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Let, R b,e a ring with identity and M a right unit,ary R.-niodule. Let N 
'b~ an R-submodule of M. N is called a smaZZ submoduZe in M if it sa­
tisfiesthe following condition: the fact that M =T, +N for some R­
submodule T implies T = M. If eVery proper submodule of M is small, 
we call M a holZow ~oduZe 141. P. Fleury studied so~e, conditions under 

'which the endomorphism ring of a hollow module is a local.ring. We 
, ' 

shall call M aompZeteZy indeaomposabZe when its endomorphis1ll ring is 
local. 

In § 1 we shall show that every finitely generated and uniform h~llow 
module is completely indecomposable, when R is a left or right perfect 
ring. 'In § 2 we shall give some relations between injective hoilow m£ 
dules and QF-3 'rings. In § 3 when R is a commutative Dedekind domain, 

'we 'can completely determine all hollow modules and we know that they 
are completely indecomposable. 

1. P~RFEC~ RINGS. 

Let R be a ring with identity and M a right unitary R-module. By J(M) 
we shall denote the Jacobson radical of M.Since every small submodule 
in M is contained in J(M), we have 

LEMMA 1.1 (! 41). Mis a finiteZy generated hoZZow moduZe if and onZy 

if J(M) is maximaZ 'and smaZZ in M. In this aase M is ayaZia. 

If M = mR, M ~ RIA, where A is a right ideal in R. Since J(M) is al­
ways small in M whenever M is finitely generated, we have 

COROLLARY 1.2 ([41). RIA is hoZZow if and only if A is aontained in a 
unique maximaZ rig,ht ideaZ. 

It is clear that every hollo~ module is indecomposable and so a hollow 
module of f,in~ te length is always completely indecomposable. 

THEOREM 1.3. We assume that J(R) is ~iZ and R/J(R) is artinian. Then 
every finitely generated and uniform 2) hollow module is aompZeteZy 

indeaomposabZe. where J(R) is the Jacobson radicaZ of R. 

Proof. LetM be an R-module with the p-roperty above,. Then M ,,.. RIA for 
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some right ideal A from Lemma 1.1. If A £;. J(R), then R is a local ring 
from Corollary 1.2. It is well known that EndR(R/A) = I(A)/A ; 
I(A) = {x E R I xA £;. A}. Let x l ,x2 be non-epimorphic eiements in I(A)/A. 

Then xiR £;. J(R). Hence, x l +x2 is not epimorphic. Let y be an epimor-
- -1 n-l phism with 1 = xl+y. Since xl E I(A) n J(R), (l-x l ) = l+x l + .•. +x l E 

E I(A), where x~ = O. Hence, y is isomorphic. Let Yl and Y2 be epimor­

phic but not isomorphic , then 

Yl-l(O) n y 2- l (0)# (0) from the assumptions. Hence, Yl +Y 2 is not isomor 

phic. Therefore, I(A)/A is a local ring. Next, we assume A ~ J(R). 

Since R/(A+J(R)) is semi-simple and hollow module, A+J(R) is a maximal 
right ideal in R. Let R/J(R) = (A+J(R))/J(R) $ B, where B is a minimal 
right ideal in R = R/J(R). Since it is semi-simple and artinian and 
J(R) is nil, there exist idempotents e and f such that e E A, B = fR 
and R = eR Ell fR. Hence, R/ A "" fR/ (fR n A) fR/ fC, where C = fR n A. 

Then EndR(R/A) "" EndR(fR/fC) = I' (fC)/fCf ; I' (fC) = 

= {x E fRf I xfC £;. fC}. Now, fR/fC contains a unique maximal submodule 
fJ(R)/fC. Hence, we can prove, similarly to the first part, that 

EndR(fR/fC) is local. 

COROLLARY 1.4. If R is a left or right perfect ring 3 ). then every fi­

nitely generated and uniform hollow module is completely indecompo­

sable. . 

2. QF-3 RINGS. 

Let R be a commutative ring. If Krull dimension of R is equal to zero, 

R is never small in any ring extension [9]. We shall study a similar 
situation on R-modules. First we take any ring R, which is not neces­
sarily commutative. 

PROPOSITION 2.1. Let M be an R-module. Then the following conditions 

are equiva len t : 

1) M is not a small submodule in any extension module M' of M. 

2) M is not small in an injective hull E(M) of M. 

3) There exists an injective module E containing M such that M is not 

smal l in E. 

Proof. 1) -+ 2) ++ 3) are clear. 2) -+ 1). We assume M' ~ M. Then 

E(M') = E(M) Ell El . Hence, M is not small in E(M'). Therefore, M is 
not small in M' . 

If M satiSfies one of three equivalent conditions in Proposition 2.1, 
we say M is non-amaH in injeativeB. It is well kn.own that any non­
zero submodule is not small in M if and only if J(M)- = (0). 
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Hence, we have 

PROPOSITION 2.2. The follo~ing oondition8 ape equivalent: 

1) Any non-zepo module i8 non-8mall in injeative8. 

2) R i8 a pight V-ping. 

Ppoof. See [21, p. 356. 

We note that if M is non-small in injectives, then so is any module ex~ 

tension M' of M. 

LEMMA 2.3. Let M ~ MI be R-module8. If MIMI i8 non-8mall in injeatives. 

then 80 i8 M. 

Ppoof. It is clear from the definitions and the above remark. 

PROPOSITION 2.4. A ping R is 8mall in E(R) if and only if E = J(E) 
fop any injeative module E. 

Proof· If E # J(E) for some injective module E, there exists a homomor­
phism f of R to E such that feR) ~ J(E). Hence, R is not small in E(R) 
by Proposition 2.1 and Lemma 2.3. Next, we assume R is not small in E(R). 
Then there exists a submodule T # E(R) such that E(R) = R+T. Hence, 
E(R)/T contains a maximal submodule. 

COROLLARY 2.5. If R is a perfeat ring, R is non-small in injeatives 

as an R-module. Ii R is a aommutative domain. E = J(E) fop any injea­
tive modu le E. 

Proof. It is clear from [11, Lemma 2.6 and [81, Theorem 2. 

From now on in this section, we assume R is a right perfect ring. Then 

there exists a complete set {gil of mutually orthogonal primitive idem 

potents such that 1 = L gi' We shall divide {gil into two parts: {gi}= 

= {e.}.n l U {f.}.ml , where the e1..R is non-small in inJ·ectives and the 1. 1.= J J= 

f.R is small in E(f.R). We know n ~ 1 by Corollary 2.5. If we denote 
J J 

primitive idempotents by e and f, respectively, we mean e belongs to 
the first class and f does to the second. 

Next, we shall consider two conditions 

(*) Every non-small module in injectives contains a ·non-zero injective 
module. 

and 

(**) Every indecomposable injective module is hollow, namely contains 
a unique maximal submodule. 

Let K be a field and R a K-algebra of finite dimension. Then HornK( ,K) 
isa\dual functor and so the condition (**) is dual. to (**)1 (resp. (**)r)' 

Every indecomposable, projective left (resp. right) .module contains a 
unique minimal submodule. 



18'9-

LEMMA 2.6. Let R be a roight perofect rohg. Then (Il10) hol.ds if't;l'td onl.y 

if everoy indecomposabZe. non-smaH modul.e in i.njectiv~s is injective. 

(**) hol.ds if and onl.y if everoy indecomposabl.e. injeotive modul.e' is 

of the forom eiR/eiA, wheroe A is a 'roightideaz.. (lIIo)impZies (U). 

Prooof. We assume (*) and M is indecomposable, non-small in injectives. 
Then M is injective and hollow. Hence, (1IIoIIII) holds. Since M f.J{M), 
M/J{M) ... g.R/g.J(R) by Lemma 1.1. Therefore, some e.R is a projective 1 1, . 1 

cover ofMbyLemma 2.3. Conversely, let M be non-small in iiljectives 
and E = E (M). Since M ~ J (E) ,we have m in M-J (E). Then mR is non­
small in injectivesby Proposition 2.1. Since mR/mJ{R) is-of finite 
lerigth, mR contains an indecomposable and non-small module in injec­
tives. Hence (1IIo) holds. 

LEMMA 2.7. Let R be as above. If M is a non-smal.l. submodul.e in 

L e giR/giAi' then theroe exists r i such that ri{M) = giR/giAi • wheroe 

the Ai is a roight idea'l and r i is the proojection on giR/giAi~ 

Prooof. Since M ~ L e giJ{R)/giAi' ri{M) ~ giJ{R)/giAi for some i. 

Hence, ri{M) = giR/giAi' since giR is hollow. 

PROPOSITION 2.8. Let R be a roight arotinian roing. Then R is a QF-roing 

if and onl.y if (*) hol.ds and e.Rf. = (D) for a'l'l i and j. 
1 J 

Prooof. Let R be a QF-ring and M non-small in injectives. Let E = E{M). 
Then E ... Lee. R by [3). Since M is not small in E, M contains a di-

1. 
J 

rect summand isomorphic to e.R by Lemma 2.7. Since f. = 0 for all j, 
J J 

eiRfj = (D). Conversely, we assume (*). Then the eiR is injective by 

Lemma 2.6. If f. f. 0, E{f.R) ... Lee. R/e. Ak . Hence, (D) f. fJ.Rf J. J J 1k 1k 
implies ekRfj f. (D) for soine k, which is a contradiction to the assumE. 
tion. 

LEMMA 2.9. Let R be as above. If (**) hol.ds. everoy f.R is isomorophi­
J 

ca'l'lycontained in a direct sum Lee. R and there exists a right 
1k 

ideal. A such that eiR/eiA is non-zero injective foro each i. 
t 

Proof. Let E = E{fR). Then E =L e e. R/e. Ak by Lemma 2.6. 
k=l 1k 1k 

t 
Let ~: fR --+ E be the inclusion and ~(f) = L (e. rkf + e. Ak). 

1 1k 1k 
t _ t 

We define 1/1: fR --+ Lee. R by setting 1/I{fx) = r e. rkfx. It is. clear 
1 1k 1 1k 

that 1/1 is monomorphic. Let.F = E{eR) andF = L e e i R/e i As as above. 
s s 

Since eR is not small in F, eR is epimorphic to some e i R/e i As' 
Hence, eR ... e. R. 

1 
S 

s s 
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PROPOSITION 2.10. Let R be :right a:rtinian. Then R is :right QF~3if 

eithe:r (*) holds o:r (U) holds and eaoh eiR oontains auniquemiTdmal 

submodule. 

P:roof. If (*) holds, each eR is injective. Hence, R is 
LeJllJlla 2.9 and [10]. In the second case E(eR) = eiR/eiA 
from the proof of Lemma 2.9. Hence, eoA = (0). 
.. 1 

right QF~3 by 
and eR "'" eoR 

1 

COROLLARY 2..11. Let R bea K-al.geb:ra of finite dimension over a fiel.d 

K. If (**)1 and (**)r hol.d~ R is QF~3. 

The examples below show. that the converse is not true. Now, we shall 
study QF-3rings satisfying (*) or (U)~ 

THEOREM 2.12. Let R be :right a:rtinian. When eithe:r R is he:redita:ry 

o:r J(R)2 = (0), the foZZo7J)ing oonditions are equival.ent: 

1) (*) hol.ds. 

2) (**) hol.ds andeaoh eiR oontains a unique minimal. submodul.e. 

3) R is a :right QF-3 :ring. 

P:roof. 1) - 2) - 3) are clear. 3) - 1). First, we assume that R is 
hereditary. We may assume R is basic and two-sided indecomposable. 
Then R is a ring of upper tri-angular matrices over a division ring by 
[6], Theorem 2. Hence, only one elR is injective and f.R/f.J(R) is 

o J J 

isomorphic'to subJilodule of e1R/elA. Therefore, every injective module 

is isomorphic to a direct sum of some e1R/e1A i , where the Ai is a 

right ideal. Let M be non-small in injectives. Then we have an epimor­
phism f:M --->. e1R/elAi from Lemma 2.7. Hence, we have. h: elR - M 

such that fh " O. Since R is hereditary, M contains an injective module. 
Next, we assumeJ(R)2=(0) Since R is right QF-3, some eiR is injective. 

Let {eiR}~ be the set of such an injective right ideal. We assume t < n. 

Then enRis non-small in an injective module l e epR; epR e {eiR}~ by 

[101. Hence, enR is isomorphic to some eiR from Lemma 2.7, which is a 

'contradiction. Since f.R s;;, l e eo J(R) , foR is simple. Hence, 'foR 
11 1 1 q 

is monomorphic to some ekR. We assume e1R/e1J(R) is not injective. 

Then E = E(e1R/e'lJ(R)) is indecomposable. Take a e E-J(E). Since 

a = l.ag 0' ag 0 Ii J (E) for some i. Hence, we may assume a e Eek-J (E) by 
1 1 

Lemma 2.3. Then we have either aR "'" ekR or ekR/ekJ(R). Since a Ii J(E)2 

2 'e1R/e1J(R), aR"", ekR is injective. Hence E ""'ekR. Thus we have pre-... 

ved that any indecomposable injective module is isomorphic either to 
some eiR or ejR/el(R). ,Let, Mbe indecomposable, non-small in injec-

tives and E its injective hull. Let S(M).· be the 50cle of M. Then 
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E = E(S(M)) and SeE) = SCM) • Let E = ~ 61 e. R 61. l 61e. R/e. J.(R). 
t 1!t k l.k 1k 

Since l61 e. R/e. J(R) ~S(E) {;M, M =t 61 e. Rie. J~R) 61 M·q(l6le. R). 
1k 1k 1k 1k . l t 

If K " 0 , M ... ekR/ekJ(R). If K = 0 , M is not small in l 61 e. R. 
l,t 

Hence, M ... eiR by Lemma2.7. Therefore, (*) holds. 

EXAMPLES. 1) Let K be a field, M Ii K-vector space of finite dimension 

and M* ='HomK{M,K). We put 

R = I.K 
. 0 

M* 

K 

Then Ris a QF-3 ring by the natural multiplication M*, 8 K M -- K 

(see (71). If [M:K) :> 2, (**) does not hold, since Re22 contains two 

minimal submodules. 

2) Put 

K K K K 

R K 0 0 

K 0 
0 K 

Then (**) holds but R is not QF-3. 

3) Let S be the ring of upper triangular matrices over K with degree 

h 'and R aK-subalgebra of S containing {e .. }. n 1 • We assume R is a two-
11 1111 

sided indecomposable ri~.,' 

Then R is QF-3 if and only if (U) holds and ell R contlil:ins a unique 

minimal submodule. R is QF-3 and hereditary if and only if (*) holds.' 

Pzooof.First, we assume e 11R is injective. Then we shall show that 

eiiR is not inj~ctive for all i :> 2. Let {e .. R;e .. R = e 11R}t:l 1 t 1 t ' 1111 

be the set of such an injective right ideal. We note if ekkReii F (0), 

eiiR is monomorphic to ekkR. Hence, since e 11R is indecomposable,_" 

e 11Re .. = (0) for t;;;. 2. Let e 11Re ,. (0) and e .. Re ,. (0) for 
1t1 t PP 1t1 t qq 

t ;> 2. Then e Re eRe = (0), because if e : Re ,. (0), e R pp' qq qqpp pp qq qq 

is monomorphic to ell R and so euRe. . ,. (0), since euR is injecti­
, 1t1 t 

ve.Therefore.R is a ,direct sum of two ideals Ai such that Al = l 61eppR; 

l 61 e R; e .. Re ,. (0) for some t ;> 2. Since 
qq 1t1t qq 

R is indecomposable, s 1.We assume R is QF-3. Then euR is only one 

injective ideal amonge .. R •. Hence, e 11Re .. = e· .. Re = K for all 1. 11 11 11 nn 

We shall showE(eiiR/eiiJ(R)) is isomQrphic to euR/eu~ for sollle right 
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ideal A. We assume e, , Re" .. eJ'2j"2Reii = ••• 
J 1J 1 11 

e , j Re" = • '.. = e j j Re" .. K, where, 
J t+l t+l 11i i 1'1 

e "j Re" =" (0) and 
Ji: t 11 

{j 1 < j 2 < ... < j t' 1 = j t+l < ... < j i = i} =(1, 2,~ .. , i}. 

Put ellA = e l , K+e l , K + ••• +e1 , K + eli+1R. Then ellA is a right ideal 
,J I J 2 J t 

and ellR/~llA';" e 1 , K+e" . K+ ••• +el,K+eli+lR/el'+lR. Hence, 
Jt+l 1J t +2 1 1 

ellR/ellA ... HomK(Reii,K) is injective and ellR/ellA =E(eiiR/eiiJ(R)). 

Therefore,' (U) holds. The converse is Clear from the fir,st part and 

Proposition 2 •. 10. If R fs QF-3 and hereditary, (iI) holds by Theorem 

2.12. We assume (iI) holds. Then R is QF-3 by Proposition 2.10. Let 

E = E(eUR/eliR) and E "" ~ $ ellR/ellAk • If ellR/eliR is small in E, 

e llR/e 1iR ~ I $ e 12R/e llAk • However, ellRe ll ~ eliR and so ellR/e1iR 
k 

is non-small in injectives. Hence, ellR/eliR is injective by (*). 

Since HomK(e11R/eliR,K) is projective and isomorphic to Rei_Ii_I' 

eiiRejj = K for all i < j. Therefore, R is hereditary, by [6], Theorem 

2. 

Concerning with Example 3, we have 

PROPOSITION 2.13. Let R be ~ight a~tinian and ~ight QF-3, Then R is 

he~edita~y if and only if e'iR/eiA is injective fo~ all i, and any ~ight 

ideal A. 

'P~oof. Since R is QF-3, {eiR}~ is a complete set of indecomposable, 

injective right ideals (see the first part in the proof of Theorem 

2.12). Hence, "only if" part is clear. Conversely, we assume e,R/e.A 
, . 1 1 

is injective for each i and A.Let E be an injective module and 

a E E-J,(E). Then aekR is inj ective for ~ome k from the assumption and 

Lemma 2.3. Hence, R satisfies (iliI). We shall show E/M is injective 

for any submodule M. Let SCM) be the socle ofM. We define Loewy se-

ries Si(M) as follows: Si(M)/Si-1(M) = S(M/Si-I(M)) ',We show the above 

fact by induction on Si(M). Let E = E(M) $ E1 and E2 = E(M) 

.. r $ e. R/e. A .• Since SCM) = S(E 2), E2/S(E2) :J. M/S(M) andE 2/S(E 2) 
1j 1j J 

is injective from the assumption. Hence, if M = S(M), E/M is inject'ive. 

We assume E'/N' is injective for E' ;2 N' whenever E' is injectiv.e and 

S,i(N.') = N'. Let M .. Si+l(M). Then E/S(M) is injective and Si(M/S(M))= 

=.M/S(M). !:Ience, E/M"" (E/S(M))/(M/S(M)) is injective by the induction. 

3. MINfMAl NON-SMALL MODULES. 

$ince any extension of a, non-small module. in injectiv·es. is alway~non-
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small in iIij ectives, we are interested in a minimal one ainong" no'n~small 
modules in injectives. 

PROPOSITION 3.1. If M is minimal, one among non-smaZZ modul,esiniiJjea­

tives, then M is a ma~imal, one among hol,l,o~ modul,es. 

Prooof. Let E = E(M). Then a proper submodule MIof M is small inE 
from Pr?position 2.1. If M = MI + M2 and M2 ~ M, M is small inEfrom 

the above, which is a contradiction. It is clear that M ismaxinial one 
among hollow modules. 

We do not know whether the converse of Proposition 3.1 i~ true.We shall 
show 'an. affirmative answer when R is a commutative Dedekind domain. 

From now on, we assume that R is a commutative domain. 

PROPOSITION 3.2. Let M be a torosion-froee and ma~imal, hoZZo~ modul,e. 

Then 'M is isomorophia to the quotient fiel,d Q of R. 

Prooof. We may assume M !;, M sR Q. Let t ~ Obe in R. Then t~IM 

(!;. M s Q) is also a hollow module containing M. Hence, M = t-lM and M 
is injective and indecompo~able. Therefore, M ... Q. 

THEOREM 3.3. Let R be a Dedekind domain. Then a hoZZo~ mOduZe is iso­

morophia to one of the foZZo~ing: 

1) R/pn, 2) E (RIp) , ~heroe p is a proirfle ideaZ and 3) R oro Q ~hen R 
is l,oaal,. In this aase everoy hoZZo~ moduZe is aompl,eteZy inde'aomposa­
'bl,e. 

Prooof. LetM be a hollow module. If M is not torsion-free, M contains 
a direct summand isomorphic to either E(E/p) of R/pn by [ 11], Theorem 
9. Hence, M is .isomorphic to one of them. We assume M is torsion-free. 
Then E(M) = I til u.Q by [ 11], Theorem 7. We put M n u.Q = u.M. ~ (0). 

, I 1 111 . 

If M = I til u.M.~ I consists of one element and. we may assume R £ M £ Q. 
I 1 1 ' 

Let p and q be prime ideals in R. Since ,M/pq is a torsion hollow module, 
p = q by th'e above argument. Hence ,R is local and M ... R or M ... Q. 

If M ~ I til u.M., I til uiMi is a small submodule in M. Since M/I e u.M. 
111 I 111 

is torsion and hollow, M/I til ui Mi is isomorphic to E (RIp) Or R/pn. 

When M/I til uiMi "" E(R/ph M = aM + I til uiMi for any a ~ 0 in R. Hence, 

M is injective and so M ... Q. When M/I til u.M .... R/pn, bnM ~ I til u.M. 
1 1 I 1 1 

for,b ~ 0 E p. If uiMi = uiQ ~ M for soine i, M ... Q. Hence; we may as-

sume uiMi .~ uiQ for all i. Now, let "'I be the projection of Mto u1Q, 

then "'1(M) is a non-zero hollow module in u1Q. Hence, R is local from 

the above; Accordingly, every uiMi is projecti.ve and so M is projective. 
,Therefore, M "" R. 



194 

From Theorem 3.2 and Proposition 3.1 we have 

THEOREM 3.3. Let R be a Dedekind domain. Then the folZowing conditions 
are equivalent for an R-module M. 

1) M is a minimal one among non-small modules in injectives. 

Z) M is a ma~imal one a~ong hollow modules. 

3) M is isomorphic to E(R/p) or to Q if R is local, where p is a prime 

ideal and Q is the quotient field of R. 

REMARK. Let R be a Dedekind domain which is not local. Then Q is not 
small in injectives, however Q does not contain a minimal non-small 
module ininjectives. 

REFERENCES 

(1) H. BASS, F~n~t~~t~c dimen~~on and a homo!og~ca! gene~a!~zat~on 06 
~em~-p~ima~y ~~ng~, Tran. Amer. Math. Soc., 95 (1960) 466-485. 

(2) C. FAITH, Algebra:Rings, Modules and CategoriesI, Grund. Math. 
Wiss. 190, 1973. 

(3) C. FAITH and E.A. WALKER, V~~ect ~um ~ep~e~entat~on~ 06 ~nject~ve 
modu!e~, J. Algebra,S (1967) 203-221. 

[4] P. FLEURY, Ho!!ow modu!e~ and Loca! endomo~ph~~m ~~ng~, Pacific 
J. Math. 53 (1974) 379-385. 

[5) A.W. GOLDIE, R~ng~ w~th maxima! cond~t~on~, Mimeographed notes, 
Yale Univ., 1964. 

[6] M. HARADA, QF-3' and ~em~-p~ima~y pp-~~ng~ 1, Osaka J. Math. 2 
(1965) 357-368. 

[7] ---------, QF-3 and ~em~-p~~ma~y PP-~~ng~ 11, ibid 3 (1966) 21-27. 

(8) ---------, On ~ma!! ~ubmodu!e~ ~n the total quot~ent ~~ng 06 a com 
mutat~ve ~~ng, Rev. Un. Mat. Argentina, 28 (1977), 99-102. 

[9] ----:..----, On ~ma!! ~'£ng homomo~phLl>m~, to appear. 

(10) J.P.JANS, P~oject~ve, ~nject-<-ve modu!e~, Pacific J. Math. 9 
(1959) 1103-1108. 

[11] I. KAPLANSKY, Modu!e~ ove~ Vedek~nd ~~ng~ and va!uat~on ~~ng~, 
Tran. Amer. Math. Soc., 72 (1952) 327-340. 

Osaka City University, Osaka. 
Universidad de Buenos Aires,~uenos Aires. 

Recibido en agosto de 1977. 


