Revista de la Unión Matemática Argentina Volumen 29, 1979.

A REMARK ON TERRIBLE POINTS

Orlando E. Villamayor¹ and Orlando Villamayor $(h)^2$

Dedicado al Profesor Luis A. Santaló

In the study of curves in a projective plane over a field of characteristic zero, it is well known that, given any point P in the plane, there are only a finite number of tangents to the curve through P.

This result is not true in the case of fields of characteristic $p \neq 0$ (see, for instance [2], Appendix). For instance, there is an infinite number of tangents to the curve defined by $x^{p+1}-y^pz = 0$ through the point (0,1,0). These are the so called terrible points.

The object of this note is to extend this concept to higher dimensional varieties and to give a computational method to determine the terrible points.

In all this note p will be the characteristic of the field k and $Fx = x^p$ the Frobenius morphism.

1. DIEUDONNÉ DERIVATIVES.

DEFINITION 1.1. If A is a commutative K-algebra with unit, K a commut<u>a</u> tive ring with unit, and M is an A-module, then a K-linear map $\delta: A \rightarrow M$ is called an nth-order derivation if it satisfies

$$\delta(\mathbf{x}_{0},...,\mathbf{x}_{n}) = \sum_{i=1}^{n} (-1)^{i+1} [\sum_{j_{1}} \cdots j_{i} x_{j_{1}} \cdots x_{j_{i}} \\ \delta(\mathbf{x}_{0},...,\hat{\mathbf{x}}_{j_{1}},...,\hat{\mathbf{x}}_{j_{i}},...,\mathbf{x}_{n})]$$

and $\delta(1) = 0$.

Clearly, a 1-derivation is a standard derivation.

NOTATION. Let A, K as before and let μ : A $\otimes_k A \rightarrow A$ denote the multiplication map (i.e., $\mu(x \otimes y) = xy$). We will set I = Ker μ , and let T: A \rightarrow I denote the K-linear map defined by T(x) = 1 $\otimes x - x \otimes 1$.

1 This work was partially supported by NSF Grant MCS 76-06934.

2 This work was partially supported by a postdoctoral fellowship of the Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina). The following result is trivial.

LEMMA 1.2. If $\delta: A \longrightarrow M$ is an n^{th} -order derivation and if $\gamma: M \longrightarrow N$ is an A-linear map, then the composite $\gamma \delta: A \longrightarrow N$ is an n^{th} -order derivation.

DEFINITION 1.3. The map A $\xrightarrow{\epsilon}$ A \otimes A given by $\epsilon(x) = x \otimes 1$ gives an A-module structure to I. Call $D_n(A/k)$ the A-module I/I^{n+1} , which will be called the module of n^{th} -order differentials. Call $d_n: A \longrightarrow D_n(A/k)$ the composite of T: A \longrightarrow I with the canonical projection $I \longrightarrow I/I^{n+1} = D_n(A/k)$.

LEMMA 1.4. If $\delta: A \longrightarrow M$ is an n^{th} -order derivation and $a \in A$, the map $a\delta: A \longrightarrow M$ defined by $(a\delta)(x) = a\delta(x)$ is an n^{th} -order derivation, hence the set Der(A,M) of n^{th} -order derivations from A to M has a natural A-module structure.

LEMMA 1.5. The map $d_n: A \longrightarrow D_n(A/k)$ is an n^{th} -order derivation, which induces (by composition) an A-isomorphism $d_n^*: Hom(D_n(A/k), M) \cong$ $\cong Der_n(A,M)$. Hence $(d_n, D_n(A/k)$ is universal for n^{th} -order derivations.

For the proof of this lemma, see [5] or [6].

DEFINITION 1.6. It is well known ([5], [6]) that, for $A = k[x_1, ..., x_n]$, $D_n(A/k)$ is a free A-module freely generated by the monomials in $d_n x_1$ of degree at most n. For $n = p^e$ we define a $(p^e)^{th}$ order derivation $\frac{\partial}{\partial F^e x_1}$: $A \longrightarrow A$ as the element of the dual basis which is one on

 $d_n(F^ex_i)$.

Since k has characteristic p, this derivation can not be obtained as a composite of lower order derivations, and it will be called a Dieudonné derivative of order p^e with respect to the variable x_i .

These derivatives have been studied by Dieudonné in [1].

LEMMA 1.7. Let $A = k[x_1, ..., x_n]$ where k is a field of characteristic $p \neq 0.$ Call A^{p^s} to $k[F^sx_1, ..., F^sx_n]$. If $f \in A^{p^e}$ and $\frac{\partial f}{\partial (F^ex_i)} = 0$ for i = 1, ..., n, then $f \in A^{p^{e+1}}$. Proof. Because $f \in A^{p^e}$, $f = \sum_{\alpha} c_{\alpha}(F^ex_1)^{\alpha(1)} \dots (F^ex_n)^{\alpha(n)}$ with $c_{\alpha} \in 1$ and $\alpha = (\alpha(1), ..., \alpha(n))$. If f = 0, then $f \in A^{p^{e+1}}$. Hence we need to show that for each α for which $c_{\alpha} \neq 0$, $\alpha(i)$ is a multiple of p for i = 1, ..., n. Now $\frac{\partial f}{\partial (F^ex_i)} = \sum_{\alpha} c_{\alpha} \alpha(i) (F^ex_1)^{\alpha(1)} \dots (F^ex_i)^{\alpha(i)-1} \dots (F^ex_n)^{\alpha(n)}$ and $\frac{\partial f}{\partial (F^ex_i)} = 0$ imply that $c_{\alpha} \alpha(i) = 0$ for all i. Therefore $\alpha(i) = 0 \mod p$

for all i when
$$c_{\alpha} \neq 0$$
 and hence $\alpha(i) = p \beta(i)$. Thus

$$f = \sum_{\alpha} c_{\alpha} (F^{e}x_{1})^{p\beta(1)} \dots (F^{e}x_{n})^{p\beta(n)} = \sum_{\alpha} c_{\alpha} (F^{e+1}x_{1})^{\beta(1)} \dots (F^{e+1}x_{n})^{\beta(n)},$$
that is, $f \in A^{p}^{e+1}$
REMARK 1.8. The same argument shows that if
 $f \in k[x_{1}, \dots, F^{e}x_{i}, \dots, x_{n}]$ and $\frac{\partial f}{\partial (F^{e}x_{i})} = 0$, then
 $f \in k[x_{1}, \dots, F^{e+1}x_{i}, \dots, x_{n}]$.
LEMMA 1.9. If $A = k[x_{1}, \dots, x_{n}]$, then the derivation $\frac{\partial}{\partial F^{s}x_{i}}$ is deter-
mined by the following properties:
a) $\frac{\partial}{\partial F^{s}x_{i}}$ is a k-linear map $A \longrightarrow A$.
b) $\frac{\partial fg}{\partial F^{s}x_{i}} = f \frac{\partial g}{\partial F^{s}x_{i}} + g \frac{\partial f}{\partial F^{s}x_{i}}$ if $f \in k[F^{s}x_{1}, \dots, F^{s}x_{n}]$.
c) $\frac{\partial x_{i}^{r}}{\partial F^{s}x_{i}} = 0$ for $r < p^{s}$.
d) $\frac{\partial F^{s}x_{i}}{\partial F^{s}x_{i}} = \delta_{ij}$.

2. DIFFERENTIAL IDEALS.

LEMMA 2.1. Let I be an ideal in k[x₀,...,x_n] where k is a field of characteristic p, then I is closed under the derivation $\partial/\partial x_0$ if and only if it has a set of generators $\{f_i\}$ with $f_i \in k[x_0^p, x_1, \ldots, x_n]$. Proof. Let g_1, \ldots, g_r be a set of generators for I and write $g_i = \sum_{j=0}^{p-1} h_{ij} x_0^j$, $h_{ij} \in k[x_0^p, x_1, \ldots, x_n]$. Now, by taking $(\frac{\partial}{\partial x_0})^{p-1} g_i = (p-1)! h_{i,p-1}$ and, since I is closed under $\frac{\partial}{\partial x_0}$ we have $h_{i,p-1} \in I$; hence $\sum_{j=0}^{p-2} h_{ij} x_0^j \in I$ and we continue, so, all $h_{ij} \in I$ and they obviously generate I. The converse follows from the fact that $\frac{\partial}{\partial x_0} f_i = 0$, hence if $\sum \ell_i f_i \in I$, we have $\frac{\partial}{\partial x_0} (\sum \ell_i f_i) = \sum \frac{\partial \ell_i}{\partial x_0} f_i \in I$, so, I is closed under $\frac{\partial}{\partial x_0}$.

LEMMA 2.2. Let I be an ideal in $k[\,x_0^{},\!x_1^{},\!\ldots,\!x_n^{}]$ where k is a field of

characteristic p. Then I is closed under the derivations $\partial/\partial x_0$, $\partial/\partial Fx_0, \dots, \partial/\partial F^{e-1}x_0$ if and only if it has a set of generators $\{f_i\}$ with $f_i \in k[F^ex_0, x_1, \dots, x_n]$.

Proof. We will proceed by induction on e. For e = 1 we are reduced to the previous lemma. Assume it is true for e = r - 1. Then I has generators $g_1, \ldots, g_r \in k[F^{r-1}x_0, x_1, \ldots, x_n]$. Now, write $g_i = \sum_{i=0}^{p-1} h_{ij}(F^{r-1}x_0)^j$ and apply $\partial/\partial F^{r-1}x_0$ p-1 times, and the reasoning

j=0 -jfollows as in Lemma 2.1.

REMARK 2.3. Lemma 2.1 can be restated for characteristic zero as follows:

If I is an ideal in $k[x_0, \ldots, x_n]$ where k is a field of characteristic zero, then I is closed under the derivation $\partial/\partial x_0$ if and only if it has a set of generators $\{f_i\}$ with $f_i \in k[x_1, \ldots, x_n]$.

3. TANGENTS.

Let V be an algebraic variety, L a line and Q a point in $L \cap V$. If Q is a regular point in V then L is tangent to V at Q if and only if the intersection multiplicity is bigger than one.

By using an affine chunk containing Q, then the ideal of V gives an ideal J in k[t] where t is a parameter for L and the coordinate a of Q in L is a root for J. The intersection multiplicity is the multiplicity of the root a in J.

Let now V be a projective (irreducible) variety $V \subseteq P_n(k)$, defined by a (homogeneous) ideal I, P a rational point in $P_n(k)$ and Q a rational point in V,Q \neq P. We want to study the intersection multiplicity of PQ \cap V at Q.

Choose a coordinate system such that P = (1, 0, ..., 0), $Q = (a_0, a_1, ..., a_n)$. Since $Q \neq P$ at least one $a_i \neq 0$ ($i \neq 0$). Let $a_n \neq 0$, then we consider the affine part U of $P_n(k)$ defined by $x_n \neq 0$. By restricting everything to U, the line PQ has parametric equations

$$x_0 = t$$
 $x_i = a_i/a_n$ $1 \le i \le n-1$.

If the ideal I of V is generated by $f_1, \ldots, f_r \in k[x_0, \ldots, x_n]$ then a_0 is a zero of J = { $f_i(t, a_1, \ldots, a_n)$ } $\in k[t]$, but J is a principal ideal J = (f).

The following result is well known:

LEMMA 3.1. The intersection multiplicity of PQ \cap V at Q is bigger than one if and only if a_0 is a root of f and $\frac{\partial f}{\partial f_0}$.

COROLLARY 3.2. The conditions above imply that (a_0, \ldots, a_n) is a root for $\frac{\partial f_i}{\partial x_0}$ $(1 \le i \le r)$ and conversely.

Proof. In fact, using the notation above, $f(x_0) = \sum g_i f_i(x_0, a_1, \dots, a_n)$, $g_i \in k[x_0]$ and $f_i(x_0, a_1, \dots, a_n) = h_i f(x_0)$, $h_i \in k[x_0]$. Since $\frac{\partial f_i}{\partial x_0}(x_0, a_1, \dots, a_n) = \frac{\partial (f_i(x_0, a_1, \dots, a_n))}{\partial x_0}$ we have that, if Q is a multiple root, then so is a_0 in f, hence a_0 is a root of $\frac{\partial f}{\partial x_0}$ and, since $\frac{\partial f_i(x_0, a_1, \dots, a_n)}{\partial x_0} = h_i \frac{\partial f}{\partial x_0} + \frac{\partial h_i}{\partial x_0} f$, then $\frac{\partial h_i}{\partial x_0}(a_0, a_1, \dots, a_n) = 0$.

The converse is obvious.

4. TERRIBLE POINTS.

DEFINITION 4.1. Let V be a projective (irreducible) variety $V \subseteq P_n(k)$ and P a rational point in $P_n(k)$, then P is called a terrible point for V if the set of rational points $Q \in V$ such that PQ is tangent to V at Q is not contained in a proper subvariety of V.

THEOREM 4.2. Let V be a projective (irreducible) variety in $P_n(k)$, P a rational point in $P_n(k)$, where k is a field of characteristic zero. Then P is a terrible point for V if and only if V is a cone with vertex P.

Proof. Take a coordinate system such that P = (1, 0, ..., 0) and I is the (prime) ideal of V. Let I_0 be the ideal generated by I and the derivatives $\frac{\partial f}{\partial x_0}$ for all $f \in I$ (If $f_1, ..., f_r$ is a set of generators for I, then I_0 is generated by $f_1, ..., f_r$, $\frac{\partial f_1}{\partial x_0}$, ..., $\frac{\partial f_r}{\partial x_0}$, so $I_0 \supseteq I$.

If $I_0 \neq I$, since I is prime, it defines a proper subvariety of V. If $Q \in V$ and PQ is tangent to V at Q then Q is a zero for I_0 (Cor.3.2), hence if P is a terrible point the set of zeros of I_0 is not contained in a proper subvariety of V, so $I_0 = I$, hence I is closed under $\frac{\partial}{\partial x_0}$, which means (in characteristic zero) that I has a set of generators f_i with f_i independent of x_0 .

But this is equivalent to the fact that V is a cone with vertex P. The converse is trivial.

THEOREM 4.3. Let V be a projective (irreducible) variety in $P_n(k)$, P a rational point in $P_n(k)$, where k is a field of characteristic $p \neq 0$, and suppose we have a coordinate system such that $P = (1,0,\ldots,0)$ and

I is the (prime) ideal of V. Then P is a terrible point for V if and only if I has a set of generators $\{f_i\}$ with $f_i \in k[x_0^p, x_1, \dots, x_n]$.

Proof. As in the previous theorem, if $Q \in V$ and PQ is tangent to V at Q, then Q is a zero of I_0 . If $I \neq I_0$ it defines a proper closed subset of V, hence P is not terrible. So $I = I_0$, i.e., I is closed under $\frac{\partial}{\partial x_0}$, and the theorem follows from Lemma 2.1.

5. POLARIZATION.

In [3] and [4], Hipps, Mount and Villamayor defined and studied the po arization map, extending to fields of positive characteristic the classical polarization of a homogeneous polynomial.

In this section we will summarize their construction and apply it to the terrible points.

Let U be a vector space over a field k and U* its dual. Call $0^{r}U^{*}$ the r-fold symmetric product of U*. If e_{0}, \ldots, e_{n} is a basis for U, call x_{0}, \ldots, x_{n} its dual basis in U*, so $0^{r}U^{*}$ has as a basis all monomials of degree r in the x_{i} 's. Then, the rational points of $P_{n}(k)$ are the one dimensional subspaces of U.

DEFINITION 5.1. Let w be a homogeneous polynomial of degree r. Then the polarization map $Pol_0(w): U \longrightarrow 0^{r-1}U^*$ is the linear map defined by $Pol_0(w)(e_i) = \frac{\partial w}{\partial x_i}$.

Call vertex₀w = Ker(Pol₀(w)).

Suppose $Pol_{i-1}(w)$ and $vertex_{i-1}(w)$ have been defined, then we can define $Pol_i(w)|_{vertex_{i-1}(w)}$ by the following properties

a) Pol.(w)(x+y) = Pol.(w)(x) + Pol.(w)(y) for
$$x, y \in U$$
.

b) Pol_i(w)(kx) = $F^{i}k$ Pol_i(w)(x) for $k \in k, x \in U$.

c) If e_1, \ldots, e_s is a basis for vertex i-1 (w), e_1, \ldots, e_n a basis for U and x_1, \ldots, x_n its dual basis

$$\operatorname{Pol}_{i}(w)(e_{j}) = \frac{\partial w}{\partial F^{i}x_{i}} \text{ for } e_{j} \in \operatorname{vertex}_{i-1}(w)$$

LEMMA 5.2. The map $Pol_i(w)$ is independent of the basis. ([4], Lemma 2.2).

DEFINITION 5.3. If I is an ideal in $k[x_1, ..., x_n]$ generated by homogeneous polynomials $\omega_1, ..., \omega_m$ of the same degree, call vertex_s(I) = $\bigcap_{i=1}^{n} \operatorname{vertex}_{s}(w_i)$.

THEOREM 5.4. Let V a projective variety $V \subseteq P_n(k)$ defined by an ideal I generated by forms w_i all of the same degree. Then a rational point $P \in P_n(k)$ is a terrible point for V if and only if $P \in vertex_0(I)$. Here we are identifying the points of $P_n(k)$ with the one dimensional subspaces of U.

Proof. It follows from Th. 4.3 and [4] Th. 6.4.

6. A GENERALIZATION.

If V is a projective variety $V \subseteq P_n(k)$ over a field of characteristic $p \neq 0$, P is a terrible point for V and $Q \in V$, then the intersection multiplicity of $PQ \cap V$ at Q is always a multiple of p.

This fact suggests the idea of searching if the set of points Q such that the intersection multiplicity is bigger than p has properties similar to the set of points Q such that PQ is tangent to V at Q.

We can use the results of [4] to extend the definition of terrible points in the following way.

DEFINITION 6.1. If V is a projective (irreducible) variety $V \subseteq P_n(k)$ where k is a field of characteristic $p \neq 0$ and P is a rational point in $P_n(k)$, then P is called e-terrible for V if the set of rational points $Q \in V$ such that the intersection multiplicity $PQ \cap V$ at Q is a multiple of p^e bigger than p^e , is not contained in a proper closed subset of V.

Then, following the reasonings of §3 and §4, we can prove:

THEOREM 6.2. Let V be a projective (irreducible) variety in $P_n(k)$, $P \in P_n(k)$, where k is a field of characteristic $p \neq 0$, and assume there is a coordinate system such that $P = (1,0,\ldots,0)$ and I is the ideal of V. Then P is e-terrible for V if and only if I has a system of generators $\{f_i\}$ with $f_i \in k[F^{e+1}x_0,x_1,\ldots,x_n]$.

THEOREM 6.3. Let V be a projective variety in $P_n(k)$ defined by an ideal I generated by forms w_i all of the same degree. Then a rational point $P \in P_n(k)$ is an e-terrible point for V if and only if $P \in vertex_e(I)$.

REFERENCES

- [1] DIEUDONNÉ, Jean, Le calcul differentiel dans les corps de caractéristique p > 0. Proc. Internacional Congress of Math. 1954, Amste<u>r</u> dam (1957), 240-252.
- [2] FULTON, W., Algebraic Curves, W.A. Benjamin, Inc., New York, 1969.
- [3] HIPPS, N., MOUNT, K.R., VILLAMAYOR, O.E., Sur la polarisation des polinômes homogènes en caractéristique $p \geqslant 0.$ C.R. Acad. Sci. Paris, 284 (1977), 1433-34.
- [4] HIPPS, N., MOUNT, K.R., VILLAMAYOR, O.E., Vertices and polarizations for homogeneous polynomials, To appear.
- [5] MOUNT, K.R., VILLAMAYOR, O.E., Taylor series and higher derivations. Dpto de Matemática, Univ. Buenos Aires, N° 18 (1969).
- [6] NAKAI, Y., SUZUKI, S., On M-adic differentials, J. Sci. Hiroshima Univ. Ser A. 24 (1960), 459-476.

Departamento de Matemática Facultad de ciencias Exactas Universidad de Buenos Aires Argentina

Recibido en Junio de 1978.

84