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We dedicate this paper to the memory of Prof. Dr. Carlota Szab6, nelS 
Nagy, an exceptional teacher of our science. 

ABSTRACT. Let {Vk ; k = 1,2,3, •.. }obe the system of eigenfunctions and 
associated functions of Bessel's equation of order II ;;;. 1, 
y" + (A-q)y = 0, with boundary conditions depending polynomially on 
the p·arameter A: peA) yel) + QeA) y' (1) = 0, y E L2(0, 1). It is 
shown that the structure of {Vk} is similar to that of the case where 
q E C([O~11) 3nd the boundary conditions depend polynomially on A at 
both ends. 

This system is not a basis, although .any function in L2 can be expan­
ded into a series of the form: f = I ck(f) Vk • 

O. INTRODUCTION. A solid sphere with an initial distribution of tem­
perature symmetrical about the z-axis (for example, a linear distri~ 
bution C.r cos 8), is' cooled by immersion in a mass of a well-stirred 
liquid which has at each instant a uniform temperature throughout it. 
Assume that the sphere has radius one andu(r,8,t) denotes its tempe­
rature at the instant t,while the initial distribution is of the form 

I) f(r).cos 8. 

The coefficients of the expansion of u obtained by separation of vari~ 
bles are determined by those of the following expans.ion of the radial 
part of the initial distribution of temperature .. 
II) g(r) = r fer) = I B .. y.(r) 

j =1 J J 

III) (a-b ,A-1) y(l) + y' (1) = 0, a and b constants. 

The boundary condition is of the form 

IV) .P(A) y(l) .+ Q(A) y'(l) = 0 , P and Q polynomials. 

We shall not ent~r into more details in relation with this particular 
example (cf. [L1 and [SI). In this paper our main objective is to 
study expansions into series of cylindrical functions as in II) sati~ 
fying a boundary condition of the type IV). but we shall restrict our 
selves to Bessel functions of order II ;;;. 1. 



162 

The problems that we consider here and the objectives we pursue are 
in nature similar to those considenbdby R.E. Langer, [L)., and C. 
Miranda, [M). However our approach follows the same lines as in [B). 
There, the following problem was studied: 

(P) I y" - (). + q (x)) y = 0, 

~().) yeO) + ~().) y'(O) 

P (). ) y ( 1) + Q (). ) Y I (1) 

o < x < 1 

o 
o 

with q == 0, P,Q polynomials with real coefficients and P,Q constants 
not both zero. The more general situation in (P) when q(x) is real 
and continuous in [0,1) and the four real polynomials P,Q,P,Q verify 
G.C.D. (P,Q) == 1 , G.C.D. (P,Q) - 1, was studied byE. G~ichal in his 
doctoral thesis (cfr. [G)). 

The boundary problem that we treat in this paper could become an 
introductory work to a more general theory of anomalous systems with 
q E CClO,l)). 

We shall finish this introduction with an a~ternative form for the 

boundary aonditio.n IV). 

Let us consider the differential equation: 

y" - f(x).y + ).y = 0 a<x~b f E Cm((a,bJ). 
h 

Then Ay(h)= _y(h+2) + L if h = O,l, .•. ,m 
j=O 

It follows by induction that 

V) A ky (x) 
2k-2 

(_l)k y(2k)(x) + L f (x) y(s)(x) 
8=0 k.8 

2k ~ m • 

, 
where fk E C'. Differentiating V) we get 

.8 

2k+l "m , 

where gk E C. 
. • s 

Assume that the degrees of P and Q are p and q respeetively. and that 

m = 2p v (2q+l). Then there exist constants cO.c1 ' •••• cm• independen5 
of y(x), such that 

VII) P (X) Y (b) + Q (). ) Y I (b) 

Conversely, given co'···'cm, and using y) we get 

m 
y(j)(b) 

m-l 
c! y(j)(b) L c. = a ).m y(b) + L 

0 J m 0 J 
if m 2p, 

m 
y (j) (b) 

m-l 
c! y (j) (b) L c. = a ).m y I (b) + L , 

0 J m 0 J 
if m = 2q+l. 

m 
So, step by step we see that ~ c j y(j)Cb) = PC).) yCb) +Q().) y'Cb). 
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where the .polynomials P and <tare of degrees p and q respectively' and 
m = 2p v (2q+1). These polynomials are independent of the sotution 
y(x). This means in particular that the boundary condition IV), which 
is the same used in [0] • pp. 241- 242. 'can be replaced by a condition of 

the form ICjy(j) (1}=O for .solutions of a Bessel differential equation 

VIII) y"(x) + (~_(1I2 - 1/4)/x2) y(x) =0 , O<xo;;;l. 

1. ON EXPANSIONS OF.AN L2-FUNCTION WITK RESPECt TO CERTAIN NON-ORTOGO 
NAL SYSTEMS. 

The following general results apply to .,several situations. They are 
an assembling of results that can essentially be found in [B). 

THEOREM 1. Let {Vs; s=l ,2,. ... } .be a '8Y8tem of noz>matized aompZe;t; funa­

tion8 in L2, vez>ifying i),ii) ,iii), and iv). 

i) s; t impZie8 

(1) 
o(s) oCt) 

ii) if f E L2 its Fouz>iez> pz>oduat8 bs(f) = (f,Vs ) vez>ify 

(2l. IIb(f)IIL (I Ibs(f) 12)1/20;;; K.llfll, K independent of f, 
2 s 

iii) foz> eaoh s thez>e e;t;i8t8 a oontinUOU8 Zineaz> funotionaZ on L2, 
cs(f) _ 0, and a 8et D dense in L2 8uoh that f~ D i~ptie8 that 

I cs(f) Vs ~onvez>ge8 in· th~ mean to f, and 

iv) if S i8 gz>eat enough, say s > sO' 

(3) 71 s a'oon8tant. 

Then 

(4) f E L2 impZie8 f = L c (f)V (L 2) , 
s s and 71 s - 1 

lJhen s __ 00; aZ80 

(5) IIfll2 <; K IIc(f)1I 2 <;M IIfll2 ' 

c (f) = (c l(f) , c2 (f) , ••• ), and 

(6) b t (f) ctCf) + 0(1) lI.c(f)lI/o(t). 

(7) fb N 2 
II e"V I ch· 

a M S 

N 
L Ie 12 + r A es e t M B s+t ts 



From (1) it follows 
N 

e(I Ie /0(5)1)2 < e 
M 8 
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that the last sum is not greater than 
N . N 
lie 12. Ilo(s)I-2 < E(M) He": 
M 8 M 

where E(M) = 0:(1) for M ~ co. Applying this to (1) we get 

(8) 
N N 

"I e V "22 = (1 + 0(1)) I Ie 12 • M 88 M 8 

The equality (8) implies the following propositions j) and j j): 

j) 

It also holds: 

jjj) 

converges in L2 if and only if {e } E 12 , 
8 

In fact, making u~e of j) we obtain 

(I e8 V8 , Vt ) = I e8 At8 = e + I 0(1 ) e/o (t) 0(5 ) t 8,&t 
and jjj) follows from Schartz inequality. Let us see now th"at 11 -+-1. 8 
Assume that fED and t > sO' From j)-jjj) we obtain for f = I cs (f)V8 : 

But, if M is great enough and fixed 

(10) "c": M ~ M 
I I c (f) 12 + I I c (f) 12 < I I c (f) 12 + 2". I 

8=1 8 M+1 8 1 8 M+1 
c V "2 

8 8 

M M M M 2 
Ilc 12 + 2n£- Ic V"2 < Ilc 12 + 2["f" + Ilc 12] < 
1 8 1 88 1 8 IS 

2 < Ko "f"2 . 

Then from (9) we obtain for any f belonging to D: 1 - lI t 

= O(l)Ko "f"2/0 (t) Ibt(f)1 , and therefore 

1 - lI t = Q1ll inf 
o (t) D 

" f" Ib t (f) I 

Since IT = L2, taking f's near to Vt one sees that the inf is equal to 
one. Since oCt) --+ co with t, it follows 1 - lI t = 0(1). 

Let us prove now (4). Assume that gn E D converges to g in L2. Then 
ii)imp1ies that beg ) --+ beg) in 12. From the hypothesis on the c's 

m 
and the fact that 118 --+ 1, it follows 

(11 ) 

In consequence, making use of jj), 
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II g ~ L c (g)V 112 = II (g - g ) - L c (g - g ). v II <; 
a a m a m a 

Since the right-hand side tends to zero as m tends to infinity, the 
left-hand side is null; and (4) follows. The first inequality in (5) 

is a consequence of jj) and the second one follows from (10) for f E 

an'd in general, from an approximation argument and (11) • 

(6) is a c6nsequence of jjj) and (4). Q.E.D. 

REMARKS. Theorem 1 assures that the transformation T: 12 3 e --+ f = 

= LeV E L2 is continuous and onto, since f --+ c(f) is a right in­a a 

verse of T. 

D 

Let us call r = {c(f); f E L2}. r is a subspace (closed) of 12 (cf.(S)). 

r = 12 if and on Zy if eac~ function has a uniq'ue expansion. 

In fact, each function has a unique expansion iff T is one-to-one, and 
this happens iff f --+ c(f) is a l~ft inverse of T. That is, iff r=12. 

THEOREM 2. Assume that the hypothesis of theorem 1 hold. 

a) If A is the gramian of the system {V}: A .. = (V. ,V.), then A I+T 
a l.J J l. 

where T is defined by a matrix of finite Hilbert-Schmidt norm. 

b) Assu~e that Aki # 0 for a pair of different subscripts i,k, both 

greater than so. Then no function of L2 has a unique expansion with 

respect to the system {V.}. 
J 

c) Let B = {b (f); f E L 2 } be the space of all Fourier products. B is a 

subspace of 12 and IIfll2 is equivalent to IIb(f)1I 2. 

d) G = 12 e 8 is of finite dimension g. Besides. G and r form a pair 

of complementa~y manifolds. 

Proof. a) T .. = (1 -6 .. )A ... Then, 
l.J l.J l.J 

L IT·.12.;;; L Oi(1)/(o(i)o(j))2 = O(l)(L O(i)-2)2 < 00. 

i,j l.J i,j i 

... 
Vi - L c (f) V is equal to 0 but not all its coefficients vanish. 

1 a a 

c) Observe that if f = LeV then b(f) = A.e= (I+T).e and therefore 
a s 

B is' the range of I+T wi th T completely continuous. This implies 
B =1f, (cf.[A], [RS]), and since f _ b(f) is a one-to-one continuous 
transformation from L2 o,nto B, its inverse is also bounded, i.e., 
IIfll - IIb(f)lI. 

d) A defines a transformation whose rang.e is B. G ,is the null space of 
A* • A, i.e 'c' the eigenspace of T corresponding to the eigenvalue -1. 
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Then dim G .. g < 00. On the other hand, given e E 1 2 , if f"= reV, we s s 

have f = ~ (e - c (f))V + r c (f)V • Then, the first "summand is 
L s s s s s 

equal to 0 and also A. (e-c(f)) = O. So, e = c + (e-c) with c E rand 
e-c E G = A-I (0). Q.E.D. 

Next we apply the preceding general results to non-orthogonal expan­
sions in series of Bessel functions. 

2. EIGENVALUE EQUATION. 

Consider Bessel's equation VIII), 11 ~ l.Ux J (xlA),IX Y (xlA)} is 
" " a set of linearly independent solutions. The only solutions in L2 (0,1) 

are of the form c IX J (x/.[), (when 11 ~ 1, Bessel's equation belongs 
" to H. Weyl's "Limit point case"). Let us call 

6(X,X) J (xlA) Y' (IA) - Y (xlA)J' 
" " " " t 

- H~2)(xlA)H~I)(IA)), 

D(x,X). = J (xlA)Y (IA) - Y (xlA)J (IA) 
" " " " 

Then, 

(12) if>(x,X) = (11'/2) IX D(x,X) 8 (x,X) = ~/2 + (11'/2) v'X.A 6(x,X) , 

are solutions of Bessel's equation verifying 

if>(l,X) = 0 ~'(l,X) = -1 8(l,X) = 1 8'(l,X) = O. 

Therefore: (8~")(x,X) - (8'~)(x,X) == 8.~'(1,X) - 8'.~(1,X) == -1. 

The characteristic values X are the zerQes of J (IA) 
n 2 2 " dary conditions y(l) = 0, y E L . An L -solution for X 

for the boun-
"X V n is--'l.f-n 

the form ~ = 8 + m(X)~ where (cf. [Tl)," 

( 13) m (X ) = - /.[ • J ' ( IA) I J (IA) - 1/2 
" " 

Since the wronskian W(J,,(z), Y,,(z)) = 2/(1I'z), it holds 

(14) 

Let P and Q be polynomials in X. Consider the function 

(15) ~(x,X) = -(Q.8 + P.~) 

This is a solution of Bessel's equation satisfying 

~(l,X) = -Q(X) ~, (1 ,X) = P (X) • 

Taking into account (12), we obtain 
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(16) <I>(X,A) -Q(A)1I'/K'X t.(x,A)/2 - (P+Q/Z)1I'fi D(X,A)/Z = 

(1I'/Z)fi {J (xs)[ _Q(s2)s Y' (s) - (P+Q/2) (s2) Y (s)] + 
\I \I .\1 

+ Y (xs) [Q(s2)s J' (s) + (P+Q/2) (s2) J (s)]} 
\I \I ,\I 

Now we assume that P and Q are real polynomials such that GCD(P,Q)=l, 
and p v q ~ 1, where p and q are the degrees of P and Q respectively. 
In particular we have excluded the case where some of them is identi­
cally zero. Next we define two other polynomials, also real, 1I'(A) , 
P (A), by the following conditions: deg 11' < p, deg P < q and 

(17) 11' (A) Q (A) + P (A) P (A) == - 1 . 

Let us define now the function 8: 

( 18) 8(X,A) = p(~) O(X,A) - 1I'(A) r/l(X,A). 

This function verifies: 8(1,A) = peA), 8' (l,A) 
solution of Bessel's equation. Therefore, 

11' (A), and is a 

(19 ) 8.<1>' (X,A) - 8' .<I>(X,A) 8.<1>' (1 ,A) - 8' .<1>(1 ,A) 

1I'Q + P P = -1. 

Let us call 

(20) ~(X,A) = 8(X,A) + M(A) <I>(X,A) , 

where M is so chosen that ~ E L2. Then, except at the poles of meA) : 
~ = CeO + mr/l). From (15), (18) and (20) it follows that C = P - MQ, 
-(11' + MP) = mC; that is, 

(21) M (A) 11' + m p 

-P + m Q 
meA) 11' + M P 

p - M Q 

M and mare meromorphic functions of A. From the first formula in (21) 
it follows that at a pole of M, m = P/Q, (eventually equal to ~ if 
Q = 0). Conversely, if m = P/Q at A then if Q # 0, m # ~, it follows 
from (17): 11' + mp # O. In consequence, M has a pole there. If Q = 0 
and m = P/Q then P # 0, m = ~. Therefore, M (- p/Q) has a pole at A. 
We have then 

PROPOSITION 1. M(A) = ~ if and onZy if meA) 
of M are the roots of the equation 

(22) ~= 1 
Q(X) 2 

P(X)/Q(A), and the poZes 

The poles of M(A) are exactly those X for which <I>(XiA) E L2. That is, 
those A for which the boundary problem: y solution of Bessel's equation 
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VIII) verifying peA) y(l) + Q().) y' (1) = o. y E L2. has a non-trivial 

soluti.on. 

So (22) is the equation fOF the eigenvatu8s of this pFobtem. 

3; ASYMPTOTIC DISTRIBUTION OF THE EIGENVA~UES. 

Call)' = s2. Then (22) is equal to 

Taking into account the asymptotic expansions of rz J (z) and its deri­
v 

va·tive, which hold in larg z.1 < 11' - E, we have: 

-sin{s-llir/,2-'11"/4} (1+0(1/5 2)) + COS{ ... } (A/s+0(1/s 3)) 

cos{s-II'lI'/2-'lI'/4} (1+0(1/s2)) + sin{ .•• } (A/s+O(1/s 3)) 

where' A = (1 - 4112)/8. Then (23) is the equation for the p~les of 

M(s2) and the O'(l/s j )·s that appear there, aFe Feat fOF s Feat and 

have asymptotic e~pansions with Feat coefficients. 

Let us write s- II'll" /2 - '11"/4 = a + iP. From (23) it follows: 

. (24) 0 = p(s2) + AQ(s2) - [sQ(s2) - P(s2)A/sl tan(a + iP) + 

+ [p(s2) .0(1/s 3) + sQ(s2) .0(1/s 2)] tan(a + iP) + 

+ p(s2) .0(5-2) + Q(s2) .0(5-2) • 

PROPOSITION 2. a) If q ~ p theFe e~ists a Feat constant C such that 

the potes of M{s2) with larg 51 < ... /2 veFify 

(25) tan(s - 11 ... /2 - ... /4) 

b) if P >- q they veFify, atso with a Feat constant C: 

(26) cot(s - 11'11"/2 - ,,/4) • CIs + 0(s-3). 

The O~s aFe Feat if 5 >0. 

PFoof. Asslll!l'e that Q().) = a ).q + ••• , P().) ).P+ •••• In case a) 
q 

it follows from (24) that 

s2p + Aa s2q + 0(s2q-2) - (s2q+l a + O(s2q-l)) tan(a + U) O. 
q q 

Then if q > p: 

A aq + 0,(5-2) 
tanla + i_). - • A + 0(5-3). 

s'aq + 0(5-1) 5 

If q -: p. instead of A we must put: a q- 1 + A. 
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In case b), (24) implies: 

s2p + O(s2p-2) + (As 2p-l_ a s2q+l + O(s2p-3)) tan(a + i~) O. 
q 

Therefore, 

cot(a + ip) Q.E.D. 

Proposition Z will be used to prove that for IXI great enough. M(X) 
has a poLe onLy if X is reaL and positive. This is the content of next 
theorem. But before let us prove an auxiliary result. 

LEMMA 1. Assume that F(z) is an anaLytia funation defined in the square 

S with sides paraLlel to the axes of length 2 with aenter at the origin. 

If F(z) FTZJ then 

(27) 

Proof· 

11m F(i/3) I ';;3/3. sup IF(z) I , for 0';; /3 .;; 1/3. 
as 

F (s) - F (s) - /3 f 
7r (t-s) (t-s) 

as 

F (t) dt . But, from 

If ···1.;; sup IF(z) 1.8/(2/3)2 it follows 
as as 

11m F(s) I .;; 18/3 sup IF(z) I. 
27r as 

Q.E.D. 

THEOREM 3. Let us suppose that larg 5 I .;; 7r/2. Then 

i) the poLes of M(s2) are real if 151 is great enough. and 

ii) they are simple with negative residues. for 5 positive great enough. 

iii) aonseautive reaL poles of M(s2). like those of m(s2). tend asymp­

totiaalLy to be. at distanae 7r; besides from a moment on the two sets 

interLaae, i.e .• the poles of eaah oaaur alternately. 

PrOOf. i) It follows easily that 

11m tan (a + i/3) I 

11m cot (a + ip) I ~ Itanh /31. Then from (25) or (26) we obtain 

(28) 11m (~+ O{s-3)) I ~ tanh 11m sl if s is a pole of M(s2). 

In consequence if lsi is great enough: 11m 51 < 1/3. Let us call H(z) 
the meromorphic function denoted by O(z-3) in the rigth-hand side of 
(25) (or (26)), and G(z), the function defined by the left-hand side 
minus C/z. Then 5 is a pole of M(s2) if and only if G(s) = H(s); besi­
des if s is a pole, 5 is also one (cf. (22)), and, 

(29) G(s) = (G(s) + G(s))/2 = (H(s) + H(s))/2 

Define F(z) (H(z) + H(~))/2. (29) implies that 

tanh 11m sl iii; 11m (C/s + F(s))1 iii; Ic 1m 51.lsl-2 + 11m F(s)l. 
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A straightforward application of lemma 1 to F (z) if Il 
0< IIlI < 1/3 gives: 

(30) 

1m 5, 

For these values o-f 13, there exists a number d, positive, such that 
d :< tanh 13/13. Then, (30) can be verified only for s bounded, and this 
proves i). 

ii) M(~) has a simple pole at ~o = s~ ,. 0 if and only if M(s2) has a 
simple pole at so. Assume now that So > 0 is a pole for M(z2) j then 

m(s~) = P(s~)/Q(S~). From (13) it follows 

(31 ) + s. v 2 1 2 2 (s - -) + - (m(s )+1/2) • 
s 5 

Therefore 

v 2 P (s~) 1-] 
2 

(so - -) + [--+ 
So So Q (s~) 2 

P (s~) P (s~) ] (1/4 - v 2 ) So + [ 1 + - + 

So Q (s~) Q So 

But p > q implies (d/ds) (P/Q) (52) - constant. s-l(p/Q) (52) and p _~ ti/ 
impiies. (d/ds) (P/Q) (52) = 0(1). In consequence from (32) it follows 
that at 5 = SO' (d/ds)m(s2) > (d/ds) (P/Q) (52) if So is great enough. 
This proves that So is a simple pole. Its residue is 

II' (s~) + m(s~) p (s~) 

(d/ds)(mQ - P)(S~) 

1 /Q (s~) 
--~---~~--------~2 < 0 , 
Q(S~).(d/ds)(m - P/Q) (so) 

as it follows taking into account (17) and (21). 

iii) The result for m is immediate and that for M follows from the 
asymptotic formulae of Proposition 2 if one remembers that the 0(s~3) 
that appear there are real for s real. It remains only to see that the 
poles of M and m interlace. Since m(s2) is real and has simple poles 
with negative residues on the positive real axis, the values of m(s2) 
run from -~ to +~ when 5 runs from one pole to the next one. Then for 

a certain So in between, m(s~) = P(s~)/Q(s~). For the sam,e reason bet­

ween two consecu~ive poles of M(s2) there exists a point 51 such that 

M(S~) = p(s~)/Q(s~), Le., a pole of m (cf. (21) and (17)). Q.E.D. 

4. SIMPLE POLES AND RESIDUES OF GREEN'S KERNEL. 

First we shall introduce some notation and auxiliary formulae. Recall 
that 1/1 .. (J + m •• Ii J"(xs)/J.,, (5) if J,,(S) , 0, i.~. when m(s2) ,. 00, 
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and that 'It defined by (20) is, at least where M(s2) f. 00, Jv-(s) f. 0, 

equal to 

(33) 'It = (p - MQ)IX J,,(xs)IJ,,(s) 

-IX J (xs)/s" w(s2) , 
" 

where w(s2) = {sJ' (s)Q(s2) + [p(s2) + Q(s2)/2J J (s)} Is" , is an 
, " " 

ev~n entire function. 

On the other hand, s is a poLe of M(z2) iff 

(The factor s-" has been introduced to include the point s=O) .In fact, 
from the definition of 'It Ccf. (20)) it follows that the poles of M (s2) 
are exactly the poles of W(x,s2), which, because of (33), are the ze­
ros of w(s2). «34) can a,lso be proved using proposition 1). For those 
points, we have (cf. (15), (16)): 

This expression must be understood as a limit when M(O) = 00. Then if 
sn is a pole of M, from (34) and that W(J",Y,,) = 2/(~s), we get 

(35) <l>n = -IX J (xs )Q(s2)/J (s ) = IX J (xs )[p(s2)+Q(s2)/2J/J'(s )5 " n n v n ~ n n n v n n 

Since M(s2) = 0 implies that s-v. J (5) = 0 is equivalent to Q(s2) = 0, 
v 

if the expression in the middle of (35) is indeterminate then its right-
hand side must be used. If 5=0 is a pole of M(s2), formula (35) is 

still valid but in its limit form 

<l>o(x) = x v+1/ 2 (P(O) + Q(0)/2)lv _X V+1 / 2 Q(O). 

Making use of Lommel's formula we obtain for real s~ f. 0: 

(36) 

and then, the normalized functions: 

(37) 

where 

.. 
1/1 = <I> 111<1> II 

n n n 

D n 

- /li J (xs ) D I J (s ) = l2x J (xs ) D I J' (5 ) 
" n n v n v n n " n 

sgn (P+Q/2)/s n • 

Observe that Dn/sn Q(s!J = Dn /(P+Q/2) (s!) if both 'denominators are dif­

ferent from zero; on the other hand, both denominators cannot be siulul-
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taneously null, and if one of them is not null the corresponding nume­
rator is different from zero. 

A 

The functions ~n are uniformly bounded. Precisely 

PROPOSITION 3. $ (x) = ...xs J (xs ) ,0(1). n n V n 

Proof. If q ~p then (P+Q/2)/snQ = 0(1) and from (34) it follows that 
J' (s )/J (s ) = 0(1). In consequence, s approaches zeros of J' , and 

v n V n n V 

\J (s ) I> c.s- l/Z . This together with (37) imply the thesis. v n n 

Analogously, if q <p then Q.s /(P+Q/2) = 0(1) and from (34): 
n 

Jv(sn)/J~(sn) - 0(1). Then sn approaches zeros of J v' and IJ~(sn) I> 

> c.s- l/Z • 
n 

Again from (37) the thesis follows. Q.E.D. 

The Green's kernel G(x,y,X) of the differential system we are conside­
ring is equal to - w(x. i\) <I>(y, X) if x .;;; y and equal to - w(y, X) <I> (x , X) 
if x > y. 

By definition, GA(f)(x) = f: G(x,y,X) f(y)dy. Since e and <I> are entire 

functions of X for fixed x, it follows from the definition of w that 

(38) G(x,y,X) = entire function of X - M(X) <I>(x,X) <I>(y,X). 

Therefore, the poles of G(x,y,X) are the same as those of M(X). It holds, 

PROPOSITION 4. If X =X is a Bimple pole of M, then, for f E L2 (0,1) 
n 

we have 

res GA (f) 
A=A n 

1" --+ 1 when n --+ 00 • 
n 

The proof of the proposition makes use of the following lemma whose de­
tailed proof we leave to the reader, since it is a simple application 
of Fubini's theorem. 

LEMMA 2. Let F(y,X) be a measurable funation of (y,X) , holomorphia in 

IX - Xol < do for eaah y E (0,1). Assume also the existenae of a aons-

tant A suah that f: IF(y,X) I dy < A for eaah X. Then if for eaah y, 

Fey,X) = L an(y)(X - Xo)n holds, then 
n=O 

Proof of proposition 4. Applying lemma Z to the functi~n 
F(y,X) = G(x,y,X) fCy) CX - X }r where x E (0,1) is fixed and r is the 

n 
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order of the -pole of Me).) at ).n ,_ we obtain 

(39) res 
~=~ 

n 

G~ (f) = fll res G(x,y,).)l fey) dy. 
o ~ 

D 

In particular if ).n is a simple pole then from (38) we get 

res-G(x,y,).) = ~tl(x) ~n(Y) • res (-M().)) = ~n(X) ~n(Y)' rand 
~u ~n n 

( 40) res M().) 
~n 

This implies the thesis except for rn - 1., ,Assume that n is so great 
that ).n is a simple pole of M and not a _pole o~ m. Then 

1T + m p (). ) = _ 1T + P. P IQ 

n Q. (did).) (m-P/Q) (did).) (QmcP) 

From (36) and (32) it follows 

(41) 

d 

ds 

res - M().) 
~ 

u 

(36) also implies that II~ 112 _ ).2qV(2p-l). 
n n 

if p,lq 

On the other 

and then 

hand, 

(P'Q -
{ O(,,+q-'J 

PQ') (').n) = O().~+q-2) 1 
O().(2pV2 q)-2). 

u if p=q 

Therefore, from (40) and (41) we finally ~et: 

r 
u 

II~ 112 
n 

5. MULTIPLE POLES OF _THE GRE~N'S KE~NEL. 

-1. 
n + ... 

Q.E.D. 

<'The calculation of the residue OfG~ (f) at a pole t is reduced to the 
computation of the residue at Eaf -M().) ~(x,).) ~(y,).), as follows":from 
(38) and (39). On the other hand, by means of Picard's approximation: 
method it is not difficult to prove the following proposition: 

T~e ' funotions ~(i) ex ,).), i-O, 1,2, ai'e entire in ). for'lillled x e «h.ll, 
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(the exponent means derivation with respect to x); besides, they are 

continuous in (x.A) E (0.11 x C. and it hoLds 

(42) i= 1 .2. j=1.2.3 ••••• 

Furthermore, the functions in (42) are also continuous in (x.A). 

(A detailed proof is giv~n in appendix I of [GI). 

Let us define the func.tions U. (x.A). j = 0.1..... by 
J 

(43) 
j! 

Therefore 

(44) 

If M(A) has a pole of order r at ~. let us write 

- (A - ~) r M (A) = c _ r + C _ r+ 1 (A - ~) + ••• + c -1 (A _ ~) r -1 + • ' •• 

In consequence. 

r j-1 
... + (>. - Or-1 L c .[ L Uk(x.e) UJ._ 1_k (y.OI + ... 

j=l -J k=O 

But (A - 0 <I>(x.>.) = -<I>"(x.A) + (q - 0 <I>(x.A) • q 

Because of (42) and (44) we get 

L [- U" (x.~) + (q - 0 Uk(x.nl (A - Ok 
k=O k 

which implies that the functions Uk satisTY the following equations 

(46) lug + ~ - q) Uo = 0 • 

U" + (E - q) U =-U 
:~ ............ ~ ..... ~ 
U~ + (E - q) Un = -Un_1 • 

For each n the set of functions Uo ••.•• Un • is Lineariy independent 

on any intervaL I containe4 in (0.1). In fact. Uo(x.~) = <I>(x~~) _ 0 
on I. Let us assume that the set under consideration be linearly depe~ 
dent on I. Then there exists a first k such that 

U = k 

k-1 
L 

m-O 
a U 

m m on I. 

Applying tl\e operator d2/dx2 + U - q) to this identity. it follows 
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k-l 
from (46) that Uk_1 m!l am Um_1• in contradiction with the defini-

tion on k. 

If r is. as before. the order of the pole E of M(z)! 

{U o (x,O • , .. 'U r _ 1 (x.O} is call.ed the principal. chain of functions as­

sociated to w(x.E). and from (45) we see that 

r j-l 
res G(x.y.).) = L c . [ L Uk(x.O Uj _1_k (x.OI • 

t; j=l -J k-O 

and :(rom (39) • for f E L2(0.1). we get· 

j-l r r (47) res G). (f) = {L c . L Uk(x.O ·Uj..:.1_k(y.En fey) 
I;; o j=l -J k=O 

The brackets inside (47) ~qual to 
r-l A A 

{ ••• } = L Uk(x.e) Uk(y.E). where Uk(Y'~) 
. k .. O 

That is 

( 48) 

C 
-r 

o 

o 

c_ r+1 

c 
-r 

o 

A A 

I"' • 

. .; . 
c -r 

dy 

Therefore. the set UO •••.• U~_l is also linearly independent on any 
I c (0.1). 

i 2 . 
Since res G). (f) is a finite number for any x E (0.1) and any f EiL (0.1), 

~ . 

we see that the bracket in· (47) defines a function in L2 (0 < y < 1). 
V x E (0,1). The linear independence of {Uk; k=O.l •••• } implies 
that each Uj·E L2; In fact. there exist r ·points in I: x!"" .x r ' : 

such that the matrix (Uk(xm)). k=O ••••• r-l. m=l .••••• r. has a non-null 
determinant. 

r-l A . . 2 
Since L Uk(xm'~) Uk(y.E) = Fm(Y) E L • then 

k-O 

Summing uP. we have 

A 2 
PROPOSITION 5. For k=O ••••• r-l. Uk(x.E) and Uk(x.E) bel.ong to L • 
~hen E is a pol.e of order r of M(z). If 'kef) = 'k(f.E) denotes the 
continuous l.inear functional. on L2 defined by 

II A 

o Uk{y·E) fey) dy. .then 
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6. EIGENFUNCTION EXPANSIONS FOR CERTAIN REGULAR FUNCTIONS. 

Let {cn} be a family of circumferences with center 0 and radii rn to 
be defined later but such that r _ 00 as n _ 00. 

n 

We shall prove the "following result. 

THEOREM 4. Assume that f"e C2(0,1) is nuZZ on neighbouphoods of 0 and 

1. Then, it hoZds unifopmZy on 0 < x < 1 that 

lim 2:i Je GA(f) dA = f(x) 
n+'" n 

To prove this theorem we need some auxiliary results. The first of 

them is the well-known fact that Green's operator is the inverse of 
the diffe"rential operator at least on a set of functions dense in L2. 

LEMMA 3. Let f be as in theopem 4, and A not a poZe of GA. Then, on 

O<x<l, 

(49) f (x) if 

(This follows after integrating by parts twice the integrals involved 

in GA(f"), (cf. [Tl, ch. II)). 

LEMMA 4. If g E L1 (0,1) is nuZZ on (O,E) fop a aeptain E > O. then it 

hoZds 

o , 

unifopmZy in E (0,1). 

Ppoof. The integral that must be estimated is equal to 

(50) dX Jl J G (g) -- = dy g(y) C 
A A E 

n 

dA G(X,y,A) 
A 

Then, it will be sufficient to show that, uniformly on y > E, 

O<x<l, 

(51) J dA J e G(X.y~A) X = 2 D ( 2) ds G x,y,s 0(1) , 
s 

n n 

holds. Here, Dn = {s; lsi = r~/2, lug sl O;;;'II'/2}. 

If 6 and D are defined as in paragraph 2, from the asymptotic formulae 
for the Hankel functions, we get: 
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j ti(X,S2) = ---,.:2=--_ cos s(l-x) + e(l-x) 11m sl.0(1/s 2 ) , 
11' s IX 

D(x.s 2) ---,.:2=--_ sin s(l-x) + e(l-x) 11m sl.0(1/s 2 ). 
11' s IX 

In' (52) the 0.'5 hold uniformly on e: < x < 1. From (16) and (52) the 

following estimation for· <I> is obtained, 

(53) <I>(x,s2) = s(2q+l) v 2p • e(l-x) 11m sl o(l/s) 

Let a and b be functions of p and q defined as follows: 

a = 0, b I2Tii" if q;.. p, a = Izr.;r, b= 0 if q < p. Then, from 

(33) we obtain on 0 < x < 1 

(54) 

- lies J (xs) 
\) 

S(2q+l)v2p ([a.cos(s-v1T/2 _ 11'/4) _ b.sin(s-v1T/2-1T/4)] + e lIm sIO(s-l)} 

Taking as Irn the points in (O,~) where the function defined by the 

square brackets in the second denominator in (54) takes a maximum, it 

is possible to complement (54) with the following estimation valid for 

s E Dn,·and 0(1) independent of x E (0,1): 

(55) 
2 rxs J (xs) 0(1) 

~(x,s ) = (2q+l)V~p 11m sl 
S • e 

From (53) and (55) it follows that 

2 j ~.(x) O(y) • ,(y-x) 

(56) G(x,y,s ) = 
-<I>(y) ~(x) = e(x-y) 

e(x-l) 11m 81 0(1) 

s(2q+1)v2p 

11m 81 0(1 Is) if , 

jIm 81 0(1 Is) if , 

where the 0' s hold uniformly if -e: < y < 1, 0 < x < 1. Then 

In G(x,y,s2) d~ = In 0(1/s 2? ds = 0(r~1/2) = 0(1). 

n n 

x > y, 

Y > x, 

Q.E.D. 

Proof of theorem '4. (49) says that GA(f)(x) 

therefore we get: 

f(x)/~ -,G A (f)(x)/~ and 

GA(f) (x) d~ f(x) - 1 

211'i 

The thesis now follows from Lemma ~. 

Ie GA (f)(x) d~ 
n 

~OROLLARIES TO THEOREM 4. i) Let f·be a8 in theo:roem 4. If M denotes 
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the, fin,ite set of potes of N(z) that al'e muttipte~ nun Ol' nonl'eat~ 

andr(O the muZtipUcity of the pote L then it hoZds unifoZ'TII,t~ on 
(0,1) that 

(57) f(x) .. 
... 
L bm (f)· rm $m (x) , 

mal 

bJhel'e the tast sum e:r:tends ovel' the set of nOl'maUzed eigenfunctions 

cOl'l'esponding to non-ze~o~ l'eaZ and simpZe eigenvatues. 

ii) The system of functions 

{Vk : k=1,2,3, ••• } = fUj(x,n/IlUjIl2 ~m(X);t EM, 

2 j < ret) , m=1,2,3, ••• }· is compZete in L (0,1). 

These results are easy outcomes of Propositions 4 and 5, and Theorem 
4. Thus, iii) of Theorem 1 is verified. 

7. EXPANSION OF A SQUARE-INTEGRABLE FUNCTION. 

In this section we show that the complete system of functions {Vk } 

verifie. the hypotheses of theorems 1 and 2. This proves in particular 
the possibility of expanding an L2 -function into a series of eigen­
functions and associated functions. 

LEMMA 5. The gl'amian of the system {Vk} satisfies i)~ Th.l. 
MOl'e pl'ecisety~ fol' a cel'tain a > 1/2 it hotds: 

i) 

ii) 

iii) 

J: ~n(X) ~m(x) dx = ...Q.ill 
sn sm 

f: 
0(1) log sn 

5 n 

if n ;. m , 

if II ;. integel' • 

if II is an integel'. 

Pl'oof. If 52 ;. 52 from (37) and Lommel's formula we get that n e' 

2 J ~ (5 e) J' (s ) 

52 52 
( 5 • - 5 V n I D D e J v (5 e) n J v (sn) n e 

n e 

-2 J v (5 e) J (s ) 

s2 52 
. (5n • - s. v n I DD 

J~(5.) • J~(5n) 
n e 

n e 
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if 

We define now the symmetrio poZynomial V(~,~) as follows, 

(58) 

Then, taking into account the eigenvalue equation (34), it follows 
easily that (~ ,~ ) is equal to n e 

(59) 
2 2 D 

2s s • V (s ,s ). n 2 
n e n e s· Q(s ) 

n n 

D 

D e 

D 
n e, if J (s )=0 ,J'(s )=0. v e v n 

Now, if q ~ p then the degree of V(~,~) in ~ or ~ is not greater than 

q-1, and IDnl -- 1. In consequence Dn/(sn Q(s!)) = 0(s~2q-l). 

Then, from (59) we obtain 

(60) ( ~ 1) = 0(s-2 s-2). 
"'n''''e n e 

On the other hand, if p > q then deg V(~,~) 
A 

IDnl -- 1. This implies that 

(61) 

deg V(~,~) ~ p-1 and 
)I 

i)- is thus proved. To prove ii) and iii) of lemma 5 we need a more ex­
plicit expression for Uk(x,~) which is exhibited next. Assume v # inte­
ger. Then·Y (z).sin vw = cos vw.J (z) - J (z), and this, together with v ,v-v 
(16) yields 

(62) 2 sin vw 

+ Q(s2) 5 [J (xs) \J' (s) - J (xs) J' (s)]. v -v' -v v 

Thus for v # integer we have, 

(63) 

. where f and g are .certain entire functions. 

Assume now v =·integer. In this. case: Yv(z) - (2/11'). [log(z/Z).Jv(z) + 

+H_v(z)] where H_v(z) is equal to z-v times an entire function of z2. 
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Therefore. again from (16) we get 

(!r/2.) D(x.s 2) .=-log x.J (s} J (xs) + J (xs) H (s) - J (s) H (xs) • 
v v v -v v -v 

s.(!r/2)l!.(x.s 2) = Jv(X:s) (Jv(s) - s log x.J~(s) ,+ S H:}s)) -

- H_v(xs).s J~(s). 

Thus, for " = integer(> 0) we get with E,g and h entire functions 

(64) c)(~,S2) = IX [sv log x.J (xli) qs2) + s-vJ (xs) g(s2) + 
v v 

+ sVH (xs) h(s2)j. 
-v 

In consequence, the associated functions defined in (43)., after taking 

into account (63) and (64), take the form 

(65) 
2 a k 2 

k! Uk(x,s ) = (-2) c)(x.s) .. (if " -# integer) as . 

k 
integer) = IX L {(f. (s2) + g. (s2) log x). 

j =0 J J 

a . 2 a· 
• (-2)J (s-v J (xs)) + h. (s ) .(_.)J (sv H_ v (xs))} , 

a s v J a s2 

where w~th f j , h j and gj we denote entire functions. Observe that 

hj(~) 0 if -" + 2j";;;; -1 since Uk(x,~) E L2 (0,1). 

Next we recall some formulae from the theory of Bessel functions: 

Let X = 0 be a pole ofM (A) of order r arid" -# integer. In this si tua­

tion (cf. (65)): 

k L {A x v+2j + B x- v+2j } 
j =0 j j 

(68) k O.l ••••• r-l. 

Uk E L2 implies that Bj = 0 for 2j-" ,,;;;;-1. Let us see ii) when~ o. 
It will be sufficient to prove (cf. Proposition 3) that 

a in (70) ~quals 2 . - " + 3/2 if there is a jo verifying JI} 
1 ;> 2" - " .+ 3/2 > 1/2; a if there is no jo with such a property. J O 

In (69) and (70) the Ol·s al"e independent of j fol" fia:ed ". 
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In fact, 

(71) t 2j ±V+2( x2j ±V+1 Jv(xt) dx = f: y2 j ±V+1 Jv(Y) dy 

(from (67), m=l) 

t 2j ±v+l. 0(t- I / 2) + 0 (1) + 2j f: y2j ±v-I/2 .0(1) dy 

(t 2j ±v+I/2 v 1) 0(1) 

and this proves (69), and also (70), because in that case we must con 
sider only j's such that 2j - v > -1, (ef. (68)). 

:z Let us assume next that s = ~ # 0 is a pole of order r of M(X) and 
still v # integer. 

From (65) is obtained. 

(72) 

with Bj = 0 if 2j - v ~ -1, and k=0,1, ... ,r-1. To prove ii) in this 
case it·is sufficient to show that the following estimations hold: 

(73) J: (_o_)j (s-v J (xs)) J (s x) x dx = 0(s-3/2) , 
os2 v v n n 

(74) r: (_o_)j 
as 2 

(s\l J (xs)) J (s x) -v v n 
x dx = 0(s-a-I/2). 

n 

The last one must hold only for 2j - v + 1 > O. The left-hand sides 
of (73) and (74) are equal to 

(75) (o:2)j f: (s+v J ±v (xs)) Jv(snx ) x dx = 

I x=l 1 
x=o 

corresponding the upper sign to (73) and the lower one to (74). Then, 
left-hand side of (73) = 

Left-hand side of (74) 
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v 
2v ao bo Su I 3/2 2' 2 O(l/s ) + O(sv- J- ) 

s2 _ s2 n u 
u 

where ao 2-v/r(v+l). bo = 2v /r(1-v). The last equa,lityfciUows from 
the fact that here v < 2j+l ; as before. a is defined by 

1 A {2j - v + 3/2 ; 2j - v + 3/2 > 1/2}. The proof of ii) is thus ac­
complished. 

Let us see iii). i.e .• assume v = positive integer. If zero is a pole 
of order r of M(~). from (66) and for k=O.l •.•.• r-l. we obtain 

(76) 
k 

Uk(x.O) = IX {L 
j=O 

XV+2j (A. + B. log x) + 
J J 

and C. = 0 if -v+2j < -1. The a defined above is now equal to one and 
J 

(71) can be written as 

fl x:iv+2j+l J (xs ) dx = 0(s-3/2) if ± v+2j+l > O. 
o v n n 

Then if ~. = O. iii) will be established if we show that 

f
l log s 

( ) v+2j+l 1 ( (n) 77 x og x . J v xSn) dx = 0 3/2 
o s 

n 

But. as in (71) after integrating by parts we see that 

fol xV+2j"+1 log x . Jv(xt) dx = 

= t- v- 2j - 7 0(1) .ft yV+2 j -l/2[ 2j (log t - log y)+1] dy = 0(!2L..!.) 
ot3 / 2 

and this implies (77). Here again the 0 does not depend of j" Let us 
suppose, for the last step. that ~ = s2 >#0 is a pole of order r of 
M(~). From (66) it follows 

... 
(78) Uk (x.s 2 ) = IX { L 

j=O 

where the series of coefficients Aj.B j • and Cj are absolutely summable. 
Then. from the eStimations (69). (70) and (77) (recall, that they hold 
uniformly on j). (79) is obtained: 

and since in this situation ex • 1. iii) is proved Q,E.D. 
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THEOREM 5. The system {Vs } defined at the end of seation 6 verifies the 

hypo~heBiB of Theorem 1. 

Proof. Lemma 5 proves i) of Th. 1; Propositions 4 and 5 and the Corol­
laries to theorem 4 prove iii) and iv). It remains only to check ii) 

and this will follow from the following proposition: 

b (f) = (f, ~ ) => 3 K: Lib IZ'" K II fll zZ n n n 

In fact, let on be positive zeroes of Jv(t) if p > q, and of J~(t) if 
P "q. It is not difficult to see that if sn is a pole of M(sZ) then 
eventually after a renumeration of {on} it follows that: 
10 - s 1 --+ 0 for n --+ 00. One way of checking this is to prove, 

n n 
using the asymptotic formulae for J v and J~ ,that on satisfies formu-
la (26) if P > q, and (25) if P " q, but with different values for the 
constants C. 

Define now<p (x) = {j IxJ'(o x).lI/xJ (s x)II-Zl with {j = +1 n v n V n 
A 1 

or -1 and such that 1/1 (x) = {j IXJ (s x).IIIXJ (s x)lI-z . n v n V n 

{<pn(x)} is an orthogonal family of LZ-functions, and lI<pnll2 ~ 1, 

(this is a consequence of one of Lommel's formulae that asserts that 

if 

Then, calling b (f) = (f ,<P ) we have 
n n 

(SO) 

ii) will follow from 

(S1) b (f) = b (f) + IIfll O(l/n) , 
n n 

But, I~n(x) - <p (x) i = IX IJ (0 x) - J (s x) 1 III IX J (s x)lI z n . V n V n V n 
= liS 0(1).(0 - s ) J'(f3 x) = ~ • (0 - s )/XfJ J'(xf3 )0(1) n n n V n n n n n n V n 

where f3 n is a number between sn and on' Since sn/on --+ 1, it also 

holds that f3 I --+ 1, and from the last formula we obtain 
n Sn 

(S2) 

(S2), together with next estimation, proves (Sl). 

(S3) 10 - s 1 = O(l/s ) n n n 

To establish this,first observe that from (34) it follows J (s ) 
v n 

= 0(s-3/Z) when p > q, and then 
. n 

(S4) 
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where tis a number between a and s .On the other hand IJ .(s II > n n n v n 
> IJ",(tn) I because of the monotony of J v between two zeroes of J~. 

Therefore, Jv(tn) = 0(s-3/2) and IJ'(t ) I> C I~. After replacing in n v nOD 

(84), (83) follows. 

Assume next p .;;; q. (34) implies (tn as before) that 

(85) M/s!12 ~ IJ~(sn) I = IJ~(sn) - J~(on) I = Ian - snl.IJ~(tn) I· 

From Bessel's equation: J~(tn) -Jv(tn) + 0{1/t!/2), and therefore 

IJ"(t ) 1 > CI/IS" holds. As in the preceding case (85) implies (83). 
v n . n 

Q.E.D. 

THEOREM 6. Hypothesis b) of theopem 2 hoZds fop the system {V } 
s/· 

undep aonsidepation. Thepefope g > o. 

II A A 

Ppoof. From (59) we see that ~ ~ dx o n m 
o. 

Since P and Q have no root in common, for any value of sn' V(s!,y) has 

only a finite number of roots. Then 
I 

infinitely m~ny sm' 

Iol A A 

~n ~m dx # 0 for each sand 
n 

Q.E.D. 
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