ is made up of the ve~tors wich are mapped 
into. the tangent space to n(1: I n 1:a) at the origin by the differential 
of the canonical projection. . 

For a point p in 1:a wi t·h n (p) = 0, we define Va in a similar way. 
. . PIa 

Using the inclusions 1:1 C T(O)*, l:2 C T(n)* we identify Vp and Vp 
with linear subspaces of T (T(n)*). 

p 

Our second assumption is 

b) The sympLeatia form w is non-degenerate when restricted to VI 
a p p 

(V ). 
p 

That means that for every X in VI (Va) there exists Y in VI (Va) such p p p p 
/that w (X,Y) # o. 

p 

n+1 .., PROPOSITION 1. Let n ~ R n ;;;. 2. Let 1:1 '""a be smooth submanifolds 

of t(n)* of aodimensiOn one. in generaz, position, satisfyir;tg (Jonditi

ons a) and b). 

Then, there exist a system of aoordinates (x,t) in an open nbhd .. of 

the origin U and C'" real functions a(x,t,n, b(x,t,O defined on 

U x eRn-tO}) such that 

i) a and b are positive homogeneous in 

ii)~l/U = {(X,t,~.T) s.t. T a(x,t,~) 

Ea/U = {(x,t,~,r) s.t. T = b(x,t,~) 

iii) a(x,t,O = bex,t,O ....... t = O. 

~ of degree one. 

(x,t) in U} 

(x,t) in U} . 

REMARKS. 1) Once the coordinates (x,t) have peen chosen they induce 
coordinates (x,t,~ ,T) in a canonical way. By means of this trivializa
tion of T(n)*/U we identify it with U x(Rn+I_{O}). 

2) Property ii) in Proposition 1 implies that for a given coordinate 
system (x, t,~ ,T)., the. funttions a and b are uniquely determined by l:1 
and·1:a , so there is at most one pair of such functions. 

Prooj. \'Ie cnoose coordinates (x,t) -in a nbhd. U' of the origin so that 
U'n n(1:1 n 1:2) = {(x,t) in U' s.t. to}. 

Let p E 1:1 , n(p) = 0 i.e. p = (O,O'~O,To)' The vectors 
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form a basis of the tangent space to the cotangent bundle at p and 

31· .. ·• 31 formabasisofTo(n(~ln~2))· 
;rx:-l ox o n· 0 

The linear map dn is given by 

dn·hl = hi 
p 0 

dn .~I = dn ·}':'I = 0 
~ p p 

n 
Thus; if X L Q. a!.1 + Pi ~Ip + Q hi + p},:.1 . we have 

i=1 ~ 
~ P P P 

X E VI iff 
P 

Q = o. 

Hence wp (x.}':'1 ) = 0 whenever X E VI and we conclude that 
p 

p 

~I ~ T (~1)· 
P P 

In particular. ~1 being conic. E 
0 

1- o. 

Now there is a positive E = E(p) and a unique C~ function a (x.t.E) 
P . 

defined for ixl.ltl < E. IE-Eol < E. such that q E ~1 and q close 
enough to p implies q = (x.t.~.a (x.t.E)). 

P 

The uniqueness of a in a nbhd. of p has two consequences. 
P 

First. we see that two such functions necessarily coincide in overlap-
I 

ping domains so that they define a function a(x.t.~) in an open subset 
of T = o. 

Secondly. using the conicalness of ~l we derive that a(x.t.n is posi
tive homogeneous of degree one. 

In consequence. we may construct a(x.t.E) patching together.a finite 
number ~f functions a •••.• a defined on cones of U'x(Rn-{O}). after 

PI P r 
shrinking the nbhd. U'. 

We can find a nbhd. U of the origin and a cone r such that a(x.t.E) is 
defined on Uxr. Now we see that actually r = Rn-{O}; Fix (x.t) inU 
and consider the set of points such th~t (x.t.E .a(x.t.E)) E ~1. There 
is an E> 0 s.t. Ix-x'i • It-t'l • IE-E'I < E" (x'.t'.t'.a(x'.t'.t'H 
is in ~1' so r is open. Now if t j is a sequence in r with I·t j I = 1 

and tj --+ ~~ we find (passing through a subsequence if necessary) 

. 2 I" 12 -1/2 . real numbers T j such that (x.t.~ j.T j) E ~1' and (T j + Ii j) .1' j + l' ~ 

as j .... 00 • 

~ is conic and closed ~o 
(x. t. (I t .. 12+1'!) 1/2 

Since n > 2. Rn-{O} is connected and r = Rn~{O}. 
The function b is determined in the same way. with Ez in the place of 

~1· 
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To prove iii) we observe that for t ~ 0, a(x,t,~) = b(x,t,~) .. 
- (x,t,La(x,t,O) = (x,t,~,b(i,t.n) b.elongs-to ~1 n ~2 - n(p) 

(x.t,O,O) E n(~l n ~2) - t = 0. 
Q.E.D. 

REMARK. Since ~1 and ~2 are in general position we may assume, shrin

king U, that ilt(a-b)(x,t,O ~ 0 , (x,t) E U, ~ ,; O. 

Let us write op(x,~) = a(x,O,n = b(x,O,n. If we consider the finite 

Taylor expansion of a(x,t,n and b(x,t,n with respect to the variable 

t, we can write 

a(x,t,n 

b (x, t, ~) 

op(x,n + ta'(x',t,n 

op(x,n + tb'(x,t,n 
(x,t) E U, ~ E Rn_{O} 

where all the functions are smooth in all arguments and positive homo 

geneous with respect to ~. 

In view of the remark we made after the proof of Proposition 1, we may 

assume that a' (x,t,n - b' (x,t,n ,; 0 for (x,t) in U and ~ ~ o. 

PROPOSITION 2. Let n ~ 2 and Q ~ Rn+l. Let p:tCQ)* --+ C be a C~ posi

t·ive homogeneous funation of deg:roee m. Assume that the aha:roaate:roistic 

va:roiety C = {q € TCQ)* s.t. p(q) = O} is the union of two closed co-
p . 

nia subman·ifolds 1:1 and ~2 satisfying the hypothesis of .P:rooposition 1. 

If 

a) p vanishes on ~l U 1:2 - 1:1 n ~2 of order one 

b) p vanishes on E1 n E2 of orde:ro two 

then, there exist 

i) a system of aoordinates (x,t) in a nbhd. U of the o:roigin 

ii) COO real positive homogeneous funations op(x,~), a(x,t,~),b(x,t,~) 

of degree one, and a C~ positive homogeneous fun~tion e(x,t,~,T·) of 

deg:roee m-2, aU of them defined fo:ro (x,t) in U and ~ ,; 0 , 

such that 

p(x,t.~ ,T) 

T(o)*/U. 

Fu:rothermo:roe 

(T -.p(x,O -ta(x, t,O) (T -op(x,O -tb (x, t,O)e (x ;t,~ ,T) on 

iii) a(x,t,O-b(x,t,O ,; 0 for (x,t) in U , ~ ,; 0 • 

iv) e(x,t,~ ,T) ~ 0 for (x,t) in U , ~ ,; 0 • 

v) e(x,t,~ ,T) is real if P(X,t,~ ,T) is :roeal. 

vi) Once the aoordinate system is fixed, the funations a,b, e(x,t,~ ,T) 

are completely determined. 

Proof. We choose coordinates (x,t) and determine functions 

op(x,n + ta'(x,t,~), op(x,tJ + tb'(x,t,n according to Proposition 

and· then drop the prime, so as to have op (x ,tl + ta (x, t ,t) , 
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"oex,o + tb(x,t,n. 

In the complement of I:l U I:2 we define e(x,t,~ ,r) .by 

e(x,t,~ ,r) pex,t,e ,r) ~ -# 0 
(r -"o-ta) (r-"o-tb) 

We only need to define e(x,t,~ ,r) in a nbhd. of ~l U I:2 . 

It is enough to reason microlocally. Let (xo,O'~o,r 0) E I:l n I:2 and 

set zl = r-"o-ta z2 = r-"o-tb. We can find functions z3, ... ,z2n+2 in 

a nbhd. of (xo,O'~o,r 0) W, such t~at q ~ f(q) = (z1(q)"",z2n+2(q)) 

is a diffeomorphism of W onto a nbhd. W' of the origin in R2n+2. 

The mapping f takes I:l into zl = 0 and I:2 into z2 = O. 

The finite Taylor expansion of p a f- 1 in the .variables zl' zzaround 
- -·1 

the oTlgln gives fez1, ... ,z2n+2) = (paf )(z1, ... ,z2n+2) = 

z1 J:fZlesz1,sZ2'Z3~···'Z2n+2)dS + z2 f:fzz(SZl,SZ2'" .,zZn+2)ds = 

= zlF 1 (z) + z2F2(z), 

F1 vanishes on'z2 = 0 and F2 vanishes on zl = O. Therefore we may ex
press F1ez) = z2Gl(Z) and F2 (Z) = zl G2 (z) with Gl , G2 in C-(W'), 

so fez) = zlz2H(z). 

Since p vanishes of order one on I:l U I:2 - I:l n I:z and of order two 
on I:l n I:2 we conclude that H(z) does not vanish on W' , 

We define e(x,t,~ ,r) on W as e = Hof. 

In a nbhd. of point J,ying on (I:1 - I:2) U (I:2 - I:'l) we reason simi larly. 

This gives a bonafide definition of e(x,t,~ ,r), since e(x,t,~ ,r) is 
determined in the dense set T(o)* - I:1 U I:2 . 

Q.E~D. 

So far we have assumed that I:l and I:2 are submanifoldsof T(n)*, If 
I: 1 , I:2 are only submanifolds of a conic open subset of 1(0)* proper
ties a) and b) .still make sense and we have analogues of Propositions 
1 and 2, valid in a conic nbhd. of the origin in T(il)*. We stl:),te them 
without proof. 

PROPOSITION 1 I. Let r ~ r(o)* be a aonia open 8ub8et. 0 E nCr). 
o ~ Rn+1, n> 2. Let I:1• I:2 be 8modth 8ubmanifoLd8 of r o~ aodim~n8ion 
one in generaL p08ition 8ati8fying a) and b). 

Then.there exi8t a 8y8tem of aoordinate8 (x,t) in an open nbhd. U of 

the origin and CQ) reaL funation8 a ex, t,~), b (x ,tA) defined on U x bon 
(bo a aonia open 8ubset of Rn~{O}) Buah that 

n 

i) aex.t,~), b(x,t,~) are positive homogeneouj in ~ ofdeg'l'ee dne, 

~ E bon • 

11) I:1/U {ra(x,t,O s.t. (x,t) E U, e e bon} 
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1:2/U = {7' = b(x,t,O s.t. (x,t) E U, E E t.n}. 

iii) a(x,t,O = b(x,t,O .- t = O. 

iv) ilt(a-b)(x,t,O'; 0 foro (x,t) in U and E E t.n 

PROPOSITION 2'. Let r be a ,conic open subset of f(o) *, 0 ~' Rn+1, n ~ 2 
and p:r --+ C a C~ positive homogeneous function of degroee m. 

Assume that {q E r s. t. p (q) = Olis the union of two submanifo Zds ~p 
~2 satisfying the hypothesis of Prooposition 1'. 

If 

a) p vanishes on 1:1 U 1:2 - 1:1 n 1:2 of orodero one 

b) p vanishes on 1:1 n 1:2 of orodero two 

then, theroe exist 

i) a system of coorodinates (x,t) in a nbhd. U of the oroigin 

ii) C~ roeaZ positive homogeneous functions <p(x,n , a(x,t,n, b(x,t,n 
of degroee one defined on U x t.n , foro a cerotain open cone of Rn-{O} , 

and a C~ positive homogeneous function e(x,t,E ,7') of degroee m-2, 
defined on U'x t.n+1 (t.n+1 an open cone of Rn+1_{O} that proojects into 

t.n ) such that 

p(x,t,E ,7') = (7'-<p(x,E)-ta(x,t,E)) (7'-<p(x,E)-tb(x,t,~))e(x,t,E ,1') on 

U x t.n+1 . 

Furotheromoroe 

iii) a(x,t,O-b(x,t,n .; 0 (x,t) E U, E E t.n . 

iv) e(x,t,E ,1') .; 0 on U x t.n+1 

v) e is roeal if p is roeal. 

vi) Once the coorodinate system (x,t) is chosen the functions a,b,e 
aroe completely deteromined. 

REMARKS. 1) Wh'en r = T(O)*, Proposition l' specializes to a weak form 

of Proposition 1, since the latter states that in fact t.n+1 can be 
taken as {(E,7') s.t. E .; OJ. A simple example shows that in general, 
under the hypothesis of Proposition 1, it is not possible to extend 
smoothly the factorization to E = O. For instance p(x,t,E,7') = 

= 7'2 - t 2 (E2+t 2 ) (n=2) factors into (T_t(E2+E2)1/2)(T+t(~2+E2)1/2) 1 2 1 2 1 2 
which is not smooth at E = O. 

2) We only used the hypothesis n ~ 2 in Proposition 1 and 2 to conclu
de that Rn-{O} is connected. This fact is not used in the proof of Pro 
positions l' and 2', where we work microlocally, so they are still va
lid for n=1. 

We now introduce a certain class of pseudodifferential operators defi-
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ned on an open cone of TCn)*, n ~ Rn+l. 

All pseudodifferential operators of order m considered here have asym
ptotic expansions .. 

PCx,D) - ~ P .Cx,D) 
j =0 m-J 

where P .cx,e) is in c"Cn x~) for a certain conic open subset ~ of 
m-J 

Rn+1_{O} and it is positive 

e. PCx,D) acts on functions 
XCO'in C"CRn+l) ,suppX ~ ~, 
ro for lei> 1/2. 

homogeneous of degree m-j with respect to 
of the form v = XCD)u; with u in c:cn), 
and X is positive homogeneous of degree z~ 

The class of pseudodifferential operators of order m defined on 
r. = n x ~ is denoted I/Im Cr) and the class of corresponding symbols 

·slll(r). When r = TCn)* we write I/Imcn) rather than I/Im(T(n)*). 

DEFINITION 1. Let r £ T(n)* be an open cone. n £ Rn+l. P(x,D) E SmCr}. 

We say that P(x,D) E Am'Cr) if its pzoincipal. symbol. Pm(x,e) vezoifies 

the hypothesis of Pzooposition 2'. 

We observe that this definition is coordinate free. 

If P E Amcn) andQ E I/Im' Cn) is elliptiC it is easy to check that the 
transpose t p , the adjoint P belong to Am(n) and the composites PQ,QP 
belong to Am+m' (n). 

Suppose that r 1 , r 2 are two open cones of T(n)* such that Tl U r 2 
= TCn)* and P E I/ImCn) is both in Am(r 1) and Amcr 2). 

In·general P need not belong to Amcn). 

Consider the homogeneous partial differential operator of order four 
in two variables 

P(x,t,Dx,D t ) CDt-tDx)CDt+tDx)CDx-xDt)CDx+XDt) 

defined on n = {x 2+t 2 < lIZ}. If we set ~{ = n x {T=tle I} 

~~ = n x £E=xIT,I}, 1:; = Q x {T=-tlel} , ~~ = n x £E=-xITI} 

it is clear that· the characteristic variety of P(x,t,Dx,D t ) is the 
union ~~ U~; U ~~ U 1:;. If we define ~. = n x {ITI < 31Z'le I} 

r 2= n x {Ie I < 3/21TI} then r 1 U r 2 = T(n)*, P/r i E A4 (r i ) for 

i= 1,Z but P fit A4 Cn), since it projects into the set xt = O. 

However in the simple case of a second order partial differential ope
rator in two variables, we have 

THEOREM 1. Let P = A(x,t) D~+ZB(X.t) DxDt+CCx,t) D!+ .•• be in A2 cr) 

fozo acezotain cone r. Then P E A2 CU) fozo a c8zotain nbhd. of the ozoigin 
U. 

pzooof. We may find a system of coordinates Cx,t) in a nbhd. of the 
orlgln U = UCO); c .. positive homogeneous functions of degree one 
'I (x,"!;) , aCx,t,e) ,bCx,'t,O and an elliptic C .. positive homogeneous func-
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tion.e(x,t,~ ,1') of degree zero, defined in a cone 
ro U X< {(LT) s.t. ~ > 0, IT-k~ 1< e:} , k a real number, e: positive 
such that 
P 2 (x, t ,~, l' ) ~-.(x,~)-ta(x,t,~))~-.-tb) e(x,t,~ ,1') on the corie roo 

We can write a(x,t,~) = a(x,t)~,b(x,t,~) = b(x,t)~,.(x,~) = .(x)~ for 
~ >0. When (x,t) E u, ~ > 0 the points (L(.+taH) and (L(.+tbH) 
are roots of P2 = AT2 + 2BT~ + C ~2. 

Expressing the discriminant in terms of the ;oots we get B2 - AC = 
= t 2 (a_b)2 which is a square in C~(U). 

When t -# 0, ~ > 0, (.+taH, (.+tbH are distinct roots of P 2 as a poly
nomial in 1', so A cannot vanish. The sum of the roots is 
(2. + t(a+b))~ = -(BfA)~ for t -# 0, and it follows that A divides B in 
C~(U). Therefore (-BfA + t(a-b))~ ," (-BfA - t(a-b))~ are C· functions 

of x,t,~, homogeneous of degree one in ~ . 

We can factor 

A 1'2 + 2BTE + C e2 = A(T +(BfA + t(b-aH)(T + (BfA - t(b-a)O 

and it follows right away that P is in A2 (n). 
Q.E.D. 

This section is devoted to the proof of a priori estimates fOT opera
tors in ~(r). We begin with a factorization result. 

PROPOSITION 3. Let P E Am(r); r a aonia open subset of T(n)* suah 

that 0 E n(r), Q ~ Rn+l. Then there exist ar open subaone ro c r anq 

a system of aoordinates (x,t) defined on nero) suah that the following 

faatorization is valid on ro 
2 P(x,t,Dx,D t ) - E(x,t,Dx,Dt)(Dt-R1 (x,t,Dx)D t +R2(x,t,Dx)) 

Here" E is eZliptia of degree m-2. and R1• R2 are pseudodifferentiaZ 

operators in Dx depending smoothly on t. of degree one and two respea

tivel-y. The prinaipal symb"ols r 1 , r 2 of Rl' R2 aan be written 

r1(x,t,n t(a(x,t,n + b(x,t,n) + 2c(x,n 

r 2 (x, t ,e ) (ta(x,t,n + c(x,n).(tb(x,t,n + c(x,O) 

with a,b,c positive homogeneous real- funations of degree one. c(x,~) 

" independent of t and a(x,t,~)-b(x,t,~) -# 0 on r . 
o 

Proof. We use Proposition 2' to factor the principal symbol of P. This 
factorization of the principal symbol of P implies that 
P - E(D~-RIDt+R2) with E elliptic (see [2]). 

Comparing principal symbols on both sides of the equivalence relation 
we obtain the expression for r 1 and r 2 . 

Q.E.D. 

REMARKS. 1) If r = T(Q)*, ro can betaken as U x a -# O} with U a 
nbhd. of the origin in n. 
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2) The hypothesis implies that (see the proof of Proposition 1) the 
characteristic variety of Pm(x,t,~,7') does not contain points of the 
form (x,.t,O,7'), so r can always be taken to avoid the ray ~ = O. Then 

o 
the pseudodifferential operators in Dx can be. regarded as pseudodif-
ferential operators in Dx,Dt with symbol independent of 7'. 

In view of Proposition 3 we consider operators of the form. 
_ 2 

L - Dt-Rl(x,t,Dx)Dt+R2(x,t,Dx) with r 1 = t(a+b) + 2c 

r 2 = (ta+c)(tb+c) as in Proposition 3. 

For the .sake .of simplicity we assume that a,b,c are defined for all 
~ i 0, but all reasonings would also hold if we were dealing wi th any 
open cone, say, U x 6. In that case operators act on functions of the 
form v = X(D)u, with u E C~(U) and X(~) a smooth positive homogeneous 

c 
function of degree zero for I~ I > 1/2 and suppX ~ 6. The class of 
such functions will be denoted C~(U)/6. 

c 

Define pseudodifferential operators A,B,C with principal symbols a,b,c 
respectively and consider the operator 

L = (at-it.A;B - i C)2 + (t.(~-B))2 + S(x,t,Dx) 

with S of degree one in D depending smoothly on t. We see that choo-_ x 

sing S conveniently L - L. 

We use the following notation 

a = a t -it.1/2.(A+B)-iC 2P = A-B 

We observe that P is real elliptic in Dx' Redefining S if necessary, 
we may assume that P = P*. All pseudodifferential operators occurring 
in L are assumed to be properly supported and its associated kernels 
to have support in a sufficiently thin nbhd. of the diagonal so that, 
speaking loosely, they transform functions of small support in func
tions of small support. 

When f,g E C;(an +1) we denote 

(f,g) = J fg dx dt IIfII2 = (f,f) 

We now list some properties of the operator which will be used in the 
sequel. 

d1) a+a* = B(x,t,Dx) is of degree at most zero in Dx.depends smoothZy 

on t and does not aontain Dt . BriefZy. B E ~o(t,Dx)' 

d2) Let a = aCt) be a reaZ C: funation of one variabZe. Then 

2Re(au,au) = - (a'u,u) + (Bu,au) u E C~(U)/6 
c 

d3) If we regard a as a muZtipZiaation operator. we have [a,a]=a'=ata 
where the braakets indiaate the aommutator of a and a. 

d 4) [a,p] E ~l(t,Dx)' i.e. [a,p] does not aontain Dt • 

Our estimates for L .will be expressed in terms of certain nol'1l}s that 
we define now. 



Let ~ E C:(U)/A , we write 

Hlull! IIull 2 + IItPull 2 

1 SO 

"'ul.~ IIa 2ull 2 + IItPull 2 + IIPull 

IIIulU~ IIak+l ull 2 + IItpa kull 2 + llpak-Iull 

k=O 

k=l 

k= 2,3, ••• 

LEMMA 1. Given e: > 0 and k E Z+ thel.'e e:J:i8t8 a nbhd. U U(e: ,k) 8uch 

fol.' u in C"(U)/A • 
c 

From now on we will write 0(1) to {ndicate a constant relating two 
norms defined on C:(U)/A , that can be taken arbitrarily smal;l. if the 
nbhd. U shrinks around the origin. 

For instance , the conclusion of Lemma 

III u"'k or;;;; 0 (1) IIIulllk+1. 

is written 

Pl.'oof. k=O) It is enough to see that lIaull .;;; 0(1) lIa 2uII since it is ob
vious that IItPull ';;;o(l)IIPull (in fact we only need to narrow U in the 
·t-direction). 

Using dl ) with aCt) = t we g~t 

IIull 2 = (Bu,tu)-2Re(au,tu) .;;; Kllulllltull + 211aulllltull .;;; 

.;;; 0(1)lIuIl 2 + o(l)l!aullllull 

where we have used that B is bounded in L 2 (U) with norm K. 

The last estimate implies lIull';;; o(l)lIaull. Applying this result to 
the function au we get what we needed. 

k > 1) The same argument proves that lIa k+1ull .;;; o(l)lIakull 
It is also clear that 

II tpakull .;;; o(1)IIl'il k ull .;;; 0(1) IIlulll k+1 

Finally, taking account of d4) and the fact that P is elliptic of de

gree one in Dx~ 

IIP3~-lull .;;; o(l)liapak-lull .;;; 0(1) (IIpakull+II[p,a]ak-lull) 

so 
Q.E.D. 

Now we will look into two bilinear forms: 

Re(ak~u,aku) and 2Re(a kLu,ta k+l u) u E C"'(U)/A. 
c 

It is easy to verify that 

akt 2 = t 2ak + 2kt ak- 1 + k(k-l) ak- 2 k=1,2, ••• 

so we obtain 

BI ) Re(akLu,aku) = Re(ak+2u,aku)+Re(t2akp2u,aku) + 

+ 2kRe(ta k- Ip2u,a ku) + k(k-l) Re(a k- 2p2u,a ku) + Re(akSu,aku) 
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Our objective is now to introduce suitable commutators in each one of 

the right-hand sides of B1) and B2) so as to produce those norms that 

appear in the defini tion of III ull k • 

We will make use of properties d 1), d 2), d 3) several times, to obtain 

the following identities 

II) Re(a k+2u,a ku) = _lIa k+1uIl 2 + Re(Bak+lu,aku) 

1 2) Re(t 2a kp 2u,a ku) Re(t2p 2a ku,a ku) + Re('t;2[(lk,p2ju,a ku) 

II tpa kull 2 + 'Re (t 2[ a k,p2j u ,a ku) 

13) 2Re(ta k - 1p 2u,a ku) 2Re(tPa k - 1u,Pa ku)+2Re(t[ ok-I ,pZju,aku) 

2Re(tpak-lu,apak-lu)+2Re(tpak-lu,[p.ajak-lu)+ 

+ 2Re(t[ ak-1u.pZju,aku) = 

_II pak-luIl Z+ (tBak-1u,pak-lu ) + 

+ 2Re(tPa k- 1u.[ p,aj a k- 1u)+2Re(t[ a k - 1 ,pZju.aku) 

In the same manner we obtain 

14) Re(ak-ZpZu.aku) _lIpk-luIlZ_Re([ak-l,pZju,ak-lu) + 

+ (Bak-2pZu,ak-lu) 

Is) Re(aksu.aku) = Re(saku.aku) + Re([ak,Sju,aku) 

1 6) 2ReCak+ Zu.ta k+lu) = _lIak+luIl2+(Bak+lu,tak+lu) 

17) 2Re(t3a kp Zu,a k+ 1u) = _3I1tpakuIlZ+(Bpaku,t3paku) + 

+2Re(t3paku,[p,ajaku)+2Re(t3[ak.pZju,ak+lu), 

Is) Re(tZak-lpZu,ak+lu) = f!pak-luIlZ_lItpakull_(tBPak-lu.pak-lu) -

_2Re(tpak-lu,[p.alak-lu)_Re(tZ[ak,pZju.aku)

_2Re(t[ak-l.pZ]u.aku)+(BtZak-lpZu,aku) 

1 9 ) 2Re(tk-ZpZu.ak+lu) = Ilpak-luIlZ+2I1pak-luIlZ+(Btak-ZpZu,aku) -

_ (tBPa k-lu .pa k-lu ) _ 2Re (tpa k-l[ p ,oj a k-lu ) -

_2Re(t[ak-l.p2ju,aku)_2(Bak~Zp2u,ak-lu) + 

+2Re([a k - 1 .pZju.a k - 1u) 

1 10) Re(aksu.tak+1u) = Re(saku.tak+lu)+Re([ak.s]u.tak+lu) 

We wish now to estimate all terms that appear on identities II) ...... 

1 10), 

LEMMA 2. The foUobJing expressions aan be dominated by 0(1) 11I\.lIlIZ: 

E1) I (Bak+lu.aku) I 
E2) I (t 2[a k .p2ju.a ku) I 
E3) i) I (tBPll k-lU .pak-lU )I 

iii) I (t[ ok-I ,pZj"u.aku) I 
ii) I (tpa k- 1u.[p.a k - 1 ju) I 



E4) i) I ([ak-l.p2ju.ak-lU) I 

ES) 

E6) I (Ba k+1u • ta,k+lu) I 

E7) i) I (BPa ku.t3pa ku) I 
iii) I (t3[ a k .p2j u.a k+1u) I 

Ea) i) I (tBpak-lu.pak-lu ) I 
iii) I (d ak- 1.p2ju.a ku) I' 
v)1 (Bt2ak-lp2u.aku) I 

E9) i) I (tBPak-1u.pak-1u) I 
iii) I (d ak- 1.p2ju,a ku) I 
v) I (Bak-2p2u,ak-lu) I 
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ii) 

ii) 

ii) 

ii) 

iv) 

ii) 

iv) 

vi) 

ii) 

I (~ak-2p2u.ak-lu)1 

I ([ak,s]u.aku) I 

I (t3pa ku.[P.a]a ku) I 

I (tpa k- 1u.[p,aja k- 1u) I 
I (t2[ak .p2ju.a ku)1 

l(tpak-1u.[p,ajak-1u) I 
I ([ak-l.p2ju,ak-lu) I 

I CtBa k- 2p2u.a ku) I 
I ([ ak • Sj u. ta k-lu ) I 

We observe that expressions collected under E.) i=1,Z.3 ..... 10 are 
~ 

thoSe appearing in identity Ii). That makes that some expressions 
like E3)i) andE9 )i) appear twice. 

PT'oof. If R El/I2(t,D) , 
x 
k-l 

[ a k , RJ = L 
i=O 

we can express 

H.a i with 
~ 

This is easily proved by induction. 

~ince all estimates are proved essentially in the same way. we'prove 
some of them and leave the rest to the reader. 

Now, for i=l •..• ,k-l 

I (tH.aiu,taku) I OS;;; const. Cf t 2na i un 2(t) dt) 1/2(ft2nakun2(t) dt) 1/2 
~ 1· 1 

where naiun1(t) denotes the Sobolev I-norm in the x-variables. 

Hence I (tHiaiu.taku) I OS;;; const.ntPaiunntpakun OS;;; 0(1) Inuln~. 

E 7) iii) 
k-l k-l 

I (t3[ak,p2Ju.ak+lu) I OS;;; L I (t3Hiaiu.ak+lu)los;;; L I (3t2Hiai,aku) I + 
i=O i=O 
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Furthermore 

I (t3aH.a i U,a kU) I .;;; I (t 3H.ai+lU,a kU) I + (t3[a,H.la i u,a kU) .;;; 
1 1 1 

.;;; 0(1)lItpai+1UlllitpakUIi + 0(1) lIIulll;';;; 

.;;; 0 (1) III ulU ~ i = 1 , .•• ,k - 1 

Also 

Q.E.D. 

We estimate Es)i) and E10)i) in a separate lemma. 

LEMMA 3. Let S E ~1(t,D ). Then there exist C > 0, k E Z+ and a nbhd. 
x 

U of the origin, suah that 

I (saku,aku) I .;;; 2l1a k+1ull + (2k-1)lItpa kuli 

I (sa ku,ta k+1u) I .;;; 2l1a k+1ull + (2k-1)lItpa kull 
U E Cco(U)/~ 

c 

Proof. Since P is elliptic and P = P* we may find a pseudodifferential 
operator Q E ~1(t,D ) such that Q* = Q and Q2 - P. 

x 

We observe that 

1) 2Re(taQa ku,Qa ku) 

On the other hand 

2) (aQaku,tQaku) = (tPa k+1u,a ku) + (t[a,Qlaku,Qaku) 

Since [a,QI E ~1/2(t,D ), it is clear that 
x 

I (t[ a ,QI aku,Qaku) I .;;;; CII akulIlI tpakull .;;; 0(1 )lIa k+1ullll tpakull 

From 1) and 2) we get 

3) II Qakull 2 .;;; I (pa k+1u,ta ku) I + 0(1)lIa k+1ulllitPil kuli 

II Qakull 2 .;;; lIa k+1ulllitPa kull.(1+0(1))';;; 2l1a k+1ulllitPa kuli .;;; 

.;;; all ak+1ull 2 + a- 1l1tPil kull 2 

with u E Cco(U)/~ and U small enough so 0(1) .;;; 1. c 

Furthermore, using the Sobolev dual norms II " 1/ 2 ' 

4) k k k k k 2 I (Sa u,a u) I .;;; lisa ul ... 1/ 2"a uIl 1/ 2_';;; CIIQa uli o 
for a certain constant C independent of k. 

From 3) and 4) it follows that 

"11-1/2 we have 

u E Cco(U)/~ 
C " 

I (Saku,aku) I .;;; Calla k+1ull 2 + Ca- 111 tpa kull 2 .;;; 211a k+1u1l 2 + (2k-l}1I tPa kull 2 

if we choose a so that Ca .;;; 2 and then K ~ l/Z(Ca- 1+1). 

E10)i) is proved in the same way. 
Q.E.D. 

THEOREM 2. Let L = a 2+t 2p2+S be defined on a aone V(O) x ~, liJith 

a,p,s defined as above. Then given e> 0, there is a nbhd. U of the 

origin and k E Z+ suah that 
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for every 

Proof. Using 1 1), ... ,1 10) we obtain 

4Re(a kLu,a ku+(1/Z) ta k+1u) = -5I1ak+luIl2-(4k-1)lItPa~1I2 -

_k(k_1)lIpa k- 1uIl 2 + 7(U,U). 

We indicate with l(u,u) all terms in 1 1), ..• 1 10) which do not reduce 
to the square of a norm. In view of Lemmas Z and 3 we have the esti
mate 

11(u,u) I .;;; Z(ZlIa k+1uIl 2 + (Zk-1)lItP.a~1I2) + 0(1) IIIUII~ 

for a certain k E Z+. 

Hence 

14Re(a kLu,a ku+(1/Z) ta k+1u) I ;;. lIak+luIl2+lItPakuIl2+k(~_1)lIpak-luIl2 -

- 0 (1) III ulR ~ 

Therefore 

lIIulR~ .;;; const.llakLull lIaku+ (1/Z)ta k+1ull .;;; 0(1)lIa kLull IIlu lR k 

so that IlIuJll k .;;; 0(1)lIa kLuli. 
Q.E.D. 

REMARK. Theorem Z implies estimates in terms of more familiar norms. 
For instance in the proof of Lemma 1, we saw that all norms 11\ IlIk are 
stronger than the L2-norm. In fact, they stronger than the norm 

N (u) = (f I G (~ ,r) I ~ 11/ 212 d~ dr) 1/2. 
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