DETERMINACION DE LAS FUNCIONES ESFERICAS IRREDUCIBLES DEL PAR (SU(2),SO(2)) (*)

Sofía Paczka y Susana Fornari

INTRODUCCION. Dados G un grupo de Lie, K un subgrupo compacto de G, χ un carácter irreducible de K, V un espacio vectorial sobre C de dimensión finita y dk la medida invariante normalizada sobre K, decimos que una función continua $\Phi: G \longrightarrow \operatorname{End}(V)$ es una función esférica del par (G,K) asociada al carácter χ si:

$$\Phi(e)$$
 = I (e = identidad de G, I = identidad de End(V))
 $\Phi(x).\Phi(y)$ = $\chi(e)$ $\int_K \chi(k^{-1}) \Phi(xky) dk$ para todo $x,y \in G$

 Φ es irreducible cuando V no tiene subespacios propios distintos del $\{0\}$ estables por $\Phi(x)$ para todo $x \in G$.

En nuestro caso K = SO(2) es un toro maximal en G = SU(2). Si K es un toro maximal en SU(2), χ un carácter irreducible de K y Φ una función esférica del par (SU(2),K) entonces la función definida por $[x \longrightarrow \Phi(g^{-1}xg)]$ es una función esférica del par (SU(2),gKg⁻¹) asociada al carácter $[k \longrightarrow \chi(g^{-1}kg)]$.

Teniendo en cuenta esto determinaremos todas las funciones esféricas irreducibles del par (SU(2),T) con T otro toro maximal en SU(2):

$$T = \left\{ \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} \theta \in R \right\}$$

Por otra parte si K es un toro maximal en SU(2) las funciones esféricas irreducibles del par (SU(2),K) son de dimensión 1, o sea V \approx C. En consecuencia determinar todas las funciones esféricas irreducibles del par (SU(2),T) consiste en hallar todas las funciones que satisfacen:

- a) $\Phi:SU(2) \longrightarrow C$ continua.
- b) $\Phi(e) = I$.

^(*) El material de esta publicación ha sido tomado de nuestro trabajo final presentado en el Instituto de Matemática, Astronomía y Física de la Universidad Nacional de Córdoba, para optar al título de Licenciadas en Matemática; dicho trabajo fue dirigido por el Dr. Juan A. Tirao.

c)
$$\Phi(x) \cdot \Phi(y) = \int_{\mathbb{T}} \chi(t^{-1}) \Phi(xty) dt$$
 para todo $x, y \in SU(2)$.

De la propiedad c) se deduce facilmente que para todo $t_1,t_2\in T$ y todo $x\in SU(2)$ $\Phi(t_1xt_2)=x(t_1).\Phi(x).x(t_2)$. Además $\Phi\in C^\infty(SU(2),C)$, más aún, es analítica y es autofunción del operador de Casimir Δ de SU(2).

Más aún, la recíproca es cierta, o sea, es esférica una función Φ : SU(2) \longrightarrow C que satisface:

$$\Phi \in C^{\infty}(SU(2),C)$$
.

$$\Phi(e) = 1.$$

$$\Phi(t_1xt_2) = \chi(t_1)\Phi(x)\chi(t_2) \quad \forall t_1,t_2 \in T ; \forall x \in SU(2).$$

$$\Delta \Phi = \lambda \Phi$$
 , $\lambda \in R$.

Sea Φ una función esférica asociada al carácter $\mathbf{x}_{\mathbf{n}}$ de T, donde

$$\chi_{\mathbf{n}} \; : \; \begin{pmatrix} e^{\mathbf{i}\,\theta} & 0 \\ 0 & e^{-\mathbf{i}\,\theta} \end{pmatrix} \longmapsto \, e^{\mathbf{i}\,\mathbf{n}\,\theta} \quad \text{, } \quad n \text{ entero.}$$

Entonces $\overline{\Phi}$, la función conjugada de Φ , es esférica asociada al carácter x_m con m = -n. Por lo tanto es suficiente determinar todas las funciones esféricas asociadas a los caracteres x_n con $n \in \mathbb{N} = \{0,1,2,\ldots\}$.

Para cada n \in N, la función $\Phi_{\rm n}\colon$ SU(2) \longrightarrow C es esférica asociada al carácter $\chi_{\rm n}$ donde

$$\Phi_{\mathbf{n}} : \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ -\overline{\mathbf{b}} & \overline{\mathbf{a}} \end{pmatrix} \longmapsto \mathbf{a}^{\mathbf{n}}.$$

Tenemos que S^2 es una variedad compleja con la estructura que le inducen las proyecciones estereográficas, además SU(2) actúa transitivamente en S^2 , siendo la acción por transformaciones holomorfas y resultando T el grupo de isotropía del polo norte N de S^2 , de todo esto se obtiene que SU(2)/ $_T$ es difeomorfo a S^2 . Llamemos α a este difeomorfismo.

Sea δ la componente holomorfa de la diferencial exterior en S^2 y sea δ el operador adjunto de δ con respecto al siguiente producto escalar en S:

$$\langle w_1, w_2 \rangle = \int_{S^2} |\Phi_n(g)|^2 \frac{1}{2} \langle w_{1m}, w_{2m} \rangle_2 dm$$

donde w_1 y w_2 son 1-formas complejas de S^2 , $n \in N$, g es tal que $\alpha_0\pi(g)=m$, (π la proyección canónica de SU(2) en SU(2)/T), dm es una medida SU(2)-invariante normalizada y $\langle \ , \ \rangle_2$ es el producto escalar inducido por R^3 .

De
$$\int_{S^2} |\Phi_n(g)|^2 \frac{1}{2} \langle w_{1m}, w_{2m} \rangle_2 dm =$$

$$= \int_{SU(2)} |\Phi_n(g)|^2 \langle [(\alpha \circ \pi)^* w_1]_g, [(\alpha \circ \pi)^* w_2]_g \rangle dg$$

(el producto escalar que aparece en la integral sobre SU(2) es el inducido por la forma de Killing) se deduce la relación

$$\Phi_{\mathbf{n}} \cdot \delta \partial \mathbf{h} \circ (\alpha_{\circ} \pi) = -(\frac{\Delta}{2} + \frac{\mathbf{n}^2}{16} + \frac{\mathbf{n}}{8}) \cdot \Phi_{\mathbf{n}} \cdot [\mathbf{h} \circ (\alpha_{\circ} \pi)]$$

con $h \in C^{\infty}(S^2,C)$; y resulta que si h satisface: h(N)=1, h constante sobre los paralelos y $\delta \partial h = \gamma h$, entonces $\Phi \colon SU(2) \longrightarrow C$ definida por $\Phi = \Phi_n \cdot [h_0(\alpha_0\pi)]$ es una función esférica asociada al carácter χ_n , $n \in N$.

Como la función h es constante sobre los paralelos, la ecuación $\delta \partial h = \gamma h$ con h(N) = 1 se reduce a la ecuación en una variable, en el intervalo $[-1,1]: (1-x^2) \frac{d^2h}{dx^2} + [n-(n+2)x] \frac{dh}{dx} + 4\gamma h = 0$, con la condición h(1) = 1, cuyas soluciones para γ de la forma $\gamma = \frac{k}{4} (k+n+1)$ con k y $n \in N$, son los polinomios de Jacobi $P_k^{(0,n)}$.

Si $h_{n,k}(\varphi,\theta) = P_k^{(0,n)}(\cos\theta)$ entonces, por la densidad de los polinomios de Jacobi $P_k^{(0,n)}$, $k \in \mathbb{N}$, en el espacio

 $L^2([-1,1],(1+x)^n\mathrm{d}x)$, resulta que $\Phi_{n,k}=\Phi_n.[h_{n,k}^{\circ}(\alpha_{\circ}\pi)]$ son todas las funciones esféricas irreducibles del par (SU(2),T) asociadas al carácter x_n $n\in\mathbb{N}$.

PRELIMINARES. $SU(2) = \{A \in M(2,C)/A^{-1} = {}^{t}\overline{A}, \text{ det } A = 1\}$ es un grupo de Lie compacto, conexo de dimensión 3. Su álgebra de Lie es

$$su(2) = \left\{ \begin{pmatrix} ai & b \\ -\overline{b} & -ai \end{pmatrix} / a \in R, b \in C \right\}$$

Sea $B(X,Y) = tr(adX.adY), X e Y \in su(2), la forma de Killing de su(2); es definida negativa pues el centro de SU(2) es discreto. Por lo tanto SU(2) es semisimple. Además, sabemos que en su(2) <math>B(X,Y) = 4tr(X,Y)$.

OPERADOR DE CASIMIR. Sea G un grupo de Lie compacto, conexo y semisimple de dimensión n; \langle , \rangle un producto escalar invariante a izquierda inducido por la forma de Killing, $\{X_1, \ldots, X_n\}$ una base de g = álgebra de Lie de G; X_1, \ldots, X_n campos vectoriales invariantes a izquierda tales que $(X_i)_e = X_i$; $g_{ij} = \langle X_i, X_j \rangle$, (g^{ij}) matriz inversa de (g_{ij}) .

Definimos el operador de Casimir Δ de la siguiente manera

$$\Delta : C^{\infty}(G) \longrightarrow C^{\infty}(G)$$
, $\Delta = \sum_{i,j=1}^{n} g^{ij} \widetilde{X}_{i} \widetilde{X}_{j}$

 Δ no depende de la elección de la base $\{X_1, \ldots, X_n\}$.

En nuestro caso -B(T,S) es un producto escalar en su(2). Haciendo de dL_p (L_p traslación a izquierda en SU(2)) una isometría, extendemos este producto escalar a todos los espacios tangentes.

Los vectores tangentes $H = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $Y_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $Y_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ cons-

tituyen una base ortogonal de su(2) con norma $\sqrt{8}$, por lo tanto $\mathbf{g^{ij}} = \frac{1}{8} \delta_{ij}$. Luego la expresión del operador de Casimir en SU(2) es

$$\Delta = \frac{1}{8} \left(\widetilde{H}^2 + \widetilde{Y}_1^2 + \widetilde{Y}_2^2 \right)$$

donde $\widetilde{H},~\widetilde{Y}_1^{},~\widetilde{Y}_2^{}$ son los campos invariantes a izquierda definidos por $H,Y_1^{}$ e $Y_2^{}.$

 Δ es autoadjunto. Sabemos que la expresión del adjunto de Δ es $\Delta^* = \frac{1}{8} (\widetilde{H}^{*2} + \widetilde{Y}_1^{*2} + \widetilde{Y}_2^{*2})$ pero en nuestro caso $\widetilde{H}^* = -\widetilde{H}$, $\widetilde{Y}_1^* = -\widetilde{Y}_1$, $\widetilde{Y}_2^* = -\widetilde{Y}_2$ (Helgason pag. 451). Por lo tanto $\Delta^* = \Delta$ y los autovalores λ de la ecuación Δ f = λ f son reales.

EQUIVALENCIA ENTRE EL PROBLEMA INTEGRAL Y EL DIFERENCIAL.

Indicaremos brevemente cómo puede probarse la equivalencia entre los problemas:

(I) a)
$$\Phi$$
: G \longrightarrow C continua.

b)
$$\Phi(e) = 1$$
.

c)
$$\Phi(x) \cdot \Phi(y) = \int_{K} \chi(k^{-1}) \Phi(xky) dk \quad \forall x,y \in G.$$

(II) i)
$$\Phi \in C^{\infty}(G,C)$$
.

ii)
$$\Phi(e) = 1$$
.

iii)
$$\Phi(t_1xt_2) = \chi(t_1) \Phi(x) \chi(t_2) \quad \forall t_1, t_2 \in K, \forall x \in G.$$

iiii) $\Delta \Phi = \lambda \Phi.$

para G = SU(2) y K un toro maximal en SU(2), χ caracter irreducible de K y Δ el operador de Casimir de SU(2).

(I) \Rightarrow (II). Es fácil ver que $\Phi \in C^{\infty}(G,C)$ y que cumple la propiedad iii).

Sea $D_{o}(G)$ el álgebra de operadores diferenciales invariantes a izquierda por G y a derecha por K o sea el conjunto de operadores diferenciales que satisfacen

$$D^{L(g)} = D = D^{R(k)} \quad \forall g \in G, \quad \forall k \in K$$

donde L(g) y R(k) son las traslaciones a izquierda y derecha res-

pectivamente y $D^h f = (Df^{h^{-1}})^h$ con $f^h = f \cdot h^{-1}$ y h = L(g), R(k). En la igualdad (I)c) consideremos x fijo y apliquemos a ambos miembros un $D \in D_o(G)$, entonces

$$\Phi(x) \cdot D\Phi(y) = \int_{K} x(k^{-1}) D\Phi^{L(k^{-1}x^{-1})}(y) dk = \int_{K} x(k^{-1}) D\Phi(xky) dk$$

En y = e

$$\Phi(x).D\Phi(e) = \int_{K} x(k^{-1})(D\Phi)^{R(k^{-1})}(x) dk = \int_{K} x(k^{-1})D\Phi(x).x(k)dk =$$

$$= D\Phi(x).$$

Por consiguiente Φ es autofunción de Δ pues $\Delta \in D_o(G)$ (más aún es invariante a izquierda y derecha por G).

(II) \Rightarrow (I). Sea $D_o^k(G)$ el álgebra de restricciones de los elementos de $D_o(G)$ a las funciones que cumplen iii). Sabemos que $D_o^k(G)$ está generado por Δ y que contiene operadores elípticos, por lo tanto Φ es analítica por ser autofunción de un operador elíptico. Sean

$$f_1(y) = \Phi(x).\Phi(y)$$
 $f_2(y) = \int_K \chi(k^{-1}) \Phi(xky) dk$

Como recién, podemos probar que

$$\mathrm{Df}_1(e) = \Phi(x) \; \mathrm{D}\Phi(e) \quad \text{y} \; \mathrm{Df}_2(e) = \mathrm{D}\Phi(x) \; \text{para todo} \; \mathrm{D} \in \mathrm{D}_0^k(G).$$

Por ser Φ autofunción de todo $D \in D_o^k(G)$ resulta $Df_1(e) = Df_2(e)$ para todo $D \in D_o^k(G)$. Sea D un operador cualquiera de D(G) álgebra de operadores diferenciales invariantes a izquierda por G. Entonces

$$D \longrightarrow D_o = \int_{K} D^{R(k)} dk$$

es una proyección de D(G) sobre $D_{o}(G)$. Sea f una función que satisface iii):

$$D_o f(e) = \int_K D^{R(k)} f(e) dk = \int_K (Df^{R(k^{-1})}) (k^{-1}) dk = \int_K Df(k^{-1}) . \chi(k) dk$$

pero como $D^{L(k)}f = Df$ resulta $Df(e) = D^{L(k)}f(e) = (Df^{L(k^{-1})})(k^{-1}) = x(k)Df(k^{-1})$; reemplazando este resultado en la última integral se ve que $D_0f(e) = Df(e)$.

Como f_1 y f_2 están en las condiciones de la f se tiene que

$$Df_1(e) = D_0f_1(e) = D_0f_2(e) = Df_2(e) \quad \forall D \in D(G)$$

de esto y de la analiticidad de f_1 y f_2 resulta $f_1 = f_2$.

ESTRUCTURA COMPLEJA DE S². Sea S² la esfera unitaria en R³,

N = (0,0,1) el polo norte de S² y S = (0,0,-1) el polo sur. Sean $U_N = S^2 - \{N\}, \ U_S = S^2 - \{S\}, \ \Psi_N \colon U_N \longrightarrow C, \ \Psi_S \colon U_S \longrightarrow C$

$$\Psi_{S}(x,y,z) = \frac{x}{1+z} - i\frac{y}{1+z}$$
 $\Psi_{N}(x,y,z) = \frac{x}{1-z} + i\frac{y}{1-z}$

Los mapas (U $_{\rm N},\Psi_{\rm N}$) y (U $_{\rm S},\Psi_{\rm S}$) definen una estructura de variedad compleja en S 2 .

DIFEOMORFISMO ENTRE $SU(2)/_T Y S^2$.

Sea C* = C \cup { ∞ }, Ψ_N^* : S² \longrightarrow C* extensión continua de Ψ_N , definida así

$$\Psi_N^{\star_l}(m) = \Psi_N(m) \text{ si } m \neq N \text{ } y \text{ } \Psi_N^{\star}(N) = \infty.$$

 Ψ_{N}^{\star} es biholomorfa considerando en C* la estructura compleja dada por los mapas: $\theta_1: C \longrightarrow C$, $\theta_1(z) = z y \theta_2: C^{\star} - \{0\} \longrightarrow C$, $\theta_2(z) = \frac{1}{z}$ si $z \neq \infty$, $\theta_2(\infty) = 0$.

Sea
$$g = \begin{pmatrix} \frac{a}{-b} & \frac{b}{a} \end{pmatrix} \in SU(2)$$
, definimos $g:C^* \longrightarrow C^*$ por $g.z = \frac{az+b}{-\overline{b}z+\overline{a}}$
 $y \theta_g:S^2 \longrightarrow S^2$, $\theta_g(m) = \Psi_N^{*-1} \circ g \circ \Psi_N^*$.

Resulta que g $\longrightarrow \theta_g$ es una acción de SU(2) en S² y más aún esta acción es transitiva, pues es fácil ver que si z \in C existe $g_z = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in$ SU(2) tal que g_z .z = 0; sean ahora z,w \in C y sus correspondientes g_z y g_w entonces $h = g_w^{-1}.g_z$ cumple que h.z = w.

Por 10 tanto SU(2) es un grupo de Lie transitivo de transformaciones de S^2 .

de isotropía del punto N, pues si $g \in SU(2)$ y $z \in C$: $\lim_{z \to \infty} g \cdot z = \lim_{z \to \infty} \frac{az+b}{-\overline{b}z+\overline{a}} = -\frac{a}{\overline{b}} = \infty$ si b=0.

Sea α : SU(2)/ $_T$ \longrightarrow S² tal que α : gT \longrightarrow g.N, α es continua y biyectiva; como SU(2)/ $_T$ es compacto y S² es Hausdorff α resulta un homeomorfismo y por lo tanto es un difeomorfismo (Proposición 4.3, pág. 114 de Helgason).

SU(2) ACTUA EN S² POR ROTACIONES. Sea $g_o = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix}$, tenemos que SU(2) = $Tg_o^{-1}Tg_oT$ y que θ_t ($t \in T$), θ_{g_o} y $\theta_{g_o^{-1}}$ son rotaciones de S². En consecuencia θ_g rota a la esfera unitaria para todo $g \in SU(2)$

pues si g =
$$t_1 g_0^{-1} t_2 g_0 t_3$$
 entonces

$$\theta_g = \theta_{t_1} \cdot \theta_{g_0^{-1}} \cdot \theta_{t_2} \cdot \theta_{g_0} \cdot \theta_{t_3}$$

DETERMINACION EN s1(2,C) DE LOS SUBESPACIOS p_ Y p_.

Sea h el álgebra de Lie de T, p ortogonal en su(2) a h con respecto al producto escalar inducido por la forma de Killing, luego $su(2) = h \oplus p$.

Sea M = SU(2)/ $_T$, e = [e] clase de equivalencia de la identidad e de SU(2), π : SU(2) \longrightarrow M la proyección natural, entonces $d(\pi \circ \exp)_0: p \longrightarrow M_e$ es un isomorfismo y por lo tanto también lo es $d(\alpha \circ \pi \circ \exp)_0: p \longrightarrow S_N^2$. Extendemos éste último isomorfismo a uno β de p^c en T_N , donde p^c es el complexificado de p (p^c está contenido en su(2) $p^c \cong s1(2,C)$), $T_N = H_N \oplus \overline{H}_N$, $H_N y \overline{H}_N$ son los espacios tangentes antiholomorfo y holomorfo, respectivamente, de S^2 en el punto N. Sean en p^c los subespacios p_+ y p_- generados por X_1 y \overline{X}_1 respectivamente

$$X_1 = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} - i \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \qquad \overline{X}_1 = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + i \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

resulta $\beta(p_+) = H_N y \beta(p_-) = \overline{H}_N$.

Sean ∂ y $\overline{\partial}$ las componentes holomorfa y antiholomorfa respectivamente de la diferencial exterior d en S², d = ∂ + $\overline{\partial}$; $(\lambda_0, \lambda_1, \lambda_2)$ en cada punto $q \in SU(2)$ la base dual de $(\widetilde{H}_q, \widetilde{Y}_1_q, \widetilde{Y}_2_q)$ y $w_1 = \lambda_1 + i\lambda_2$, $\overline{w}_1 = \lambda_1 - i\lambda_2$ las formas duales de \widetilde{X}_1 y $\overline{\widetilde{X}}_1$ respectivamente:

 $(\alpha_0 \pi)^* \partial f + (\alpha_0 \pi)^* \overline{\partial} f = d(\alpha_0 \pi)^* f = h_1 \lambda_1 + h_2 \lambda_2$ (no tiene coeficiente en λ_2 pues es constante sobre cada clase de equivalencia)

$$= d(\alpha_0 \pi)^* f(\widetilde{Y}_1) \lambda_1 + d(\alpha_0 \pi)^* f(\widetilde{Y}_2) \lambda_2 =$$

$$= \widetilde{X}_1 (\alpha_0 \pi)^* f W_1 + \widetilde{X}_1 (\alpha_0 \pi)^* f \overline{W}_1$$

Luego
$$(\alpha_0 \pi)^* \overline{\partial} f = \widetilde{X}_1 (\alpha_0 \pi)^* f \cdot \overline{w}_1 \quad y \quad (\alpha_0 \pi)^* \partial f = \widetilde{X}_1 (\alpha_0 \pi)^* f \cdot w_1$$
 (1)

ALGUNAS PROPIEDADES DE LAS FUNCIONES ESFERICAS DEL PAR (SU(2),T).

TEOREMA 1. Φ esférica \Rightarrow $\overline{\Phi}$ esférica; ($\overline{\Phi}$ es la función conjugada de de Φ). Además:

- a) Si Φ es esférica asociada al carácter χ_n entonces $\overline{\Phi}$ es esférica asociada al carácter χ_n .
- b) Ambas satisfacen la ecuación $\Delta f = \lambda f$ con el mismo valor de λ . Demostración. Veamos que $\overline{\Phi}$ es esférica:

 $\overline{\Phi}$: SU(2) \longrightarrow C es C[∞] pues Φ lo es, además $\overline{\Phi}$ (e) = 1. $\overline{\Phi}(t_1xt_2) = \overline{\chi_n(t_1)\Phi(x)\chi_n(t_2)} = \chi_{-n}(t_1)\overline{\Phi(x)}\chi_{-n}(t_2)$ \forall $t_1,t_2 \in T;$ $x \in SU(2)$.

Sea λ tal que $\Delta \Phi = \lambda \Phi$ entonces $\Delta \overline{\Phi} = \overline{\Delta \Phi}$ pues Δ es un operador real, $\overline{\Delta \Phi} = \overline{\lambda \Phi} = \overline{\lambda \Phi} = \lambda \overline{\Phi}$ ya que los autovalores de Δ son reales.

OBSERVACION IMPORTANTE. Para conocer todas las funciones esféricas, por el teorema anterior, es suficiente hallar sólo las funciones esféricas asociadas a los caracteres x_n , $n \in N$, ya que las asociadas a los caracteres x_{-n} , $n \in N$, se obtendrán de las anteriores por conjugación.

TEOREMA 2. Sea Φ esférica, $\Psi(x) = \Phi(x^{-1})$; entonces Ψ es esférica y además:

- a) Si Φ está asociada al carácter χ_n entonces Ψ está asociada a χ_{-n} .
- b) Ambas satisfacen la ecuación Δf = λf con el mismo valor de λ .

Demostración. a) Obviamente Ψ es C^{∞} y Ψ (e) = 1.

$$\Psi(x).\Psi(y) = \Phi(x^{-1}).\Phi(y^{-1}) = \Phi(y^{-1})\Phi(x^{-1}) = \int_{\mathbb{T}} x_n(t^{-1})\Phi(y^{-1}tx^{-1})dt =$$

$$= \int_{\mathbb{T}} x_{-n}(t)\Psi(xt^{-1}y)dt = \int_{\mathbb{T}} x_{-n}(t^{-1})\Psi(xty)dt$$

Por lo tanto Ψ es esférica y está asociada al carácter x_{-n} .

b) Sea λ tal que $\Delta \Phi$ = $\lambda \Phi$. Como Ψ es esférica existe λ_1 tal que $\Delta \Psi$ = $\lambda_1 \Psi$. Si \widetilde{X} es un campo vectorial invariante a izquierda en SU(2) se puede ver que $\widetilde{X}^2 \Psi(e)$ = $\widetilde{X}^2 \Phi(e)$; y como $\Delta = \frac{1}{8} (\widetilde{H}^2 + \widetilde{Y}_1^2 + \widetilde{Y}_2^2)$ resulta $\Delta \Psi(e)$ = $\Delta \Phi(e)$ de donde λ_1 = λ .

TEOREMA 3. Sean Φ_1 y Φ_2 dos funciones esféricas asociadas al carácter χ_n y λ_1 y λ_2 tales que $\Delta\Phi_1$ = $\lambda_1\Phi_1$, $\Delta\Phi_2$ = $\lambda_2\Phi_2$. Si λ_1 = λ_2 entonces Φ_1 = Φ_2 .

Demostración. Sea $\lambda = \lambda_1 = \lambda_2$ y $\Phi = \frac{\Phi_1 + \Phi_2}{2}$, resulta que Φ es esférica asociada al carácter x_n , por lo tanto

 $\Phi(x).\Phi(x) = \int_{T} \chi_{n}(t^{-1})\Phi(xtx)dt = \frac{1}{2}\Phi_{1}^{2}(x) + \Phi_{2}^{2}(x) \text{ pero, por otra}$ $\text{parte } \Phi(x).\Phi(x) = \frac{1}{4} \left[\Phi_{1}(x) + \Phi_{2}(x)\right]^{2}.$

Igualando los segundos miembros resulta $0 = \frac{1}{4} \left[\Phi_1(x) - \Phi_2(x) \right]^2$. De los teoremas 1,2 y 3 se deduce

COROLARIO 1. $\overline{\Phi(x)} = \Phi(x^{-1})$ para toda función esférica Φ .

COROLARIO 2. Para todo $a \in SO(2)$ $\Phi(a) \in R$, para toda función esférica Φ .

Demostración. Existe $k \in T$, $k = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$, tal que $kak^{-1} = a^{-1}$ $\forall a \in SO(2)$. Si Φ es esférica $\Phi(a) = \Phi(kak^{-1}) = \Phi(a^{-1}) = \overline{\Phi(a)}$.

CONSTRUCCION DE PARTICULARES FUNCIONES Φ_n PARA CADA $n\in N$.

Definimos, para cada $n \in \mathbb{N}$, $\Phi_n : SU(2) \longrightarrow \mathbb{C}$, $\Phi_n \left(\frac{a}{b} \frac{b}{a} \right) = a^n$. Sea x_n el carácter irreducible de T, o sea

$$\chi_{n} \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} = e^{in\theta}$$

Veamos que Φ_n es esférica asociada a χ_n . Es obvio que Φ_n (e) = 1, $\Phi_n \in C^{\infty}(SU(2),T)$ $\Phi_n(tgt') = \chi_n(t)\Phi_n(g)\chi_n(t') \quad \forall \ t,t' \in T$, $g \in SU(2)$.

Extendemos el producto escalar definido en su(2) a s1(2,C) = $su(2) \oplus isu(2)$, o sea

$$\langle X+iY,X'+iY'\rangle = \langle X,X'\rangle + \langle Y,Y'\rangle + i\langle Y,X'\rangle - i\langle X,Y'\rangle.$$

Sean \widetilde{X} y \widetilde{X} los campos vectoriales invariantes a izquierda de SU(2) inducidos por los vectores ortonormales de su(2) $\overline{X} = \frac{1}{4}(\widetilde{Y}_1 + i\widetilde{Y}_2)$ y $X = \frac{1}{4}(\widetilde{Y}_1 - i\widetilde{Y}_2)$ (2)*, respectivamente.

Reemplazando $\widetilde{Y}_1 = 2(\widetilde{X} + \widetilde{X})$, $\widetilde{Y}_2 = 2i(\widetilde{X} - \widetilde{X})$ en $\Delta = \frac{1}{8}(\widetilde{H}^2 + \widetilde{Y}_1^2 + \widetilde{Y}_2^2)$ resulta

$$\Delta = \frac{\widetilde{H}^2}{8} + [\widetilde{X}, \widetilde{X}] + 2\widetilde{X}|\widetilde{X}$$
 (3)*

Pero $[\widetilde{X},\widetilde{\widetilde{X}}] = [X,\overline{X}] = -\frac{1}{8} i [Y_2,Y_1] = \frac{1}{4} i\widetilde{H}$, $\widetilde{H} \Phi_n = in\Phi_n y \widetilde{X}\Phi_n = 0$. Luego

$$\Delta \Phi_n(g) = -(\frac{n^2}{8} + \frac{n}{4}) \Phi_n$$

 ${ t s}^2$ ES UNA VARIEDAD RIEMANIANA EN LA QUE ${ t s}{ t u}({ t 2})$ ACTUA POR ISOMETRIAS.

Definimos en S_N^2 el producto escalar $\langle \ , \ \rangle_1$ que hace de $d(\alpha_0\pi)_e\colon p\longrightarrow S_N^2$ una isometría. Con respecto a este producto escalar la acción de T en S_N^2 a través de $(d\theta_t)_N$, $t\in T$, es por isometrías pues: sea $\overline{X}\in p$ y $X=d(\alpha_0\pi)_e\overline{X}$, entonces:

$$(d\theta_t)_N X = d(\alpha_0 \pi)_e Ad_t \overline{X}$$

donde $\mathrm{Ad}_{\mathtt{t}} = \mathrm{d}(\mathrm{I}_{\mathtt{t}})_{\mathtt{e}}, \ \mathrm{I}_{\mathtt{t}} \colon \mathrm{SU}(2) \longrightarrow \mathrm{SU}(2), \ \mathrm{tal} \ \mathrm{que} \ \mathrm{I}_{\mathtt{t}}(\mathtt{g}) = \mathtt{tgt}^{-1};$ como el producto escalar definido en p es invariante por la acción de $\mathrm{Ad}_{\mathtt{t}}, \ (\mathrm{d}\theta_{\mathtt{t}})_{\mathtt{N}}$ es una isometría.

Sea $m \in S^2$, $g \in SU(2)$ tal que $m = (\alpha_0 \pi)(g)$; definimos en S_m^2 el siguiente producto escalar:

$$(X_{1m}, X_{2m})_1 = (d\theta_{g^{-1}} X_{1m}, d\theta_{g^{-1}} X_{2m})_1 X_{1m}, X_{2m} \in S_m^2$$

Este producto está bien definido (esto es, no depende de g tal que $(\alpha \circ \pi)(g) = m)$ y hace que la acción de SU(2) en S² sea por isometrías.

Este producto escalar definido en S_m^2 se extiende a su complexificado T_m y pasan al dual T_m^* (\forall $m \in S^2$), entonces dadas dos 1-formas w_1 y w_2 en S^2 :

$$\langle w_{1m}, w_{2m} \rangle_1 = \langle [(\alpha_0 \pi)^* w_1]_g, [(\alpha_0 \pi)^* w_2]_g \rangle$$

Con respecto a la métrica inducida por R^3 en S^2 , que la indicamos \langle , \rangle_2 , la acción de SU(2) en S^2 es también por isometrías pues, como vimos, SU(2) actúa en S^2 por rotaciones.

Como T_N tiene dimensión compleja 1, es irreducible por la acción de T y por lo tanto los productos escalares $\langle \ , \ \rangle_1$ y $\langle \ , \ \rangle_2$ son iguales salvo un factor constante k (lema de Schur), que resulta iguala 2, es decir

$$\langle X_{1m}, X_{2m} \rangle_{1} = 2 \langle X_{1m}, X_{2m} \rangle_{2}$$
, $\langle w_{1m}, w_{2m} \rangle_{1} = \frac{1}{2} \langle w_{1m}, w_{2m} \rangle_{2}$
 $X_{1m}, X_{2m} \in T_{m}$, $w_{1m}, w_{2m} \in T_{m}^{*}$.

Sean dg y dt las únicas medidas invariantes normalizadas en SU(2) y T respectivamente. Sean dg $_{\rm T}$ y dm las únicas medidas normalizadas SU(2)-invariantes en SU(2)/ $_{\rm T}$ y S 2 respectivamente (Helgason pág. 369).

Dadas dos 1-formas en S^2 w₁ y w₂, definimos para cada n \in N:

$$\langle w_1, w_2 \rangle = \int_{SU(2)} |\Phi_n(g)|^2 \langle [(\alpha_0 \pi)^* w_1]_g, [(\alpha_0 \pi)^* w_2]_g \rangle dg$$

Veamos que: $\langle w_1, w_2 \rangle = \int_{S^2} |\Phi_n(g)|^2 \frac{1}{2} \langle w_{1m}, w_{2m} \rangle_2 dm$ con g tal

que
$$(\alpha_0 \pi)(g) = m$$
.

$$\langle w_{1}, w_{2} \rangle = \int_{SU(2)/T} [\int_{T} |\Phi_{n}(g)|^{2} \langle [(\alpha \circ \pi)^{*}w_{1}]_{gt}, [(\alpha \circ \pi)^{*}w_{2}]_{gt} \rangle dt] dg_{T} =$$

$$= \int_{SU(2)/T} |\Phi_{n}(g)|^{2} \langle [(\alpha \circ \pi)^{*}w_{1}]_{g}, [(\alpha \circ \pi)^{*}w_{2}]_{g} \rangle dg_{T} =$$

$$= \int_{S^{2}} |\Phi_{n}(g)|^{2} \frac{1}{2} \langle w_{1m}, w_{2m} \rangle_{2} dm$$

Sea $n \in \mathbb{N}$, para este n consideremos en S^2 el producto escalar definido anteriormente, sea $f \in C^{\infty}(S^2,C)$, γ una (1,0)-forma diferenciable sobre S^2 , la relación $\langle \partial f, \gamma \rangle = \langle f, \delta \gamma \rangle \forall f$ define el opera-

dor δ adjunto de δ .

LEMA 1. Sea $h \in C^{\infty}(S^2,C)$ entonces

$$(\alpha_0 \pi)^* \delta \partial h = -\Phi_n^{-1} \cdot [\widetilde{X} \widetilde{X} (\Phi_n \cdot (h_0 \alpha_0 \pi))]$$

donde \overline{X} y X son los definidos en (2)*.

Demostración. Sea $X = X_1 + iX_2$ un campo vectorial complejo sobre SU(2), f y g dos funciones de $C^{\infty}(SU(2),C)$, entonces:

$$\int_{SU(2)} Xf \, \overline{g} = - \int_{SU(2)} f \, \overline{\overline{X}g} \quad (Helgason pág. 451).$$

Sean w la (1,0)-forma dual de \widetilde{X} (definido en (2)*), γ una (1,0)-forma sobre S² tal que $(\alpha_0 \pi)^* \gamma_g = \varphi(g) w_g$, $f \in C^{\infty}(S^2,C)$, por (1)* $(\alpha_0 \pi)^* \partial f = \widetilde{X}(f_0 \alpha_0 \pi) w$.

$$\langle \partial f, \gamma \rangle = \int_{SU(2)} |\Phi_{n}(g)|^{2} \langle [(\alpha_{o}\pi)^{*}\partial f]_{g}, [(\alpha_{o}\pi)^{*}\gamma]_{g} \rangle dg =$$

$$= \int_{SU(2)} \langle \Phi_{n}(g)\widetilde{\chi}(f_{o}\alpha_{o}\pi)(g)w_{g}, \Phi_{n}(g)\varphi(g)w_{g} \rangle dg =$$

$$= \int_{SU(2)} \widetilde{\chi}(\Phi_{n}.(f_{o}\alpha_{o}\pi))(g) \overline{\Phi_{n}.\varphi(g)} \langle w_{g}, w_{g} \rangle dg =$$

$$= -\int_{SU(2)} \Phi_{n}.(f_{o}\alpha_{o}\pi)(g) \widetilde{\chi}(\Phi_{n}.\varphi)(g) dg =$$

$$= -\int_{SU(2)} \Phi_{n}.(f_{o}\alpha_{o}\pi)(g) \Phi_{n}\Phi_{n}^{-1} \widetilde{\chi}(\Phi_{n}.\varphi)(g) dg =$$

$$= -\int_{SU(2)} |\Phi_{n}(g)|^{2} f_{o}\alpha_{o}\pi(g) \Phi_{n}^{-1}\widetilde{\chi}(\Phi_{n}.\varphi)(g) dg = \langle f, \delta\gamma \rangle$$

Luego $(\alpha \circ \pi)^* \delta \gamma = -\Phi_n^{-1} \cdot [\widetilde{\widetilde{X}}(\Phi_n \cdot \varphi)]$. Sea $h \in C^{\infty}(S^2, C)$, entonces $(\alpha \circ \pi)^* \partial h = \widetilde{X}(h \circ \alpha \circ \pi) w y (\alpha \circ \pi)^* \delta \partial h = -\Phi_n^{-1} \cdot \widetilde{\widetilde{X}}\widetilde{X}(\Phi_n \cdot (h \circ \alpha \circ \pi))$.

LEMA 2. Con las hipótesis del lema anterior sea h tal que:h es constante sobre los paralelos, h(N)=1 y h autofunción de $\delta \delta$ con un autovalor real γ , entonces la función $\Phi=\Phi_n$. $(h_0\alpha_0\pi)$ es esférica asociada al carácter χ_n .

Demostración. $\Phi \in C^{\infty}(SU(2),C)$ y $\Phi(e) = 1.h(N) = 1.$

Sean $t_1, t_2 \in T$, $x \in SU(2)$ entonces

$$\Phi(t_1xt_2) = \chi_n(t_1)\Phi_n(x)\chi_n(t_2).h\theta_{t_1}(\alpha_0\pi)(x) =$$

= $x_n(t_1)\Phi_n(x)x_n(t_2).h_0\alpha_0\pi(x)$ pues h es constante sobre los paralelos y θ_{t_1} es una rotación de la esfera alrededor del eje z. Por lo tanto

$$\Phi(t_1xt_2) = x_n(t_1)\Phi(x)x_n(t_2) \quad \forall \ t_1,t_2 \in T, \ x \in SU(2).$$

Por (3)* $\Delta = \frac{1}{8} \widetilde{H}^2 + \frac{1}{4} i\widetilde{H} + 2\widetilde{X}\widetilde{X}$. Como $h_0 \alpha_0 \pi$ es constante sobre las coclases a izquierda de T resulta $\widetilde{H}(h_0 \alpha_0 \pi) = 0$, entonces $\Delta[\Phi_n.(h_0 \alpha_0 \pi)] = (\frac{1}{8} \widetilde{H}^2 \Phi_n).(h_0 \alpha_0 \pi) + (\frac{1}{4} i\widetilde{H}\Phi_n).(h_0 \alpha_0 \pi) + 2\widetilde{X}\widetilde{X}(\Phi_n.(h_0 \alpha_0 \pi))$ Del LEMA 1 y de $\delta \partial h = \gamma h$ resulta $2\widetilde{X}\widetilde{X}(\Phi_n.(h_0 \alpha_0 \pi)) = -2\Phi_n \delta \partial h_0 (\alpha_0 \pi) = -2\Phi_n \delta \partial h_0 (\alpha_0 \pi)$.

Por lo tanto $\Delta[\Phi_n.(h_0\alpha_0\pi)] = -(\frac{n^2}{8} + \frac{n}{4} + 2\gamma).\Phi_n.(h_0\alpha_0\pi).$

OBSERVACION. Por el lema anterior la solución del problema diferencial $\delta\partial h=\gamma h$, h(N)=1, h constante sobre los paralelos, $h\in C^\infty(S^2,C)$, $\gamma\in R$ nos proporcionará una familia de funciones esféricas. Más aún, veremos luego que resolviendo este problema diferencial para los γ tales que $4\gamma=k(k+n+1)$, $k,n\in N$ se obtendrán todas las funciones esféricas asociadas a los χ .

NOTA. Si en S 2 hubiéramos considerado la estructura compleja conjugada de la definida, en lugar de δ tendríamos ahora $\overline{\delta}$.

PLANTEO Y RESOLUCION DE $\delta \partial h = \gamma h$.

Sea Ψ_N la proyección estereográfica desde el polo norte de S^2 , $\Psi_N(x,y,z) = \frac{x+iy}{1-z} = a+ib$, el operador ϑ en este mapa tiene la siguiente expresión:

$$\partial = \frac{1}{2} \left(\frac{\partial}{\partial a} - i \frac{\partial}{\partial b} \right) (da + idb)$$

y en función de las coordenadas (φ, θ) :

$$\partial = \frac{1}{2} \left[\left(\frac{\partial}{\partial \varphi} - i \operatorname{sen}\theta \right) \frac{\partial}{\partial \theta} \right] d\varphi + \left(\frac{i}{\operatorname{sen}\theta} \frac{\partial}{\partial \varphi} + \frac{\partial}{\partial \theta} \right) d\theta \right]$$

Sea $h \in C^{\infty}(S^2,C)$ constante sobre los paralelos, o sea $h(\varphi,\theta) = h(\theta)$ y $f \in C^{\infty}(S^2,C)$:

$$\langle \partial f, \partial h \rangle = \frac{1}{2} \int_{S^2} |\Phi_n(g)|^2 \langle \partial f_m, \partial h_m \rangle_2 dm$$

donde $g \in SU(2)$ es tal que $\theta_g.m = N$.

Sea g = $t_1 a t_2$, $t_i \in T$, $a \in SU(2)$; por lo tanto $|\Phi_n(g)| = |\Phi_n(a)|$; sea a = $\begin{pmatrix} \cos(\alpha/2) & -\sin(\alpha/2) \\ \sin(\alpha/2) & \cos(\alpha/2) \end{pmatrix}$, se proyecta sobre S^2 al punto

 θ_a .N; ahora bien, θ_a .N = (φ, θ) con φ = arctg(0) o sea φ = 0 of φ = π ; θ = arcos(cos α) o sea θ = α por 1o tanto 1os puntos (x,0,z) del meridiano correspondiente a φ = 0 of φ = π y 0 \leq θ \leq π , provienen (por α o π) de elementos de SO(2).

Si $m \in S^2$ tiene coordenadas esféricas (φ, θ) y θ_{φ} . m = N con $g = t_1 at_2$,

resulta

$$|\Phi_{n}(g)|^{2} = |\Phi_{n}(a)|^{2} = (\cos \frac{\theta}{2})^{2n} = (\frac{1+\cos \theta}{2})^{n}.$$

Sea Ω = sen θ d φ d θ , 2-forma sobre S²; como SU(2) actúa por rotaciones, Ω es SU(2)-invariante.

$$\langle \partial f, \partial h \rangle = \frac{1}{32\pi} \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} \left(\frac{1 + \cos \theta}{2} \right)^{n} \langle \left(\frac{\partial f}{\partial \varphi} - i \operatorname{sen} \theta \right) \frac{\partial f}{\partial \theta} \right) d\varphi +$$

$$+ \left(\frac{\partial f}{\partial \theta} + \frac{i}{\operatorname{sen} \theta} \right) \frac{\partial f}{\partial \varphi} d\theta , \quad \frac{\partial h}{\partial \theta} d\theta - i \operatorname{sen} \theta \right) \frac{\partial h}{\partial \theta} d\varphi \rangle \operatorname{sen} \theta d\varphi d\theta =$$

$$= \frac{i}{16\pi} \int_{\theta=0}^{\pi} \left(\frac{1 + \cos \theta}{2} \right)^{n} \frac{d\overline{h}}{d\theta} d\theta \int_{\varphi=0}^{2\pi} \frac{\partial f}{\partial \varphi} d\varphi +$$

$$+ \frac{1}{16\pi} \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} \left(\frac{1 + \cos \theta}{2} \right)^{n} \operatorname{sen} \theta \frac{\partial f}{\partial \theta} d\overline{h} d\varphi d\theta$$

El primer término es nulo pues $\int_{\varphi=0}^{2\pi} \frac{\partial f}{\partial \varphi} \, \mathrm{d}\varphi = 0$, al segundo término lo integramos por partes

$$\label{eq:def_def} \left\langle \, \partial \, f \, , \partial \, h \, \, \right\rangle \; = \; - \; \frac{1}{1 \, 6\pi} \, \, \int_{\varphi=0}^{\pi} \, \left(\frac{1 + \cos \, \theta}{2} \right)^n \left[\, \frac{\mathrm{d}^2 \overline{h}}{\mathrm{d} \theta^2} \, + \, \frac{(n+1) \cos \, \theta \, - \, n}{\sin \, \theta} \, \, \frac{\mathrm{d} \overline{h}}{\mathrm{d} \theta} \, \, \right] \, .$$

. $f(\varphi,\theta)$ sen θ $d\varphi$ $d\theta$ = $\langle f,\delta \partial h \rangle$.

Entonces $\delta \partial h = -\frac{1}{4} \left(\frac{d^2 h}{d\theta^2} + \frac{(n+1)\cos\theta - n}{\sin\theta} \frac{dh}{d\theta} \right) = \gamma h$, y queda plantea-

da la ecuación diferencial
$$\frac{d^2h}{d\theta^2} + \frac{(n+1)\cos\theta - n}{\sin\theta} \frac{dh}{d\theta} + 4 h = 0$$
,

 $0 \leqslant \theta \leqslant \pi$, h(0) = 1.

Haciendo el cambio $x=\cos\theta$, resulta la ecuación diferencial $(1-x^2) \ \frac{d^2h}{dx^2} + [n-(n+2)x] \frac{dh}{dx} + 4\gamma h = 0, -1 \leqslant x \leqslant 1, \text{ con la condición}$ h(1)=1 cuyas soluciones para $4\gamma=k(k+n+1), k\in\mathbb{N}, \text{ son los polinomios de Jacobi } P_k^{(0,n)}$ (Szegő pág. 60-61).

$$P_k^{(0,n)}(x) = 1 + \sum_{\nu=1}^k (-1)^{\nu} {k \choose \nu} {k+n+\nu \choose \nu} (\frac{1-x}{2})^{\nu}$$

PROPIEDADES DE $P_k^{(0,n)}$.

I) $P_k^{(0,n)}(1) = 1$; II) $P_k^{(0,n)}(x) \in C^{\infty}([-1,1],R)$, más aún es un polinomio.

III) $P_k^{(0,n)}(\cos\theta) = 1 + \sum_{\nu=1}^k (-1)^{\nu} {k \choose \nu} {k+n+\nu \choose \nu} (\frac{1-\cos\theta}{2})$ es par como función de $\theta \cdot (-\pi \leq \theta \leq \pi)$.

IV) Para cada $n \in N \{P_k^{(0,n)}\}_{k \in N}$ forman un sistema ortogonal completo de polinomios en el intervalo [-1,1] con la medida $(1+x)^n dx$ (Erdélyi cap. 10).

Las funciones $h_{n,k}$, $n,k \in N$, definidas por

$$h_{n,k}(\varphi,\theta) = P_k^{(0,n)}(\cos \theta)$$

se extienden a funciones C^{∞} sobre todo el S^2 , por ser constantes sobre los paralelos y por la propiedad III que nos dice que $h_{n,k}$ son C^{∞} sobre los meridianos.

Por lo tanto las funciones $h_{n,k}$ son todas las soluciones de $\delta \partial h = \gamma h$ con $4\gamma = k(k+n+1)$, h(N) = 1, $h \in C^{\infty}(S^2,C)$; $k \in N$. Luego todas las funciones $\Phi_{n,k} \colon SU(2) \longrightarrow C$ definidas por $\Phi_{n,k} = \Phi_n \cdot (h_{n,k} \circ \alpha \circ \pi)$, $k \in N$, son esféricas asociadas al carácter χ_n .

TEOREMA. Las funciones $\Phi_{n\,,\,k}$ son todas las funciones esféricas asociadas a $\chi_n.$

Demostración. Supongamos que Φ_n' es una función esférica asociada al carácter χ_n distinta de $\Phi_{n,k}$ para todo k. Sea $\lambda \in \mathbb{R}$ tal que $\Delta \Phi_n' = \lambda \Phi_n'$. Por TEOREMA 3 $\lambda \neq \lambda_{n,k}$ si $\lambda_{n,k}$ es el autovalor de $\Phi_{n,k}$ y como Δ es autoadjunto resulta

$$0 = \int_{SU(2)} \Phi'_{\mathbf{n}}(g) \ \overline{\Phi_{\mathbf{n},\mathbf{k}}(g)} \ dg = \int_{SU(2)} \Phi'_{\mathbf{n}}(g) \ \overline{\Phi_{\mathbf{n}}(g)} . \overline{h_{\mathbf{n},\mathbf{k}} \circ \alpha \circ \pi(g)} \ dg =$$

$$= \int_{SU(2)/T} \{ \int_{T} \Phi'_{\mathbf{n}}(gt) \ \overline{\Phi_{\mathbf{n}}(gt)} . \overline{h_{\mathbf{n},\mathbf{k}} \circ \alpha \circ \pi(gt)} \ dt \} \ dg_{T} =$$

$$= \int_{SU(2)/T} \Phi'_{\mathbf{n}}(g) \ \overline{\Phi_{\mathbf{n}}(g)} . \overline{h_{\mathbf{n},\mathbf{k}} \circ \alpha \circ \pi(g)} \ dg_{T} = \int_{S^{2}} \Phi'_{\mathbf{n}}(g) \ \Phi_{\mathbf{n}}(g) . h_{\mathbf{n},\mathbf{k}}(m) \, dm =$$

g es tal que $\alpha_0\pi(g)=m$

$$= \frac{1}{4\pi} \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} \Phi_{\mathbf{n}}^{!}(\mathbf{g}(\theta)) \ \overline{\Phi_{\mathbf{n}}(\mathbf{g}(\theta))} \ \mathbf{P}_{\mathbf{k}}^{(0,\mathbf{n})}(\cos \theta) \ \sin \theta \ d\varphi \ d\theta = \\ \mathbf{g}(\theta) = \begin{bmatrix} \cos(\theta/2) & -\sin(\theta/2) \\ \sin(\theta/2) & \cos(\theta/2) \end{bmatrix}$$

$$= \frac{1}{2} \int_{\theta=0}^{\pi} \Phi_{\mathbf{n}}^{!}(\mathbf{g}(\theta)) (\cos \frac{\theta}{2})^{\mathbf{n}} P_{\mathbf{k}}^{(0,\mathbf{n})}(\cos \theta) \sin \theta d\theta =$$

poniendo $x = \cos \theta$ obtenemos

$$= -\frac{1}{2} \int_{x=-1}^{1} \frac{\Phi_{n}^{\prime}(g(\theta(x)))}{(\frac{1+x}{2})^{\frac{n}{2}}} (\frac{1+x}{2})^{n} P_{k}^{(0,n)}(x) dx = 0 \quad k \in \mathbb{N}$$

Por IV
$$\frac{\Phi_n^!(g(\theta(x)))}{(\frac{1+x}{2})^{\frac{n}{2}}} = 0$$
, para x=1 resulta $\Phi_n^!(e) = 0$, lo que contra-

dice que Φ'_n sea esférica.

Hemos obtenido así todas las funciones esféricas del par (SU(2),T) asociadas a los caracteres x_n , $n \in \mathbb{N}$: sea $g \in SU(2)$, θ , θ_1 , $\theta_2 \in \mathbb{R}$ tales que $g = t_1 a_{\theta} t_2$ donde:

$$\mathbf{t}_{\mathbf{j}} = \begin{pmatrix} e^{\mathbf{i}\theta}\mathbf{j} & 0 \\ 0 & e^{-\mathbf{i}\theta}\mathbf{j} \end{pmatrix} \quad \mathbf{j} = \mathbf{1}, 2 \quad \mathbf{y} \quad \mathbf{a}_{\theta} = \begin{pmatrix} \cos(\theta/2) & -\sin(\theta/2) \\ \sin(\theta/2) & \cos(\theta/2) \end{pmatrix}$$

entonces

$$\Phi_{n,k}(g) = e^{in(\theta_1 + \theta_2)} [1 + \sum_{\nu=1}^{k} (-1)^{\nu} {k \choose \nu} {k+n+\nu \choose \nu} (\frac{1-\cos\theta}{2})] (\cos\frac{\theta}{2})$$

 $n,k \in N$.

Conjugando las $\Phi_{n,k}$ obtenemos todas las funciones esféricas asociadas a los caracteres χ_{-n} , $n \in N$ y las notamos con $\Phi_{-n,k} = \overline{\Phi_{n,k}}$.

$$\Phi_{-n,k}(g) = e^{-in(\theta_1+\theta_2)} [1 + \sum_{\nu=1}^{k} (-1)^{\nu} {k \choose \nu} {k+n+\nu \choose \nu} (\frac{1-\cos\theta}{2})] (\cos\frac{\theta}{2})^n,$$

 $n,k \in N$.

Para conocer todas las funciones esféricas del par (SU(2),SO(2)) observemos que: Si K y K' son toros maximales en SU(2), x y x' caracteres irreducibles de K y K' respectivamente tales que $K' = gKg^{-1} = I_gK$, $x' = x_oI_{g^{-1}}$, entonces:

TEOREMA. Φ es una función esférica del par (SU(2),K) asociada al carácter X sii $\Phi \circ I_{g^{-1}}$ es una función esférica del par (SU(2),K') asociada a X'.

Demostración. Condición suficiente.

$$\begin{split} \Phi \circ I_{g^{-1}}(x) \cdot \Phi \circ I_{g^{-1}}(y) &= \int_{K} x(k^{-1}) \Phi(g^{-1}xgkg^{-1}yg) dk = \\ &= \int_{K'} x(I_{g^{-1}}k')^{-1}) \Phi(g^{-1}xg(I_{g^{-1}}k')g^{-1}yg) dk' = \\ &= \int_{K'} x'(k'^{-1}) \Phi \circ I_{g^{-1}}(xk'y) dk' \end{split}$$

Condición necasaria. Resulta de la primera parte de la demostración pues

$$\Phi = (\Phi \circ | I_{g^{-1}}) \circ I_g , K = g^{-1}k'g \quad y \quad x = x' \circ I_g.$$

En consecuencia como $g_0 T g_0^{-1} = SO(2)$ con $g_0 = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix}$, resúlta que $\Phi_{n,k^0} I_{g_0^{-1}}$ $n \in \mathbb{Z}$, $k \in \mathbb{N}$, son todas las funciones esféricas irreducibles del par (SU(2),SO(2)).

BIBLIOGRAFIA

BISHOP - CRITTENDEN, Geometry of manifolds, Academic Press. 1964.

ERDELYI - MAGNUS - OBERHETTINGER - TRICOMI, Higher trascendental functions, Vol.2 Mc.Graw-Hill 1953.

SIGURDUR HELGASON, Differential Geometry and symetric spaces, 1962.

JAMES MORROW - KUNIHIKO KODAIRA, Complex manifolds, Holt, Rinehart and Winston, Inc. 1971.

GABOR SZEGÖ, Orthogonal polynomials, American Mathematical Society, 1959.

Instituto de Matemática Astronomía y Física (IMAF) Universidad Nacional de Córdoba.

Recibido en mayo de 1976.