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A NOTE ON HOLLOW MODULES

Manabu Harada

Let.R be a ring with identityband M a right unitary R-module.‘Let N
"be an R-submodule of M. N is called a small submodule in M if it sa-
tisfies ‘the following condition: the fact that M = T.+ N for some R-
submodule T implies T = M. If every proper submodule of M is small,

we call M'a hollow module [4]. P. Fleury studied some conditions under
-which the éndomorphism ring of a hollow module is a local ring. We
shall call M completely indecomposable when its endomorbhism ring is
local. '

In § 1 we shall show that every finitely generated and uniform hollow
module is completely indecomposable, when R is a left or right perfect
ring., In § 2 we shall give some relations between injective hollow mo
dules and QF-3 rings. In § 3 when R is a commutative Dedekind domain,
we ‘can completely determine all hollow modules and we know that they
are’cbmpletely indecomposable.

1. PERFECT RINGS.

Let R be a ring with identity and M a right unitary R-module. By J(M)
we shall denote the Jacobson radical of M. Since every small submodule
in M is contained in J(M), we have

LEMMA 1.1 ([4]1). M is a finitely generated hollow module <if and only
if J(M) Zs maximal and small in M. In this case M s cyclic.

If M = mR, M ~ R/A, where A is a right ideal in R. Since J(M) is al-
ways small in M whenever M is finitely generated, we have

COROLLARY 1.2 ([4]1). R/A Ze hollow <if and only if A is contained in a

unique maximal right ideal.

It is clear that every hollow module is indecomposable and so a hollow
module of finite length is always completely indecomposable.

THEOREM 1.3. We assume that J(R) s nil and R/J(R) is artinian. Then
every finitely generated and uniformz) hollow module is completely
indecomposable, where J(R) <8 the Jacobson radical of R.

Proof. Let M be an R-module with the property above. Then M ~ R/A for
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some right ideal A from Lemma 1.1. If A € J(R), then R is a local ring
from Corollary 1.2. It is well known that EndR(R/A) = I(A)/A

I(A) = {x € R | xA C A}. Let fl,fz be non-epimorphic elements in I(A)/A.
Then x,R C J(R). Hencé, §1+Y2 is not epimorphic. Let y be an epimor-

1 1 €

phism with T = X;+y. Since x; € I(A) n J(R), (1-x)7% = 1ex +...+x27}
€ I(A), where x? = 0. Hence, y is isomorphic. Let ?1 and YZ be epimor-

phic but not isomorphic , then

yl"l(O) N yz'l(O)# (0) from the assumptions. Hence, ?1+?2 is not isomor

phic. Therefore, I(A)/A is a local ring. Next, we assume A ¢ J(R).

Since R/(A+J(R)) is semi-simple and hollow module, A+J(R) is a maximal
right ideal in R. Let R/J(R) = (A+J(R))/J(R) ®© B, where B is a minimal
right ideal in R = R/J(R). Since R is semi-simple and artinian and
J(R) is nil, there exist idempotents e and f such that e € A, B =1R
and R = eR ® fR. Hence, R/A ~ fR/(fR N A) = fR/fC, where C = fR N A.
Then EndR(R/A) ~ EndR(fR/fC) = I'(fC)/fCf ; 1'(fC) =

= {x € fRf | xfC C £C}. Now, fR/fC contains a unique maximal submodule
fJ(R)/£C. Hence, we can prove, similarly to the first part, that:
EndR(fR/fC) is local.

COROLLARY 1.4. If R <s a left or right perfect ring3), then every fi-
nitely generated and uniform hollow module is completely indecompo-

sable.

2. QF-3 RINGS.

Let R be a commutative ring. If Krull dimension of R is equal to zero,
R is never small in any ring extension [9]. We shall study a similar
situation on R;modules. First we take any ring R, which is not neces-
sarily commutative. ’

PROPOSITION 2.1. Let M be an R-module. Then the following conditions

are equivalent :
1) M Zs not a small submodule in any extension module M' of M.

2) M ¢s not smaZi in an injective hull EM) of M.

' 3) There exists an injective module E containing M such that M is not

small in E.

Proof. 1) — 2) <> 3) are clear. 2) — 1). We assume M' 2 M. Then
E(M') = E(M) e El' Hence, M is not small in E(M')., Therefore, M is
not small in M'.

If M satisfies one of three equivalent conditions in Proposition 2.1,
we say M is non-small in injectives. It is well known that any non-
zero submodule is not small in M 'if and only if J(M) = (0).
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Hence, we have

PROPOSITION 2.2. The following c¢onditione are equivalent:
1) Any non-zero module is non-small in injectives.

2) R 28 a right V-ring.

Proof. See [2], p. 356.

We note that if M is non-small in injectives, then so is any module ex-
tension M' of M. '

LEMMA 2.3. Let M 2 M, be R-modules. If M/M; is non-emall in injectives,
then so <8 M.

Proof. It is clear from the definitions and the above remark.

PROPOSITION 2.4. 4 »ing R is small in E(R) <f and only <f E = J(E)

for any injective module E.

Proof. If_E # J(E) for some injective module E, there exists a homomor-
phism f of R to E such that £(R) € J(E). Hence, R is not small in E(R)
by Proposition 2.1 and Lemma 2.3, Next, we assume R is not small in E(R).
Then there exists a submodule T # E(R) such that E(R) = R+T. Hence,
E(R)/T contains a maximal submodule.

COROLLARY 2.5. If R ©s a perfect ring, R is non-small in injectives
as an R-module. If R is a commutative domain, E = J(E) for any injec-
tive module E.

Proof. It is clear from [1], Lemma 2.6 and [ 8], Theorem 2.

From now on in this section, we assume R is a right perfect ring. Then
there exists a complete set {gi} of mutually orthogonal primitive idem

" potents such that 1 = J g;- We shall divide {gi} into two parts: {gi}=

= {ei}i:1 U {fj}jzl, where the eiR is non-small in injectives and the
ij is small in E(ij). We know n > 1 by Corollary 2.5. If we denote
primitive idempotents by e and f, respectively, we mean e belongs to

the first class and f does to the second.
Next, we shall consider two conditionms

(*) Every non-small module in injectives contains a mon-zero injective
module.

and

(**) Every indecomposable injective module is hollow, namely contains
a unique maximal submodule.

Let K be a field and R a K-algebra of finite dimension. Then HomK( ,K)
isaidual functor and so the condition (**) is dual to (**)l (resp.(**)r).
Every indecomposable, projective left (resp. right) .module contains a
unique minimal submodule.
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LEMMA 2.6. Let R be a right perfect rﬁng. Then (*) holde if and only
if every indecomposable, non-small module in injectives is injective.
(**) holds if and only if every indeaémposable, injective module is
of the form eiR/eiA, where A is a right ideal. (*) implies (**).

Proof. We assume (*) and M is indecomposable, non-small in injectives.
Then M is injective and hollow. Hence, (**) holds. Since M # J(M),
M/JM) =~ giR/giJ(R) by Lemma 1.1. Therefore, some e;R is a projective
cover of M by Lemma 2.3. Conversely, let M be non-small in injectives
and E = E(M). Since M € J(E), we have m in M-J(E). Then mR is non-
small in ihjectives by Proposition 2.1. Since mR/mJ(R) is.of finite
length, mR contains an indecomposable and non-small module in injec-
tives. Hence (*) holds.

LEMMA 2.7. Let R be as above. If M ig a non-small submodule in
1 e giR/giAi’ then there exists W, such that ¥ (M) = giR/giAi s where

the Ai 18 a right ideal and L i8 the projection on giR/giAi'

Proof. Since M £ ] ® g JR)/gA,, 7 (M) £ g;J(R)/g;A; for some i.

Hence, ri(M) = giR/giAi’ since g,R is hollow.

PROPOSITION 2.8. Let R be a right artinian ring. Then R is a QF-ring

if and only <f (*) holds and einj = (0) for all i and j.

Proof. Let R be a QF-ring and M non-small in injectives. Let E = E(M).

Then E ~ ] @ e; Rby [3]. Since M is not small in E, M contains a di-
h|

rect summand isomorphic to ejR by Lemma 2.7. Since fj = 0 for all j,

einj = (0). Conversely, we assume (*). Then the eiR is injective by

Lemma 2.6. If fj #0, E(ij) ~] e eikR/eikAk°

implies ekaj # (0) for some k, which is a contradiction to the assump

tion.

Hence,. (0) # ijfj

LEMMA 2.9. Let R be as above. If (**) holds, every f.R is isomorphi-
cally ‘contained in a dirvect sum Z ] eikR and there exists a right

ideal A such that eiR/eiA 18 non-zero injective for each i.

t .
Proof. Let E = E(fR). Then E = [} @ e. R/e. A, by Lemma 2.6.
k=1 I ip K

v t
Let ¢: fR — E be the inclusion and ¢(f) = } (e; T, £+ e; A).
1 k k

t Lt
We define ¥: fR — ] @ e, R by setting ¥(fx) = ) e; 1 fx. It is clear
1 k 1 k
that ¥ is monomorphic. Let F = E(eR) and F = | ® e, R/e, A_ as above.
8 8

Since eR is not small in F, eR is epimorphic to some e; R/e:.L As.
8
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PROPOSITION 2.10. Let R be right artinian. Then R Zg right QF-3 if
either (*) holds or (**) holds and each eiR containg a unique mintmal

submodule.

Proof. If (*) holds, each eR is injective. Hence, R is right QF-3 by
Lemma 2.9 and [10]. In the second case E(eR) = eiR/eiA and eR =~ eiR
from the proof of Lemma 2.9, Hence, e;A = (0).

COROLLARY.Z.II.'Let R be a K-algebra of finite dimension over a field
K. If (**)1 and (**)r hotld, R is QF-3. ‘

The examples  below show.that the converse is not true. Now, we shall
study QF-3 rings satisfying (*) or (**).

THEOREM 2.12. Let R be right artinian . When either R ie hereditary
or J(R)2 = (0), the following conditions are equivalent:

1) (*) holds.

2) (**) holds and each eiR containg a unique minimal submodule.

3) R 28 a right QF-3 ring.

Proof. 1) — 2) — 3) are clear. 3) — 1). First, we assume that R is
hereditary. We may assume R is basic and two-sided indecomposable.

Then R is a ring of upper tri-angular matrices over a division ring by
[6], Theorem 2. Hence, only one elR is injective and ij/fjJ(R) is

isomorphic'. to submodule of elR/elA. Therefore, every injective module
is isomorphic to a direct sum of some elR/elAi’ where the Ai is a

right ideal. Let M be non-small in injectives. Then we have an epimor-
phism . £:M —s elR/eiAi from Lemma 2.7. Hence, we have h: e,R — M

such that fh # 0. Since R is hereditary, M contains an injective module.
Next, we assume>J(R)2=(0) Since R is right QF-3, some eiR is injective.

Let {eiR}i be fhe set of such an injective right ideal. We assume t <n.
Thgn e R.is non-small in an injective module ] © epR; epR € {eiR}: by
‘[10] . Hence, enR is isomorphic to some eiR from Lemma 2.7, which is a
‘contradiction. Since fiR cle e; J(R) , fiR is simple. Hence, fiR

is monomorphic to some ekR. We as;Lme elR/elJ(R) is not injective.
~Then E = E(elR/eiJ(R)) is indecomposable. Take a € E-J(E). Since

a = Zagi, ag, ¢ J(E) for some i, Hence, we may assume a € Eek-J(E) by'
Lemma 2.3. Then we have either aR = ekR or ekR/ekJ(R). Since a & J(E)2

v QIelR/eIJ(R), aR =~ eR is injective. Hence E =~ e R. Thus we have pro=

ved that any indecomposable injective module is isomorphic either to
some eiR or ejR/ejJ(R).‘Let,M,be indecomposable, non-small in injec-

tives and E its injective hull. Let S(M) be the socle of M. Then
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E = E(S(M)) and S(E) = S(M). Let E =] ® e, R ® L ®e. R/e; J(R).
L ‘L k x k
Since | © e; R/e; J(R) S S(E) SM,M=]e e; R/e; J(R) @ M-N(] ®e. R).
k k k Kk e
IfK#0 ,M=~ e ,R/e, J(R). If K = @ , M is not small in 1 e e; R.
2
Hence, M =~ eiR by Lemma2.7. Therefore, (*) holds.

EXAMPLES. 1) Let K be a field, M a K-vector space of finite dimension
and M* ='HomK(M,K). We put .

K M* K
R = K M
0 K

Then R is a QF-3 ring by the natural multiplication M# ey M — K
(see [7]). If [M:K] > 2, (**) does not hold, since Re,
minimal submodules. ‘

2 contains two

2) Put

A o o ®

Then (**) holds but R is not QF-3.

3) Let S be the ring of upper triangular matrices over K with degree

h and R a K-subalgebra of S containing {eii}.n

i=1" We assume R is a two-

sided indecomposable ring.

Then R is QF-3 if and only if (**) holds and €1 R contains a unique
minimal submodule. R is QF-3 and hereditary if and only if (*) holds.

Proof. First, we assume e R is injective. Then we shall show that

. P . . _ s

e;;R 1s not injective for all i > 2. Let {eititR,eililR = ellR}t=1

be the set of such an injective right ideal. We note if ekkReii # (0),
eiiR is monomorphic to €. R Hence, since e R is 1ndecomposab1e,\

enRei i = (0) for t > 2. Let euRepp # (0) and e,

. Re_# (0) for
tle 1 qq

t't

t > 2. Then e_ Re = e Re = (0), because if e_.Re # (0), e R
PP qq q9q - PP PP 4q qq

is monomorphic to e R and so e“Rei i # (0), since ellR is injecti-
: tt

ve.Therefore,R is a direct sum of two ideals A, such that A = I ®e_ R;

PP
euRepp # (0) and A, = L ®e R; eititRe q # (0) for some t > 2. Since

qq q

R is indecomposable, s = 1. We assume R is QF-3. Then e, R is only one

injective ideal among e._.R. Hence, e, Re.. = e..Re = K for all i.
ii 117744 ii “nn

We -shall show E(eiiR/eiiJ(R)) is isomqrphic to ellk/eIIA for some right
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R Re..:= (0) and

ideal A. We assume e. ., Re.. = e, , Re.,. = ... = e_ _ i
333, 1 Jpdp 11 Jpde 1
e. . Re,. = ...==e. . Re.. = K, where
Jegrdesr i1 igdy iE
{J; <y <eve <G 1=y <.oe<ijg=ils {1,2,...,i}.
Put ellA = e1j1K+e1j2K +...+eljtK + eli+1R‘ Then ellA is a right ideal
and ellR/ellA & eljt+lK+eijt+2K+'"+e1iK+eli+1R/e1i+1R' Hence,

ellR/ellA A HomK(Reii,K) is injective and ellR/ellA = E(eiiR/eiiJ(R)).

Therefore, (**) holds. The converse is clear from the first part and
Proposition 2.10. If R is QF-3 and hereditary, (*) holds by Theorem

2.12, We assume (*) holds. Then R is QF-3 by Proposition 2.10. Let

E = E(ellR/eliR) and E =~ E ® e11R/e11Ak. 1f ellR/eliR is small ip E,
e;R/e 4R Qvi ® e,,R/e A, . However, e ;Re,;, € e; R and so e;R/e ;R

is non-small in injectives. Hence, éllR/eliR is injective by (*).

Since HomK(ellR/eliR,K) is projective and isomorphic to Re, ;. ;>

.eiiRejj = K for all i < j. Therefore, R is hereditary by [ 6], Theorem

2.

Concerning with Example 3, we have

PROPOSITION 2.13. Let R be right artinian and right QF-3. Then R is
hereditary <if and only <f eiR/eiA i8 injective for all i and any right
ideal A.

Proof. Since R is QF-3, {eiR}? is a complete set of indecomposable,

injective right ideals (see the first part in the proof of Theorem
2.12). Hence, "only if" part is clear. Conversely, we assume eiR/eiA

is injective for each i and A. Let E be an injective module and

a € E-J(E). Then ae R is injective for some k from the assumption and
Lemma 2.3. Hence, R satisfies (**). We shall show E/M is injective
for any submodule M. Let S(M) be the socle of M. We define Loewy se-

ries ST (M) as follows: st)/si=t) = sM/si~1(M)) -.We show thé above
fact by induction on S'(M). Let E = E(M) e E, and E, = E(Y) =

=] e ein/eijAj. Since S(M) = S(E,), EZ/S(EZ) 2 M/S(M) and_EZ/S(Ez)
is injective from the assumption. Hence, if M = S(M), E/M is injective.
We assume E'/N' is injective for E' 2 N' whenever E' is injective and

SE(N') = N'. Let M = si*1(M). Then E/S(M) is injective and ST(M/S(D))="
=,M/S(Mj. Hence, E/M ~ (E/S(M))/(M/S(M)) is injective by the induction.

3. MINIMAL NON-SMALL MODULES.

Since any extension of a non-small module- in injectives is alwaﬁ% non-

?
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small in injectives, we are interested in a minimal one among non-small
modules in injectives.

PROPOSITION 3.1. If M <s minimal one among non-small modules in injec-
tives, then M Zs a maximal one among hollow modules.

Proof. Let E = E(M). Then a proper submodule M1 of M is small in E
from Proposition 2.1, If M = M1 + M2 and M2 # M, M is small in E from

the above, which is a contradiction. It is clear that M is maximal one
among hollow modules.

We do not know whether the converse of Proposition 3.1 is true.We shall
show ‘an affirmative answer when R is a commutative Dedekind domain.

From now on, we assume that R is a commutative domain.

PROPOSITION 3.2, Let M be a torsion-free and maximal hollow module.
Then M is isomorphic to the quotient field Q of R.

Proof. We may assume M CM e, Q. Let t # 0 be in R. Then t™ M

(EMeQ) is also a hollow module cohtaining M. Hence, M = t™M and M
is injective and indecomposable. Therefore, M = Q.

THEOREM 3.3. Let R be a Dedekind domain. Then a hollow module <is igo-
morphic to one of the following:

1) R/p®, 2) E(R/p) , where p is a prime ideal and 3) R or Q when R
is local. In this case every hollow module is completely indecomposa-
ble.

Proof. Let'M be a hollow module. If M is not torsion-free, M contains
a direct summand isomorﬁhic to either E(E/p) of R/p® by [11], Theorem
9. Hence, M is isomorphic to one of them. We assume M is torsion-free.
Then E(M) = é ® u.Q by [11], Theorem 7. We put M n u.Q = uiMi # (0).

IfM=7e u,M., I consists of one element and we may assume RC M S Q.
I

Let p and q be prime ideals in R. Since M/pq is a torsion hollow module,
P = q by the above argument. Hence, R is local and M ~ R or M =~ Q.

® . . ) .
If M # ; u; M, , § ® u;M, is a small submodule in M. Since M/; ® uiMi
is torsion and hollow, M/} © u;M; is isomorphic to E(R/p) or R/p".
When M/} © u;M; =~ E(R/p), M = aM + ] ® u,M; for any a # 0 in R. Hence,
M is injective and so M ~ Q. When M/} © u.M, ~ R/p", "M C ] @ u M,
I

for b # 0 € p. If u;M; = u;Q €M for some i, M ~ Q. Hence, we may as-

sume u;M; # u;Q for all i. Now, let m, be the projection of M to u,Q,

1
then wl(M) is a non-zero hollow module in ulQ. Hence, R is local from

the above. Atcordingly, every uiMi is projective and so M is projective.
-Therefore, M =~ R.
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From Theorem 3.2 and Proposition 3.1 we have

THEOREM 3.3. Let R be a Dedekind domain. Then the following conditions
are equivalent for an R-module M.

1) M 28 a minimal one among non-small modules in injectives.
2) M i8 a maximal one among hollow modules.

3) M is isomorphic to E(R/p) or to Q ©f R is local, where p is a prime
ideal and Q is the quotient field of R.

REMARK. Let R be a Dedekind domain which is not local. Then Q is not
small in injectives, however Q does not contain a minimal non-small
module in injectives.
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