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ABSTRACT. Let {Vk ; k = 1,2,3,...} be the system of eigenfunctions and
associated functions of Bessel's equation of order » > 1,

y" + (A-q)y = 0, with boundary conditions depending polynomially on
the parameter A: P(A) y(1) + QA) y'(1) =0, y € L2(0,1). It is

shown that the structure of {Vk} is similar to that of the case where

q € C([0,1]) and the boundary conditions depend polynomially on A at
both ends.

This system is not a basis, although any function in L2 can be expan-

~ded into a series of the form : £ = } ¢ (f) V.

0. INTRODUCTION. A solid sphere with an initial distribution of tem-
pérature symmetrical about the z-axis (for example, a linear distri-
bution C.r cos 8), is cooled by immersion in a mass of a well-stirred
liquid which has at each instant a uniform temperature throughout it,
Assume that the sphere has radius one and u(r,f,t) denotes its tempe-
rature at the instant t, while the initial distribution is of the form

I) f(r).cos 6.
The coefficients of the expansion of u obtained by separation of varia

bles are determined by those of the following expansion of the radial
part of the initial distribution of temperature

II) g(r) = r £(r) = jZIBj.yj ), ¥y - rl/2 J3/2()\;/2r) , where

I11) (a-b A-1) y(1) + y'(1) = 0, a and b constants.

The boundary condition is of the form

IV) PQAA) y(1) + Q) y'(1) = 0 , P and Q polynomials.

We shall not enter into more details in relation with this particular
example (cf. [L] and [S]). In this paper our main objective is to
study expansions into series of cylindrical functions as in II) satis

fying a boundary condition of the type IV), but we shall restrict our
selves to Bessel functions of order » > 1.
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The problems that we consider here and the objectives we pursue are
in nature similar to those considered by R.E. Langer, [L]; and C.
Miranda, [M]. However our -approach follows the same lines as in [B].
There, the following problem was studied:

A+qx))y =0, 0<x<1
(P) {PQ) y(0) + Q) y'(0)
F(x) y(1) + QA y' (1)

0

0

with q =0, 5,6 polynomials with real coefficients and P,Q constants
not both zero. The more general situation in (P) when q(x) is real
and continuous in [0,1] and the four real polynomials P,Q, P,Q verify
G.C.D.(P,Q) =1, G.C.D. (P,Q) = 1, was studied by E. Guichal in his
doctoral thesis (cfr. [G]).

The boundary problem that we treat in this paper could become-an
introductory work to a more general theory of anomalous systems with
q € c(o,1).

We shall finish this introduction with an alternative form for the
boundary condition IV).

Let us consider the differential equation:

y" - f(x).y +Ay =0 , a<x<b , f € ¢"™((a,b]).

h . .
Then AyMo .y (¥2) ¥ (?) @y ®=3) ¢ p=0,1,...,m .
j=0

It follows by induction that

2k-2
DRy s T g 0 y® @, &k <n,

8=0

v) Afy)

where fk s € ct. Differentiating V) we get

2k-1

vD Ay = (DSEFD @ s ] g 0y @, kel <,
s=

where 8. s € C.

Assume that the degrees of P and Q are p and q respeectively, and that
m = 2p v (2q+1). Then there exist constants Cp2Cpse2Cps independen}
of y(x), such that ‘ 4

m . N
VID P y() + Q) ¥ ®) = ] e y P m.
J -

Conversely, given Cgrev+sCps and using V) we get

) ik '
¢,y P =y + 1 gy P®) , if m= 2,
0 J

or~E o

. m-1 .
c.y@ @) =a A®yrd) + § ety @), if m = 2q+1.
J ) 0 J

.So, step by step we see that g <y y(j)(b) = P(A) y(b) + Q(A) y'(b).
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where the polynomials P and Q are of degrees p and q respectively and
m = 2p v (2q+1). These polynomials are independent of the spiution
y(x). This means in particular that the bouﬁdarybcondition IV), which
is the same used in [0], pp. 241-242, can be replaced by a condition of

m .
the form chy(J)(1)=0 for solutions of a Bessel differential equation
5 §

VITI)  y"(x) + (A-(2 - 1/8)/x%) y(x) =0, O0O<x<1.

1. ON EXPANSIONS OF AN L2

NAL SYSTEMS.

-FUNCTION WITH RESPECT TO CERTAIN NON- ORTOGO

The following general results apply to.several situations. They are
an assembling of results that can essentially be found in [B].

THEOREM 1. Let {V 3 s=1,2,...} be a ‘system of normalized complex func-
tions in L s verzfyzng i),ii),iii), and iv). ‘

i) s #t implies

m w,,v,) = —AD where ] — <«

o(s) o(t) s=1 |o(s)]|?

’

ii) 2f f € L2 ite Fourier products bs(f) = (f,Vs) verify

2). b= (b ()]DY2%< K.IEl, K independent of £,
2 s

iii) for each s there exists a continuous linear funetional on L2,
c (f) # 0, and a set D dense in L? such that £ € D implies that

Z'ce(f) V, converges in the mean to £, and
iv) if s 78 great enough, say s > So

3) cs(f) = bs(f).ns , n, a’constant.
Then

4) £ eL? implies £ =] c (B, D), and a2 — 1

when s —> e.;also

(5).  Mfl, <K Ne(l, <MIUfl, ,
c(£) = (c)(£),c,(£),...), and

(6) bt(f) = ct(f) + 0(1) e /a(t).
Proof. Let A, = Ve,V,) = I;s. Then if N>M

N
Q) J |z eV, |2 dx = I le,1? * I A,
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From (1) it follows that the last sum is not greater than

N 2 N 2 ¥ -2 2
c() le /o(s)N? <c Jle % Llo(s)|™" < e(M) el

M 8 M % M
where ¢ (M) = o(1) for M — oo, Applying this to (7) we get

Y. 2 ¥ 2

(8) H% e, VSII2 = (1 +0(1)) % Ies| .
The equality (8) implies the following propositions j) and jj):
i) 1 e, V, converges in L% if and only if {e_} € 12,
jj) I} e, Vi, <Klel, , K independent of e = {e_}
It also holds:
2. . _
3ii) {e } € 17 implies 9) e, Vo,V,) = e

e * o "e"z/O(t).

In fact, making use of j) we obtain

(] e, Vg V) = ) e A, et Y o(n) es/a(t) a(s)

t s#t
and jjj) follows from Schartz inequality. Let us see now that ng — 1.

8

Assume that £f € D and t > S+ From j)-jjj) we obtain for £ = } cs(f)Vs:
9) bt(f) = ct(f) + 0(1) Hc“z/a(t) =0, bt(f) + 0(1) licll/a(t).,

But, if M is great enough and fixed

2 _ M 2, 5 2 ¥ 2 = 2
(10) Nell = I leg(B)]° + ) |cs(f)| < Z|cs(f)l w2 Foe vt o=
s=1 M+1 1 M+1 ,

M 2 M , M 9 M 5.2
%Icsl + 2 £- gcsvsn < §|C3| + 2[0£N + §|csl 1 <

2
< K, 0£l5 .

Then from (9) we obtain for any f belonging to D: 1 - L

= 0(1)K0 Hfuzlo(t) lbt(f)l , and therefore
1 - n, = OM  nf IL£Il
o(t) D |b ()]
Since D = Lz, taking f's near to Vc one sees that the inf is equal to
one. Since 0(t) —* e with t, it follows 1 - n, = o(1).

Let us prove now (4). Assume that g, € D converges to g in L2, Then
ii)implies that b(gm) —+ b(g) in 12, From the hypothesis on the c's
and the fact that n, — 1, it follows

(n c(g,) — c(g) in 1%,

In consequence, making use of jj),
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g -} cs(g)Vsll2 =l (g - gm) ) cs(g - gm).VsN <
<C Hc(gm) - c(g)llh '+ lg - gmH.
Since the right-hand side tends to zero as m tends to infinity, the
left-hand side is null, and (4) follows. The first inequality in (5)

is a consequence of jj) and the second one follows from (10) for £ €D
and in general, from an approximation argument and (11).

(6) is a consequence of jjj) and (4). Q.E.D.

REMARKS. Theorem’1 assures that the transformation T: 123 e —» f =

=7 esVs € L2 is continuous and onto, since f — c(f) is a right in-
verse of T, .

Let us call T = {c(f); f e LZ}. I is a subspace (closed) of’l2 (cf.(5)).
r = 1? if and only if eacﬁ function has a unique expansion.

In fact, each function has a unique expansion iff T is one-to-one, and
this happens iff f —— c(f) is a left inverse of T. That is, iff F=12.

THEOREM 2. Assume that the hypothesis of theorem 1 hold.

a) If A s the gramian of the system {VS}: Aij = (Vj,Vi), then A = I+T
where T is defined by a matrix of finite Hilbert-Schmidt norm.
b) Assume that Aki # 0 for a pair of different subseripts i,k, both

greater than_so. Then no function of L2 has a unique expansion with
regpect to the system {Vj}.

c) Let B = {b(f); f € LZ} be the space of all Fourier products.>B i8 a

" subspace of 12 and "f”zlis equivalent to Hb(f)"z.

d) 6 = 1208 i8 of finite dimension g. Besides, G and T form a pair
of complementary manifolds.

Proof. a) Tij = (1 - sij)Aij' Then,

9.2
I oT 1% < 1 oM/ @@eGnN? = oM o)A < =,
1,] 1,] ) 1

b) Take f = Vi‘ Then_ck(f) = nkbk(f) = nkAki # 0, and therefore

. Vi -1 cs(f) vs is equal to 0 but not all its coefficients vanish.
1 ' : .

c) Observe that if f = L eV, then b(f) = A.e = (I+T).e and therefore

B is ‘the range of I+T with T completely continuous. This implies

B =8, (cf.[A], [RS]), and since £ — b(f) is a one-to-one continuous
transformation from L2 onto B, its inverse is also bounded, i.e.,

N£l ~ ib(E)N.

d) A defines a transformation whose range is B. G is the null space of
A* = A, i,e., the eigenspace of T corresponding to the eigenvalue -1,
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Then dim G = ; g <, On the other hand, given e € 1 , if £ =] e V,, we
have £ = ] (e, - c (£))V  + ) c (£)V,. Then, the first summand is
équal to 0 and also A.(e-c(f)) = 0. So, e = c + (e-c) with c € T and
e-ce 6 = A"L(0). Q.E.D.

Next we apply the preceding general results to non-orthogonal'expan-
sions in series of Bessel functioms. '

2. EIGENVALUE EQUATION.

Consider Bessel's equation VIII), » > 1. {(vx J (x/f) %3 Y, (x/f)} is

a set of linearly independent solutions. The only solut1ons in L2 (o, 1)
are of the form c VX Jy (xV/X), (when » > 1, Bessel's equation belongs
to H. Weyl's "Limit point case"). Let us call

A(x,\) = I (x/R) YL (K) - Y (x/EK)IY (VK) = (21)‘1(H51)(x/x)Hizf(/X)-
- Hf,”(xmnﬁ”'(mn,

D(x,A) = J, (/)Y (R) - Y, (x/K)I (/R) =
- e ta® maP oo - EY @Rl (m).

Then,

(12) o(x,\) = (®/2)VX D(x,\) ;3 O(x,A) = ¢/2 + (x/2)/xN A(x,A) ,
are solutions of Bessel's equation verifying

d(1,A) =0 , 6'(1,A) = -1 ; eI, =1 , 8'(1,\) =
Therefore: (847) (x,A) - (6'¢)(x,A) =0.4'(1,A) - 6'.6(1,A) = -

The characteristic values R are the zeroes of J - (¥YX) for the boun-
dary conditions y(1) = 0, y e L2, An L%-solution for \ # R ¥ n is of
the form ¢ = 8 + m(A)¢ where (cf. [T]),"

(13) m(A) = -V/X J (JX)/Jv(/X) - 1/2

Since the wronskian W(Jv(z), Yv(z)) = 2/(rz), it holds

(14) w(;,x) = /x .Jv(x/X)/Jv(/X)

Let P and Q be polynomials in A. Consider the functionv

(15) ®(x,\) = -(Q.0 + P.¢)

This is a solution of Bessel's equation satisfying
®(1,\) = -Q(\) , ®'(1,\) = P(A).

Taking into account (12), we obtain
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(16) @(x,\) -Q\)w/RX A(x,\)/2 - (P+Q/2)7V/X D(x,A)/2 =

(x/2)/% (I, (xs)[-Q(s?)s Y!(s) - (P+Q/2)(s?) Y. (s)] +
v v Y

+ Y, () 1QGsM)s 3y(s) + (P+Q/2) (5D I ()1} = :

(/2)/X {J (xs) [...] + Yv(xs).s“w(s?)}.

Now we assume that P and Q are real polynomials such that GCD(P,Q)=1,
and p v q > 1, where p and q are the degrees of P and Q respectively.
In particular we have excluded the case where some of them is identi-
cally zero. Next we define two other polynomials, also real, w(A),

- P(A), by the following conditions: deg m < p, deg p < q and

a7 TA) Q) + p(A) PQA) = -1,
Let us define now the function ©:
(18) . O(x,\) = p(A) 0(x,\) - T(A) ¢(x,A).

This function verifies: ©(1,A) = p(A), O (1,A) =a(A), and is a
solution of Bessel's equation. Therefore,

(19) 8.9 (x,0) - ©'.B(x,\) = 0.8' (1,0) - ©.8(1,1) =
- Q + pP = -1.

Let us call

(20) T(x,\) = O(x,A) + MQ\) &(x,A) ,

where M is so chosen that ¥ e L2, Then, except at the poles of m(A):
¥ =0C(0 + mp). From (15), (18) and (20) it follows that C = p - MQ,
-(m + MP) = mC; that is,

zn M(A\) = X~ *mp n(A) = - = *MP
-P +m Q p - MQ

M and m are meromorphic functions of A. From the first formula in z1n
it follows that at a pole of M, m = P/Q, (eventually equal to o if

Q = 0). Conversely, if m = P/Q at N then if Q# 0, m# o, it follows
from (17): = + mp # 0. In consequence, M has a pole there. If Q = 0
and m = P/Q then P # 0, m = o, Therefore, M (~ p/Q) has a pole at A.
 We have then

PROPOSITION 1. M(A) = o 2f and only if m(A) = P(A)/Q(\), and the poles
of M are the roots of the equation

(22) P .1 A (D
QM) 2 J, (V%)

v

The poles of M(\) are exactly those A for which ®(x,\) € L2. That is,
those X for which the boundary problem: y solution of Bessel's equation
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VIII) verifying P(A) y(1) + Q(A\) y'(1) = 0, y € Lz, has a non-trivial
solution.

So (22) ie the equation for the eigenvaluee of this problem.

3. ASYMPTOTIC DISTRIBUTION OF THE EIGENVALUES.
Call A = 52. Then (22) is equal to

P(s?) _ (d/ds) (V5 Iv(s))
s0(s?) RENO)

Taking into account theasymptotic expansions of vz Jv(z) and its deri-
vative, which hold in |arg z| <7 - €, we have:

(23) -P(s?) _ -sinis-vw/2-w/a) (1+0(1/5%)) + cos{...} (A/s+0(1/s%))
sQ(s?)  cos{s-vw/2-w/4} (1+0(1/s%)) + sin{...} (A/s+0(1/s%))

where' A = (1 - 4v2)/8. Then (23) is the equation for the poles of
M(s2) and the 0(1/s3)'s that appear there, are real for s real and
have asymptotic expansions with real coefficients.

Let us write s - va/2 - w/4 = a + if. From (23) it follows:
_ 2 2 2 2 .
(24) 0 = P(s®) + AQ(s®) - [sQ(s®) - P(s“)A/s] tan(a + iB) +
2 3 2 2 .

+ [P(s%).0(1/s?) + sQ(s“).0(1/s“)] tan(a + if) +

+ P(s2).0(s7%) + Q(s¥).0(s7%) .
PROPOSITION 2. a) If q > p there existe a real constant C such that
the poles of M(sz) with |arg s| <®/2 verify

(25) tan(s - vn/2 - n/4)

]

C/s'+ 0(5'3) H

b) 2f p > q they verify, also with a real constant C:

(26) cot(s - vn/2 - n/4) C/s + 0(5'3).

The O's are real if s > 0.

' Proof. Assume that Q(A) = a A% + ... , P(A) =AP + ... . In case a)
it follows from (24) that

s2P 4 Aa_ s24 4+ g(s2972) . (s2atl a  + 0(s?9°1)) tan(a + i8) = O.
Then if q > p:
Aa_+o0(s"% A -3
tan(a + if) = ———iL———-—f:r— ==+ 0(s™7).
s'aq + 0(s™ ") s

1

If q = p, instead of A we must put: aq' + A,
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In case b), (24) implies:
s?P 4 0(s2P72) & (as?P-Ll. aqSZQ+1 + 0(s2P"%)) tan(a + iB)

Therefore,
A+ a s2apHl) g2 c -3
cot(a + ip) = 9 = ==+ 0(s 7). Q.E.D.
s(1 +0(s™ 7)) s

Proposition 2 will be used to prove that for |\| great enough, M(A)
has a pole only if X is real and positive. This is the content of next
theorem. But before let us prove an auxiliary result.

LEMMA 1. Assume that F(z) is an analytic function defined in the square
S with sides parallel to the amxes of length 2 with center at the origin.

If F(Z) = F(z) then

(27) |Im F(iB) |

N

38. sup |F(z)| , for 0 <B < 1/3.
39S

Proof. "F(s) - E(3) % J ———Eiﬁl—:j-dt . But, from
S(t-S)(t'S)
IJ voo| < sup ]F(z)|.8/(2/3)2 it follows |Im F(s)| < 188 sup |F(z)].
s 3s 23S

Q.E.D,
THEOREM 3. Let us suppose that |arg s| < n/2. Then
i) the poles of M(sz) are real if |s| is great enough, and '
ii) they are simple with negatzve reszdues, for s positive great enough.

iii) consecutive real poles of M(s ), like those of m(s ), tend asymp-
totically to be at distance w; besides from a moment on the two sets

interlace, i.e., the poles of each occur alternately.

Proof. i) It follows easily that

2

|Im tan (a + ig)| = |(tanh ﬁ)/(cosza + sen a.tanhzﬁ)| > |tanh 8|,

|Im cot (a + i) | = |tanh B|. Then from (25) or (26) we obtain

(28) | Im (% + 0{5'3))] > tanh |Im s| * if s is a pole of M(sz).

In consequence’ if |s| is great enough: |Im s| < 1/3. Let us call H(z)

the meromorphic function denoted by 0(2_3) in the rigth-hand side of
(25) (or (26)), and G(z), the function defined by the left-hand side
minus C/z. Then s is a pole of M(sz) if and only if G(s) = H(s); besi-
des if s is a pole, s is also one (cf. (22)), and,

(29) G(s) = (G(s) + G(3))/2 = (H(s) + H(3))/2

Define F(z) = (H(z) + H(Z))/2. (29) implies that
tanh |Im s| < |Im (C/s + F(s))| < |C Im §|.,[s|'2 + |Im F(s)].
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A straightforward application of lemma 1 to F(z) if f = Im s,
0 < |B| <1/3 gives:

(30) tanh |8] < |cs™2.8] + |B] o(s™?).

For these values of f, there exists a number d, positive, such that
d < tanh B/f. Then, (30) can be verified only for s bounded, and this
proves 1i).

ii) M(A) has a simple pole at ko = s # 0 if and only if M(s ) has a
simple pole at Sg Assume now that Sy > 0 is a pole for M(z ), then

m(sg) = P(sg)/Q(sg). From (13) it follows

(s J'(s))! Jr2(s) 2 ‘
G Lni?h - - 2 L, ‘Xi‘i‘ = (s - 29+ % m(s®)+1/2)?
ds Jv(s) J5(s) s
A
Therefore
2 P(sz) 2
32) 2 m(s?) R I e .
ds s=s, So 5o Q(So)
P(sz)
=5, + — (1 P (s3Hy + (/4 - »2) ;—

But p > q implies (d/ds)(P/Q)(sZ) ~ constant . s—l(P/Q)(sz) and p €47
implies (d/ds) (P/Q) (s ) 0(1) In consequence from (32) it follows '
that at s = Sg» (d/ds)m(s ) > (d/ds)(P/Q)(s ) if s, is great enough.

This proves that s, is a simple pole. Its residue 1s

0

w(s) + m(sh) p(s)) 1/Q(s5) <o
(d/ds)(mQ - P)(s2)  Q(s3).(d/ds)(m - P/Q)(sp)

as it follows taking into account (17) and (21).

iii) The result for m is immediate and that for M follows from the
asymptotic formulae of Proposition 2 if one remembers that the 0(s”™ )
that appear there are real for s real, It remains only to see that the
poles of M and m interlace. Since m(sz) is real and has simple poles
with negative residues on the positive real axis, the values of m(sz)

run from - to +c when s runs from one pole to the next one. Then for
a certain So in between, m(sg) = P(sg)/Q(sg). For the same reason bet-
ween two consecutive. poles of M(sz) there exists a point s, such that

M(s?) = p(s}/Q(s?), i.e., a pole of m (c£. (21) and (17)). Q.E.D.

L. SIMPLE POLES AND RESIDUES OF GREEN'S KERNEL.

First we shall introduce ‘some notation and auxiliary formulae. Recall
that ¥ = 0 + m ¢ = VX J o (x8)/3 (s) if J (s) # 0, i.e. when m(s 2) ¢ o,
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and that ¥ defined by (20) is, at least where M(s2) # o, Jv(s) £ 0,
.equal to '

(33) ¥= (p - MQ)VX J (xs)/J (s) = (mQ-P)™! /X J,(xs)/3 (s) =

-vx Jv(xs)/sv w(sz) ,
where w(s2) = {sJ)(5)Q(s?) + [P(s?) + Q(s2)/2] J,(s)} /s¥ , is an
even entire function.

On the other hand, s <s a pole of M(zz) iff
(34) o(s?) = mQ-P)(s™V T (s)) = sTVsI(s)QUs D)+ (B (s2)+Qs2)/2) 3 (s)1=0.

(The factor s ¥ has been introduced te include the point s=0). In fact,
from the definition of ¥ (cf. (20)) it follows that the poles of M(sz)
are exactly the poles of W(x,sz), which, because of (33), are the ze-
ros of w(sz). ((34) can also be proved using proposition 1). For those
points, we have (cf. (15), (16)):

B(x,5%) = -(1/2)/F 3, (xs) QesDs Yyls) +[P(sDQsD/2 Y, ().
This expression must be understood as a limit when M(0) = e, Then if
s, is a pole of M, from (34) and that W(JV,YV) = 2/(ms), we get
- 2 _ 2 2 ,
(35) @ = -/X J (xs )Q(s)/J (s ) = VX J,(xs DIP (s )+Q(s ) /2173 (s )s

Since M(sz) = 0 implies that s_V.Jv(s) = 0 is equivalent to Q(sz) =0,
if the expression in the middle of (35) is indeterminate then its right-
hand side must be used. If s=0 is a pole of M(sz), formula (35) is

still valid but in its limit form

2,(x) = x"*H2 2(0) + o)/ = x*1/2 g0y,
Making use of Lommel's formula we obtain for real si # 0:

(36) e i? = (1 - »2/s2) Q*(s2) + 1P(s2) + Q(s?y/212 /52

n ’

and then, the normalized functions:

(37) ¥y, = @ /I8N = -VIK J (xs) D /I (s)) = VIX I (xs_) D_/31(s) ,

I 2 2 2 -1/2
2 (P(s)) +Q(s2)/2)

1 - 1? + n n » sgnD = sgn Q(s:) H
n

.where D
n , 2 2,2
s, - Q (sn)

S

(s2 - vD) Q2D |7H2

®+/2)? (s

0
u

1 +

, Sgn ﬁn = sgn (P+Q/2)/sn .

L

Observe that Dn/sn Q(si) = Bn/(P+Q/2)(s§) if both denominators are dif-

ferent from zero; on the other hand, both denominators cannot be simul-
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taneously null, and if one of them is not null the correspbnding nume-
rator is different from zero.

a

The functions wn are uniformly bounded. Precisely

PROPOSITION 3. wn(x) = /an Jv(xsn);o(l).
Proof. If q = p then (P+Q/2)/sn9 = 0(1) and from (34) it follows that
JL(sn)/Jv(sn) = o(1). In consequence, S, approaches zeros of JL , and
|Jv(sn)| > c.s;llz. This together with (37) imply the thesis.
Analogously, if q <p then Q.sn/(P+Q/2) = 0(1) and from (34):
Jv(sn)/JQ(sn) =-0(1). Then s approaches zeros of Jv’ and [J;(sn)| >
> c.s7H/2,
n

Again from (37) the thesis follows. Q.E.D.

The Green's kernel G(x,y,\) of the differential system we are conside-
ring is equal to -¥(x,A) ®(y,\) if x <y and equal to -W(y,A) @®(x,A)
if x >vy.

1
By definition, Gk(f)(x) = J G(x,y,\) f(y)dy. Since © and ¢ are entire
0

functions of A for fixed x, it follows from the definition of ¥ that

. (38)  G(x,y,\) = entire function of A - M(A) @(x,N\) @(y,A).

Therefore, the poles of G(x,y,\) are the same as those of M(A). It holds,

PROPOSITION 4. If X =X\_ is a simple pole of M, then, for f & L2(0,1)
we have

" 1 ~
ifi Gx(f) = rﬁ.wn(x) Jo Wn(y) fly) dy , r,o— 1 when n —> o,
“fn

The proof of the proposition makes use of the following lemma whose de-
tailed proof we leave to the reader, since it is a simple application
of Fubini's theorem.

LEMMA 2. Let F(y,\) be a measurable function of (y,\) , holomorphic in
Ix - Kol < d, for each y € (0,1). Assume also the existerce of a cons-

1 )
tant A such that J |E(y,A\)| dy < A for each . Then if for each'y,
0

8

Fiy,\) =] a Q- xo)“ holds, then
0

n=

1
IRLZSEE
0

n=0

1
[J a (y) dyl] (» - ko)n whenever d > |A - A ],
onl

Proof of proposition 4. Applying lemma 2 to the function
F(y,A) = G(x,y,A) £(y) (A - A )" where x € (0,1) is fixed and r is the
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order of the pole of M(A) at Rn, we obtain
. 1
(39) res G, (f) = J [res G(x,y,\)] £f(y) dy.
A=a_ A 0 A

In particular if An is a simple pole then from (38) we get

res G(x,y,A) = & (x) & (y) . res (-MA)) = ¥ (x) ¥, (). r, .and

An An

(40) r, = - res M) . 18|12

n

This implies the thesis except for r — 1. Assume that n is so great
that kn is a simple pole of M and not a pole of m. Then

res M(A) = - — 2 XML )= m + p.P/Q o) =
‘n (d/d)\) (Qm-P) n ©Q.(d/d\) (m-p/Q)  ®

= QP m) - /1T

From (36) and (32) it follows

2
he 12 = ¥ o) ) -2 ). L n and then
n 2s ds s=s BTOoan A=A
n . n n
(41) res - M(A) = . 1
A, e i? - [P'Q - PQ'T(A)

(36) also implies that H@nﬂz ~ Kqu(ZP_l). On the other hand,

| 0B*ITY) if pdq | ,
(P'Q - PQ'Y(A) = ta2 - O(A(ZPVZQ) ).
b 0APTI™Y)  if  p=q
Therefore, from (40) and (41) we finally get:

e |2
n

r = 3 - ; -+~ 1 . Q.E.D.
e l? - [PrQ-PQIA) n+e

5. MULTIPLE POLES OF THE GREEN'S KERNEL.

: The calculation of the residue of G (f) at a pole E is reduced to the

computation of the residue at & of —M(l) ®(x,\) ®(y,\), as follows ‘from
(38) and (39). On the other hand, by means of Picard's approx1mat10n
method it is not difficult to prove the following propos1t1on

The functione ¢(1)(x,X), i=0,1,2, are entire in N for fizxed X € (0,1],
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(the exponent means derivation with respect to x); besides, they are
continuous in (x,\) € (0,11 x C, and it holds

aigpi) ai ol
2 — \) = — [ —F A i=1,2 j=1,2,3,...
(4 ) a XJ (x’ ) axl [a AJ] (x’ ) ’ 1 ’ ’ J ’ » ’ ’
Furthermore, the functions in (42) are also continuous in (x,\).

(A detailed proof is givén in appendix I of [G]l).

Let us define the functions Uj(x,k), j =0,1,..., by

.1 e
(43) Uj(x,l) = P 33 (x,A) .
Therefore
(44) ®(x,A) = Uy(x,€) + (A - E) U (x,€) + ... .

If M(A) has a pole of order r at £, let us write

S - BTMQ) =ty A-EB) v v - HTle L.

r -1

In consequence,

- - E)T M) 2(x,A) (y,N) =

- + (- g)f'l E c [jilu (x,8) U (y,&)1 +
PP j=1 _j k=o k ’ j-l—k YDv “ s .

But (A - £) ®(x,\) = -®"(x,A) + (q - £) ®(x,\) , q = x"? w? - 1/4).

Because of (42) and (44) we get

I L-up (8 + (@ - 8) 000l - oF-
k=0

k+1
Uk.(k - &) ,

o8

which implies that the functions Uk satisfy the following equations

ug + (¢ - q) Uy

up e (8 - @) Uy = UG,

up+ (¢ - @) Uy = -u

eeecs0scs s e s e st oo .

]
o
-

(46)

For each n the set of functions uo,...,un , is linearly independent
on any interval 1 contained in (0,1). In fact, uo(x,E) = ®(x,k) # 0
on I. Let us assume that the set under consideration be linearly depen
dent on I. Then there exists a first k such that

k-1
u, = mzo a U onlI.

Applying the operator.dzldx2 + (£ - q) to this identity, it follows
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from (46) that U.__. = Z o Um_l, in contradiction with the defini-

tion on k.
If r is, as before, the order of the pole § of M(z)?

{uo(x,E),,..,Ur_l(x,E)} is called the principal chain of functions as-
soetated to ®(x,£), and from (45) we see that

Il e~

j=1
rgs G(x,y,\) = c_; [kzo u (x,§) Uj_l_k(X,E)] ’

j=1
and from (39), for f € L2(0,1), we get

j-1

k=0

1 ¢
47 rzs G, (f) = J {1

C_.
0 j=1 "3

The brackets inside (47) equal to

r-1 - - r
P u u h u = .U, .
Cood = 10000 B008), where G (r6) = 1 ey Uy, 0708)
That is
Uo Cor Corn1 €1 Uy
. 0 €z e c_y .
(48) . =1 . . e . o » c_, # 0.
T 0 0 cee Uy

a

Therefore, the set UO,...,G¥_1 is also linearly independent on any
I c (0,1).

| .
Since res Gx(f) is a finite number for any x € (0,1) and any fEﬂL2(0,1),

we see that the bracket in- (47) defines a function in L2 (o<y<1),
Vxe (0,1).'The linear independence of {u
that each uj € L2

- k=0,1,...} implies

: In fact, there exist r points in I: xl,...,xr,‘

such that the matrix (Uk(xm)), k=0,...,r-1, m=1,...,r, has a non-null

determinant.
. 1 a 2

Since kzo U (x ,€) U (y,€) = F (y) € L%, then

0 = 2
Uk’—,z A, F, also belongs to L.

Summing up, we have

PROPOSITION 5. For k=0,...,r-1, U, (x,£) and U, (x,t) belong to L2,
when & i8 a pole of order r of M(z). If 7k(f) = 7k(f,E) denotes the
continuous linear functional on L2 defined by ’

. 10 ' r=l . c
IQ uk(y.E) f(y) dy, téen r:s Gx(f) = kZO uk(x,tjayk(f) {
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6. EIGENFUNCTION EXPANSIONS FOR CERTAIN REGULAR FUNCTIONS.

Let (cn} be a family of circumferences with center 0 and radii r to
be defined later but such that T, —* ®as n— oo,

We shall prove the following result.

THEOREM 4. Assume that f. € C2(0,1) i8 null on neighbourhoods of 0 and
1. Then, <t holde uniformly on 0 < x < 1 that

. 1 ‘
lim J G, (f) d\ = f(x) .
ne 2mi Cn A

To prove this theorem we need some auxiliary results, The first of
them is the well-known fact that Green's operator is the inverse of
the differential operator at least on a set of functions dense in L2,

LEMMA 3. Let f be as in theorem 4, and N not a pole of G,. Then, on
0<x<1,

(49)  £(x) = NG, (£) + G, (D) ir Fo=£ x4 -0 £ .

(This follows after integrating by parts twice the integrals involved
in G, (f"), (cf. [T], ch. II)).

LEMMA 4. If g € L1(0,1) is null on (0,e) for a certain ¢ > 0, then it
holds

. dA
lim I G,(g) —=0
c. A ’

n+w
uniformly in x € (0,1).

Proof. The integral that must be estimated is equal to

1
(50) jc 6@ 2= [ ey g jc seoy ) &
€
n

n

Then, it will be sufficient to show that, uniformly on y > e,
0<x<1,

(s1) [ ey &2 j G(x,y,s2) 95 = o(1),
C A D s i

n n

holds. Here, D = {s; |s] = rilz, |arg s| < w/2},

If A and D are defined as in paragraph 2, from the asymptotic formulae
for the Hankel functions, we get:
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cos s(1-x) + e(l_x')lIm s|.0(1/52) ’
T s VX

A(x,s?)

(52)

sin s(1-x) + e(l'_x)IIm sl.O(l/sz).
T s VX

D(x,s?)

In (52) the O's hold uniformly on ¢ <x < 1., From (16) and (52) the
following estimation for ® is obtained,
(53) ¢(x’52) - S(2q+1) v 2p . e(l—x) |Im s|. 0(1/s)
Let a and b be functions of p and q defined as follows:
a=0, b=v2Z/m if q>p, a=7v2/t , b=0 if q <p. Then, from
(33) we obtain on 0 < x < 1 '
- VX Jv(xs)

(54) ¥(x,s?) = 5 > 5 -
sQ(s%) J1(s) + (P(s)) + Q(s$)/2} I (s)

- /Xs J, (xs)

.

) s(2q+1)V2p'{[a.cos(s-vw/z - w/4) - b.sin(s-vw/2-w/4)] + o' Im SI0(5—1)}

Taking as /?: the points in (0,) where the function defined by the
square brackets in the second denominator in (54) takes a maximum, it
is possible to complement (54) with the following estimation valid for
s € Dn,-and 0(1) independent of x € (0,1):

/XS T (xs) 0(1) e(x-1) |Im 8| g(q)

2 = -
(55) ¥(x,s%) = S(2q+1)v2p e|Im sl »S(2q+1)v2p

From (53) and (55) it follows that

-@(x) ¥(y) = eI |m s o(1/s) , if x } ¥,
(56) G(x,y,s?) = .
-e(y) ¥(x) = exy) [Im 8| o(1/s) ,  if y > x,

where the 0's hold uniformly if e <y <1, 0 <x < 1. Then

[ stysh & [ oas?) as <0G s e QED.

n

Proof of theorem‘'4. (49) says that Gx(f)(x) = £(x)/A —,Gx(f)(x)/k and
therefore we get: ‘

L J 6, (£) (x) dn = £(x) - - J INGIOIS
i Y i A

The thesis now follows from Lemma 4.

COROLLARIES TO THEOREM 4. i) Let f be as in theorem 4. If M denotes
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the finite set of poles of M(z) that are multiple, null or nonreal,
and .x(£) the muthpchzty of the pole &, then it holds unszrmly on
(0,1) that

r(g)-1 © W
G £ = I E U (8 1 (£, ¢ I bl 7 $00
m=

Ee k=0

where the last sum extends over the set of normalized eigenfunctibns

corresponding to non-zero, real and simple eigenvalues.

ii) The system of functions }
v, @ k=1,2,3,...} = {uj(x,s)/uujn2 » Y (x) s EEM,
j<r(),m=1,2,3,... } is complete in L2(0,1).

These results are easy outcomes of Propositions 4 and 5, and Theorem
4, Thus, iii) of Theorem 1 is verified.

7. EXPANSION OF A SQUARE-INTEGRABLE FUNCTION.

In this section we show that the complete system of functions {V,}
verifies the hypotheses of theorems 1 and 2. This proves in particular
the possibility of expanding an L%-function into a series of eigen-
functions and associated functionms.

LEMMA 5. The gramian of the system {Vk} satisfies i), Th.1.
More precisely, for a certain a > 1/2 it holds:

1. . —
D e G axe 20 ifndm,
0 s_ s
n m
1 ‘ . o
ii) I u (x,6) ¥_(x) ax = 200 if v # integer ,
. 0 s
n
S | n 0(1) log s
iii) J Uk(x,E) Wn(x) dx = —— if v is8 an integer.
0 S
n
Proof. If s # se, from (37) and Lommel's formula we get that
~ ~ 1“ "~ i
Fwn.we) = JO v, (x) ¥ (x) dx is equal to:
2 J'(s)) J!(s )

—-— [s . —2—2_.5s , 221 DD if J $0#J ,
si - s: e Jv(se) n Jv(sn) ne 1 v(sn) v(se)
-2, J,(s.) I () ~n :
—_— s L e . g 2B DD if J° )40 #J'(s),
s: K s: n J;(s.) e J;(sn) n e .1 iv(sn v( e
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-2's

e
$2 . G2
n e

~

DD, if J,(s)) =0, J(s) =0 .

We define now the symmetric polynomial V(A,u) as follows,
(s8) VA,e) = (PA)QM) - PMIQMA))/(A-u).
Then, taking into account the eigenvalue equation (34), it follows
easily that (V,,¥,) is equal to
D

(59) Jl v (x) ¥ (x) dx = 2s_s_.V(s2,s2) ’n e
o ™ e n"e’ n’"e .sﬁ Q(Si) s, Q(sz)

if Jv(sn) # 0 # Jv(sé),

D
2ss,. V(si;sz) . n 5 £ 5
& (PQ/2)(s))  (PQ/2) (sD)

[}

if J0(s DFOAII(s,),

~

D D
2 SaSer V(sz,sz) . Z 2 £ 3
~ P s sk (eea/2) (5D

if J (s )=0 , J!(s )=0.

Now, if q > p then the degree of V(A,u) in X\ or g is not greater than

-2q~-1
q ).

q-1, and |Dn| — 1. In consequence D /(s Q(si)) =o0(s,

Then, from (59) we obtain

a ~

(60) W_.¥) = 0(s2% s7h).

On the other hand, if p > q then deg V(A\,n) = deg V(A,u) <p-1 and
A

H
|Dn| — 1. This implies that

~

q - -1 _-1
(61) (wn,we) = O(sn So ).
i)- is thus proved. To prove ii) and iii) of lemma 5 we need a more ex-
plicit expression for uk(x,E) which is exhibited next. Assume » # inte-
ger. Then»Yv(z).sin vmw = cos Vﬂ.Jv(Z) - J_v(z), and this, together with
(16) yields

. 2
(62) - Zsinvr  ®(X,57) _ (prq/2)(s2) [J (xs) I (s) -J (xs) J (s)]+
T v/)? v -V -V v

+Q(s?) s (I (xs)W! () - T_ (xs) JI(s)].
Thus for v # integer we have,
(63) o(x,5%) = /& [s7V (xs) £(s%) + sV J_ (xs) g(sD))

where f and g are certain entire functions.

Assume now » = integer. In this case: Y (z) = (2/x) [log(z/2).J (z) +

v

+ H_ (z)] where H_v(z) is equal to z~V times an entire function of z2.
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Therefore, again from (16) we get
‘ 2 __ N . -
(n/2) D(x,s“ =-log x.Jv(s} Jv(xs) + Jv(xs) H_v(s) Jv(s) H_v(xs) ,
s.(7/2) A(x,s%) = J,(xs) (I, (s) - s log x.JU(s) + s H! (s)) -
- H_v(xs).s J;(s).
Thus, for » = integer (> 0) we get with f,g and h entire functions
(64) ®(x,s%) = /% [s” log x.J (xs) £(s?) + sV (xs) g(s?) +
+ sVH__(xs) h(s?)].
In consequence, the associated functions defined in (43), after taking

into account (63) and (64), take the form

(65) k! U (x,s?) = (—QE)F ®(x,s%) = (if v # integer) =

ds
ST £D) (I 7Y I xs)) + g (sD) (<) (s¥ I (xs))
j=0 J 352 v gj asz -V
k
(66) k! U (x,s?) = (for » = integer) = /X {(fj(sz) + gj(sz) log x).
j=0

9 j -\ 2 a j
.(;;7) (s J,(xs)) + h (s ).(52503 (s H_ (xs))},

where with fj, h. and g. we denote entire functions. Observe that

hy€) = 0 if -» + 2j < -1 since U (x,t) € L2(0,1).
Next we recall some formulae from the theory of Bessel functions:
G 2 3, = T ()
z dz v ' v-m ’
(67)
d \m _-v _ (_q1y@ ,-v-m
g7y 2z J,(2) = (-1)" =z Jv+m(z).

Let A = 0 be a pole of MA) of order r and v # integer. In this situa-
tion (cf. (65)):

k . .
(68) U, (x,0) = /x [ {a x"*H . B, xV*23y 0 k=0,1,...,1-1.

Uk € L2 implies that Fj = 0 for 2j-v <-1. Let us see ii) when{ = 0.
It will be sufficient to prove (cf. Proposition 3) that

1.
(69) [ x2itv+l 3 (xs ) dx = 0(s-3/2) ,
0 v n n

1
2j-v+1 -a-1/2
(70) Jo X Jv(xsn) dx o(sn )

a in (70) =quals ng - v + 3/2 if there is a j0 verifying
1> 2jo -v +3/2>1/%2; a = 1 if there is no j0 with such a property.

In (69) ard (70) the O's agre independent of j for fized v,
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In fact,

71) t2j1v+2»J1

- t .
x2I B+l 5 ey ax - J y2Jtv+1 J (y) dy =
0 v 0 v

L]
L}

t . +
(erom (67), me1) = # [y o™ 0000 4y

ot ot
. JviI(Y) .0 ¥ ZJ.JO y

+ yZj tv+1 23 %

Jox () dy

. t .
- p2itvHl O(t-1/2) +0(1) + 2§ J sz:v—1/2_0(1) dy =
g 1

2j tv+1/2

= (t v 1) o(1)

and this proves (69), and also (70), because in that case we must con
sider only j's such that 2j - v > -1, (cf. (68)).

Let us assume next that s® = ¢ # 0 is a pole of order r of M(A) and
still ». # integer.

From (65) is obtained.

k d i _ I
L [, Sor2 A CRMEMCODIRGE s A Ch J_v(xs.))]

(72) U (x,s%) = /X
0

with Bj =0 if 2j - » < -1, and k=0,1,...,r-1. To prove ii) in this
case it-is sufficient to show that the following estimations hold:

-3/2)

o(s,

’

1 .
(73) JO (52703 (s”¥ Jv(xs)) Jv(snx) x dx
s

o(s—a—I/Z).

n

1 .
(74) JO (525)3 (s" J;v(xs)) J, (s x) x dx
s

The last one must hold only for 2j - » + 1 > 0. The left-hand sides
of (73) and (74) are equal to

(75) (253 Jl (7Y U, (xs)) I (s_x) x dx =
352 0 v v-Tn

) (_g_)jIJiN(xs) JU(s x).s x - J (s _x) JY (xs).sx x=1
2 ) T 5 3
ds l s (s© - sn) <=0

corresponding the upper sign to (73) and the lower one to (74). Then,
left-hand side of (73) = '

. (_i_)j Jv(s) Js(sn). Sh T Jv(sn) J;(sn). s

= o(1/s3/2 ;
ds2 sV (s? - si) (175277

I_().s¥3 (s )s - I (s )L (s).st Y

Left-hand side of (74) = (=)
ds

n
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v a_ b, s’ -
_ 0 "0 “mny _ 3/2 v=2j-2, _ a+l/2
__gi_f—gi__] = Ot(1/sn ) + 0(sn ) 0(1/5n )
n
where a; = 27V/r(v+1), by = 2%/r(1-»). The last equality follows from
the fact that here v < 2j+1 ; as before, o is defined by

1A {2j -v +3/2 ;25 -v + 3/2>1/2}. The proof of ii) is thus ac-
complished.

Let us see iii), i.e., assume » = positive integer. If zero is a pole
of order r of M(A), from (66) and for k=0,1,...,r-1, we obtain

k v+2j k -v+2j
(76) U, (x,0) = Vx { ] x J(Aj+BJ. log x) + J x JCJ.) )

j=0 i=0
and C, = 0 if -»+2j < -1. The a defined above is now equal to one and
(71) can be written as

1 .

J x D23+ 5 (xs ) dx = 0(s23/?) if #we2i+1 > 0.

0 \Y n n

Then if & = 0, iii) will be established if we show that

1 . log s
v+2j+1 - = n
77) JO X log x . Jv(xsn) dx = O(—;§77—)
n

But, as in (71) after integrating by parts we see that

1 N
J xVF23+1 150 x . J,(xt) dx =
0

t
L mv-2j-2 v+1 2j-1,,. )
t [[oy 3,0 00 v27 (25 10g L - 1) ay]

s t .
= t7v"2i-? o(1).j y *23-1/2[ 35 (1og t - log y)+1] dy
0

o(——g7—1‘;3 )

and this implies (77). Here again the 0 does not depend of j. Let us

suppose, for the last step, that § = s240is a pole of order r of
M(\). From (66) it follows

2 v T ;
(78) Uy (x,s%) = x (] Aj xV+23, 1 B. xV*23, log x + ) c.x"VT4dy,
i=0 j=0 2j-v>-1 7

where the series of coefficients A,,B., and C., are absolutely summable.
Then, from the estimations (69), (70) and (77) (recall, that they hold

uniformly on j), (79) is obtained:

1
(79) U, (x,t) J (xs.) /X dx = (] |A.]) 0(—) +
0 k v n 3 s372
n

“log s
+ Q135D o—7™ + Q16D oty
n n

and since in this situation @ = 1, iii) is proved . Q.E.D.
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THEOREM 5. The system'{Vs} defined at the end of section 6 verifies the
hypothesis of Theorem 1.

Proof. Lemma 5 proves i) of Th. 1; Propositions 4 and 5 and the Corol-
laries to theorem 4 prove iii) and iv). It remains only to .check ii)
and this will follow from the following proposition:

2

A 2, 2
f.el”, b () = (£,9) = 3K: | |bn| < K Iifll;

In fact, let o be positive zeroes of Jv(t) if p > q, and of Jc(t) if
P <q. It is not difficult to see that if s, is a pole of M(sz) then

~eventually after a renumeration of {on} it follows that:

|0n - sn] —* 0 for n — o, One way of checking this is to prove,
using the asymptotic formulae for Jv and J; , that o satisfies formu-
la (26) if p > q, and (25) if p < q, but with different values for the
constants C.

. ~ ' — -1 . _
Define now v (x) =8 /x Jv(onx).ﬂ/x Jv(snx)li2 with 6 = +1
Ve it - -1
or -1 and such that wn(x) =8 /x Jv(snx).HVx Jv(snx)ll2 .
. ) . 2 .
{¢ (x)} is an orthogonal family of L“-functions, and H¢nH2 ewend 1,

(this is a consequence of one of Lommel's formulae that asserts that

1
J X Ji(ax) dx ~ k/a if @ —r o ),
0

Then, calling B;(f) = (f,wn) we have

(80) DI 012 <x [ (5 8|2 e 1% <02,

ii) will follow from

(81) b () =B (£) + Il 0(1/n) , n>n,
But, [V, () - e ()] = /X |3 (0,x) - I (s ) | /IVR J, (s 0, =
= /xS, oM. (o, - s ) IV x) = /5 TB_ . (o, - s )/XB_ J!(xB_)0(1)

where Bn is a number between s, and o, Since sn/on —+ 1, it also

holds that ﬁn/s — 1, and from the last formula we obtain
n

(82) 19,00 - o ()| = Jo_ - s_|.0(1)
(82), together with next estimation, proves (81).

(83) lo - sn| = 0(1/sn)

n
To establish this,first observe that from (34) it follows Jv(sn) =

=‘0(s;3/2) when p > q, and then

B 0(1/s)/% = 5 (s) =I5 - I (0 = (s, - 0) TLE)
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'where t 'is a number between o, and s,. On the other hand |Jv(sn}l >
> IJv(tn)l because of the monotony of J between two zeroes of J!.

Therefore, J (t ) = 0(5—3/2

) and |J!(t )| > C./v/s. After replacing in
v'iin 0/ "5,
(84), (83) follows.

Assume next p < q. (34) implies (tn as beforé)‘that
3/2 |
(85) M/s2/2 > 3] = 135(s) - e )] = Jo_ - s [L|an(e )]
From Bessel's equation: Jg(tn) = -Jv(tn) + 0(1/t2/2), and therefore
[J;(tn)] > C,//s_ holds. As in the preceding case (85) implies (83).
. n
Q.E.D.

THEOREM 6. Hypothesis b) of theorem 2 holds for the system {V }
under consideration. Therefore g > 0,

Laa 2 2
Proof. From (59) we see that JO wn wm dx = 0 = V(sn,sm) =

Since P and Q have no root in common, for any value of So» V(si,y) has

1. . :
only a finite number of roots. Then J wn wm dx # 0 for each s, and
/ 0

j
infinitely m&ny Sh Q.E.D
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