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INSCRIBING SIMPLICES IN CONVEX BODIES

Jorge H. Nanclares and Fausto A. Toranzos

1. INTRODUCTION. It is a well known fact that in a plane conyex body
it is possible to inscribe equilateral triangles in every position
provided the boundary of the convex body is smooth and rotund. The

aim of this paper is to explore the possibilities of generalization

of this fact, regarding the space dimension and the’regularify of the
inscribed simplex. This problem can also be formulated as follows: Is
it possible to find equidistant (k+1)-pointed sets on the boyndary of
a k-dimensional convex body?. This question seems to be conmected with
the construction of equilateral sets in different metric spaces. See
for example Blumenthal [1], Blumenthal & Kelly [ 2], Haantjes [3].

A convex body is a convex compact set with nonempty interior. A convex
set K is smooth if for every x in bdry(K) there exists a single sup- -
port hyperplane intersecting K at x. K is rotund if every support hy-

perplane meets K in a single point.

A k-simplex is the convex hull of k+1 affimnely independent points. A 7
regular k-simplex is one having all its edges of equal length. A k- ‘
simplex is isosceles if one its facets is a regular (k-1)-simplex and
the remaining vertex is equidistant from all the other vertices. The
regular facet of such simplex will be called its base and the remai-
ning vertex its main vertex. A k-simplex T is inscribed in the convex
body K if every vertex of T belongsto bdry(X).

Let H,; be the group of transformations defined by the formula:
h(x) = A Idx + b

where Id is the identity matrix, A is a nonnegative real number and
b is a vector of Ed. Two d-simplices T and T' are similarly placed if
there is a h in Hd such that T' = h(T).

We define the measure of the dihedral angle limited by the hyperplanes
H, and H, as the measure of the plane angle formed by the inner nor-
mals to H; and H,.

2. INSCRIPTION OF REGULAR SIMPLICES: TWO APPROACHES.

In the first theorem of this section we attack the problem of inscri-

. bing a regular simplex in a fixed position into a convex body. The
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second theorem searches the possibility of inscription of a regular
simplex having a vertex- in a given boundary point of the convex set..
The question about the uniqueness of the inscribed simplex ‘is conside-
red in both cases.

THEOREM 2.1. Let K be a rotund and smooth convex body in Ed, and T a
regular d-simplex. There exists a regular d-simplex T' inscribed in K

and similarly placed with T.

Proof. The proof is by induction on d. For d=1 the theorem is t}ivial
since all the 1-simplices are similarly placed and every 1-dimensional
convex body is itself a 1-simplex. Let K be a rotund and smooth k-di-
mensional.convex body and T a regular k-simplex. Select a facet F of
T, and let v be the vertex of T opposite to F. Denote by Hj and .H;

the support hyperplanes of K parallell to F, being HO the first one
encountered when travelling in the direction from F to v. Define

Hu = a H1 + (1-a)H0 for 0 < a < 1. Clearly Ha intersects K and the

set Kcl =Kn Ha is a rotund and smooth (k-1)-dimensional convex body.
By the inductive hipothesis there exists a regular (k-1)-simplex Fu
similarly placed with F and inscribed in K . Denote by z, the centroid
of Fa,_by Ra the ray issuing from Z,» perpendicular to H, and poin-
ting towards H,, and P, the unique point of intersection of R with
bdry (K). Finally define: Ta = conv(Fu U{pa}). Ta is an isosceles k-
simplex inscribed in K and having base Fa and main vertex Py- Denote
by a(a) the angle formed by a pair of nonbasic edges of Ta. Clearly,
the length of a basic edge of Ta is not greater than the diamater of
Ku. Hence by the rotundity condition, for « close to 0 that edge has
length ¢close to 0. On the contrary, for a close to 0, a non basic ed-
ge would have length close to the width of K in the direction of Ra.
As a conclusion, 1im a(a) = 0 for a tending to 0. On the other hand,
for a tending to 1: the height of Ta decreases faster than the length
‘'of a basic edge, owing to the smoothness of K. Hence Tu approaches a
degenerate isosceles k-simplex, i.e. a regular (k-1)-simplex with seg-
ments joining the vertices with the centroid; and a(a) becomes greater
than 7/2. The E, 's can be chosen in such a way that for L — o F,
converge to Ea. Hence a(a) results a continuous function, and by
Bolzano's theorem there exists a, such that a(ao) = m/3. But then the

basic and the nonbasic edges of T9 .will have equal lenghth, and Ta
0
will be the regular k-simplex we ‘seek.

0

The following lemma will allow us to construct a counterexample to
the uniqueness of the inscribed simplex.

LEMMA. Let P be a convex polytope. There exists a smooth aﬁd rotund
convex body K such that P is inseribed in K.

Proof. Let ext (P) = {pl;pz;...spkl be the set of vertices of P. For
. .each p; let Hy be a supporting hyperplane of P meeting P only at p..
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Let c; be a point on~the same side of Hi as P, and such that: (i) the
segment [c > Py ] is orthogonal to H, i’ and (ii) the distance

d1 d(c1 s P ) is greater than the dlstance from c; to the remaining
vertices of P. Let B be the ball with center c; and radius di’ and
consider the set K =N B K0 is rotund and P 1s inscribed in it.

Furthermore the set of po1nts of non-smoothness of bdry(K ) is closed
and disjoint with P. Hence, there is £ > 0 such that every point of
non-smoothness is at distance greater than ¢ from P.

For each & > 0 1let Ké = {x € K0 / d(x,CKO) > 48} and

K = {t/d(t,Ké) < 8}. The sets K6 are smooth and rotund, they are in-
cluded in KO and converge to it as & tends to 0. Moreover, these sets
modify K, only in the neigbourhood of points of non-smoothness: Since
we have seen that such points are at a positive distance from P, the-
re exists § > 0 such that K6 D P. Clearly such K6 verifies the thesis.

Counterexample to the uniqueness.

Let T be a regular tetrahedron in E3>and let p and q be the midpoints
of two non-adjacent edges of T. Let T' be u translated of T in the
direction B_a and define P = conv(T UT'), P is a polytope having 8
vertices. Let K be the smooth and rotund convex body furnished by

the previous lemma. Then T and T' are similarly placed and inscribed
in K.

THEOREM 2.2. Let K be a rotund and smooth convex body in Ed (d=>2),
and let p € bdry K. There exists a regular d-simplex inscribed in K
and having p as a vertex. Furtﬁermore, if d > 2, there are infinitely
many of such simplices for .each p.

Proof. Our proof is by induction on the dimension. For d=2 the theorem
is a well known exercise on plane iconvexity (See, for instance, ‘
Yaglom & Boltyansky [4]). Assume that d > 3. Denote by H the (unique)
support hyperplane of K at p, and by V a (d-2)-flat included in H and
containing p. For each a such that 0 K a <7 let H be a hyperplane
intersecting H in V and formlng with H a dihedral angle «, measured
from H to H in a certain fixed senmse. Define Sa = Ha N K. By the
smoothness of K, for each a, S“ is a (d-1)-dimensional convex body.
Hence, by the inductive hypothesis, there exists a regular (d-1)-
simplex F inscribed in Sa and having p as a vertex. Denote by Ra

the ray 1ssu1ng from the centroid of F o’ normal to H and in the sen-
se of growth of a, and let. P, be the only point of bdry K contained

in R . Clearly the set T = conv (F U {p }) is an isosceles d-simplex
1nscr1bed in-K and hav1ng base F and main vertex P, Define fl(a) as
the length of an edge of F o’ and f (x) as the length of a non-basic
edge of T . Finally denote f(a) = f () - f (¢). For a close to 0
f(a) is negatlve since f (a) is close to the width of K in the dlrec-
tion orthogonal to H, and f (¢) tends to 0 by the rotundity of K. On
the other hand, for « tend1ng to m, all the non-basic facets of T,
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approaéh the same hyperplane (namely H) by the smoothness assumption.
Hence the distance from P, to Fa tends to 0 faster than fl(a)‘aﬂd f(a)
becomes positive. But f(a) is a continuous function of a, hence, by
Bolzano's theorem, there exists an @, such' that f(ao) =0. Clearly,

T = Tuo is a regular d-simplex verifying the thesis.

Furthermore, the selection of the flat V assures us that we‘can fix
arbitrarily the intersection of H with the hyperplane confaining one
of the facets of T incident on p. Since a d-simplex has éxactly d fa-
cets incident on a vertex, and if d > 2, there are infihitely many
such flats, the second part of the thesis follows.

3. INSCRIPTION OF‘ARBITRARY SIMPLICES.

In this section we intend to generalize theorem 2.1, to arbitrary
simplices.

THEOREM 3.1. Let K be a rotund and smooth convex body in ¢ and T an
‘arbitrary d-simplex. There exists a d-simplex T' inseribed in K and

similariy placed with T.

Proof.There exists a non-singular affine transformation A: g4 — g4
such that T1 = A(T) is a regular d-simplex. Denote by K1 = A(K). It
is. easy to verify that K is a rotund and smooth convex body. By theo-
rem 2.1 there is a regular d simplex T inscribed in K1 and similarly
placed with T Let T' = (T ). Clearly, this is a d-simplex inscri-
bed in K. Furthermore, owing to the normality of the group Hd as a
subgroup of the affine group, T' and T are similarly placed.

Unfortunately, the same method will not yield a generalization of
theorem 2.2. This is due to the non-normality of the subgroup of simi-
larities in the affine group.

L, CONCLUDING REMARKS.

Some open questions related to our results are:

1. Is it possible to prove analogous to theorems 2.1 or 2.2 for sets
of constant width?.

2. What is the largest family of convex bodies for which this results
remain valid?.

3. Does the fact that all the inscribed regular 51mp11ces have the
same edgelength characterize the n-ball?,
/
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