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A REMARK ON TERRIBLE POINTS
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Dedicado al Profeson Luis A. Santalé

In the study of curves in a projective plane over a field of characte-
ristic zero, it is well known that, given any point P in the plane,
there are only a finite number of tangents to the curve through P.

This result is not true in the case of fields of characteristic p # 0
(see, for instance [ 2], Appendix). For instance, there is an infinite
number of tangents to the curve defined by xp+1-ypz = 0 through the
point (0,1,0). These are the so called terrible points.

The object of this note is to extend this concept to higher dimensional
varieties and to give a computational method to determine the terrible
points.

In all this note p will be the characteristic of the field k and Fx =
= xP ‘the Frobenius morphism.

1. DIEUDONNE DERIVATIVES.

DEFINITION 1.1. If A is a commutative K-algebra with unit, K a commuta

tive ring with unit, and M is an A-module, then a K-linear map

th

8: A — M ‘is called an n®P-order derivation if it satisfies

8(xgseon X ) = 1(-1)i+¥[2j1v. ;

i

oo . X. eee X.
i NEY J

[aet=]

6(x0,...,le,...,xji,...,xn)]
and 8(1) = 0.

Clearly, a 1-derivation is a standard derivation.
NOTATION. Let A, K as before and let u: A e A — A denote the multi-

plication map (i.e., r(xe®y) = xy). We will set I Ker p, and let
T: A — I denote the K-linear-map defined by T(x)

1ex - xe 1.
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The following result is trivial.

LEMMA 1.2, If 6: A — M 45 an 2P order derivation and Zf Y+ M — N
is an A-linear map, then the composite Y8: A —> N is an nth—order dert

vation.

DEFINITION 1.3. The map A —5» A®A given by e¢(x) = x®1 gives an A-mo-
dule structure to I. Call D_(A/k) the A-module I/I™*!, which will be
called the module of nth’order differentials. Call d A —> Dn(A/k)
the composite of T: A — I with the canonical pro;ectlon

I — 1/1°1 - D (A/K%).

LEMMA 1.4. If 6: A — M s an 1P order derivation and a € A, the
map ad: A — M defined by (ad)(x) = ad(x) <s an nth-order derivation,
hence the set Der(A,M) of nPorder derivations from A to M has a na-
tural A-module structure.

LEMMA 1.5. The map dn: A — Dn(A/k) is an n™P-order derivation, which
induces (by composition) an A-isomorphism d:: Hom(Dn(A/k),M) =
= Dern(A,M). Hence (dn,Dn(A/k) 18 universal for ntPoorder derivations.

For the proof of this lemma, see [5] or [6].

DEFINITION 1.6. It is well known ([ 5], [6]) that, for A = klx;,...,x ],

Dn(A/k) is a free A-module freely generated by the monomials in dnxi
of degree at most n. For n = pe we define a (pe)th order derivation
)
9F®x

1

: A — A as the element of the dual basis which is one on

dn (Fexi) .

Since k has characteristic p, this derivation can not be obtained as a
composite of lower order derivations, and it will be called a Dieudonné
derivative of order p® with respect to the variable X,

These derivatives have been studied by Dieudonné in [1].

LEMMA 1.7. Let A = k[xl,...,xn] where k is a field of characteristic

s . e
p # 0. Call AP to K[F®x ,...,F°x_]. If £ € AP and gzig—-; =0 for
: F™x;
i=1,...,n, then £ € AP®TL,
e ,
Proof. Because f € AP, £ = § ca(Fexl)a(l) (Fexn)“(n) with ¢ €1
and a = (a(1),...,a(n)). @
e+l
If £ = 0, then f € AP . Hence we need to show that for each a for

which ¢ # 0, a(i) is a multiple of p for i = 1,...,n.
eyt L @)D ex )™ and
3 (Fex, e 1 n

‘of

d (F® xi)

Now

= 0 imply that c a(1) = 0 for all i. Therefore (i) = 0 mod p
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for all i when c_ # 0 and hence a(i) = p B(i). Thus
- e pB (1) e pB(n) _ e+l B(1) e+l B(n)
f g c, (F°x)) e (Fox ) g c, (F¥7°x)) ce (BT ) s
e+l
that is, f € AP
REMARK 1.8. The same argument shows that if
f e k[xl,...,Fexi,...,xn] and __gg___
o (F xi)

,...,xn].

= 0, then

e+1x.

fekix;,...,F i

LEMMA 1.9. If A = k[x,,...,x 1, then the derivation is deter-
1 n dFSx
mined by the following properties: *
a) 0 is8 a k-linear map A — A.
dF°x,
i
b) 2f8 ¢ %8 Lo 2f  upfe kiFSx,,...,Fo ).
dF°x, dF°x, dF%x, o
i i i
oxt s
c) =0 for T <p .
3F°x,
. i
0FSx,
d —L=35_..
3F%x, 3
i

2. DIFFERENTIAL IDEALS.

LEMMA 2.1. Let I be an Zdeal in k[xo,...,xn] where k is a field of
characteristic p, then 1 <8 closed under the derivation 6/ax0 if and

only if it has a set of generators {fi} with fi € k[xg,xl,...,xn].
Proof. Let -SRRREY -3 be a set of generators for I and write

p-1 .
= J P
g; jZO hijxo’ h,. € klxg,x

1,...,xn]. Now, by taking

ij

o _yp-1_ _ o ) i ]
(5;;) g; = (p—T)!hi’p_1 and, 51nce.I is closed under 5§B— we have
p-2 . '
h. € I; hence ] h,.x) € I and we continue, so, all h,, € I and
i,p-1 j=0 ij=o ) 1]

they obviously generate I.

The converse follows from the fact that 5%— fi = 0, hence if
. 0

A : » L,
») £.£. € I, we have 5%— 9 L£) = ) axl £, €1, so, I is closed
0 0
d 0
undaer 3;; o

LEMMA 2.2. Let I be an ideal in k[xo,x .,Xn] where k is a field of

12
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characteristic p. Then 1 is closed under the derivations a/axo,

3/an0,...,3/3Fe-1x0 if and only if it has a set of gemerators {f}
with £, € k[Fexo,xl,...,xn].

Proof. We will proceed by induction on e. For e = 1 we are reduced to
the previous lemma. Assume it is true for e = r - 1. Then I has gene-
Tators g,,...,8, € k[Fr'lxo,xl,...,xn]. Now, write

pl -1, j -1

g; = 1 hy; (F xo)? and apply 3/3F" "x; p-1 times, and the reasoning
j=0

follows as in Il.emma 2.1.

REMARK 2.3. Lemma 2.1 can be restated for characteristic zero as fol-
lows: )

If I is an ideal in k[xo,...,xn] where k is a field of characteristic
zero, then I is closed under the derivation 3/3x0>if and only if it has
a set of generators'{fi} with £, € k[xl,...,xn].

3. TANGENTS.

Let V be an algebraic variety, L a line and Q a point in L n V. If Q
is a regular point in V then L is tangent to V at Q if and only if the
intersection multiplicity is bigger than one.

By using an affine chunk containing Q, then the ideal of V.gives an
ideal J in k[ t] where t is a parameter for L and the coordinate a of
Q in L is a root for J. The intersection multiplicity is the multipli-
city of the root a in J.

Let now V be a projective (irreducible) variety V C Pn(k), defined by
a (homogeneous) ideal I, P a rational point in Pn(k) and Q a rational
point in V,Q # P. We want to study the intersection multiplicity of
PQ NV at Q.

Choose a coordinate system such that P = (1,0,...,0),
Q = (ao,al,...,an). Since Q # P at least one a; #0 (i # 0). Let
a, # 0, then we consider the affine part U of Pn(k) defined by X, # 0.

By restricting everything to U, the line PQ has parametric equations

Xg =t x; = ai/an 1<i<n-1.

If the ideal I of V is generated by f,,...,f '€ k[xo,...,xn] then a,

is a zero of J = {fi(t,al,...,an)} € k[t], but J is a principal ideal
J = (f). '

The following result is well known:

LEMMA 3.1. The intersection multiplieity of PQ NV at Q <s bigger than

one if and only if a, is a root-of f and %%— .

0
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COROLLARY 3.2. The caﬂdition; above iﬁply that (ao,...,an) 18 a root
of .

for gii (1

A

i <7r) and conversely.

Proof. In fact, using the notation above,f(x;) = | gifi(xo,al,...,an),

g; € k[xol and fi(xo,al,...,an) = hif(xo), hi € k[xO]. Since

afi v a(fi(xo,al,...,an)) ) ]
3§E (xo,al,...,an) = axo we have that, if Q is a mul-
tipie root, then so is a, in f, hence a, is a root of %%— and, since
0
0f. (X,,8,,...,a_) oh, oh.
0°%1° ’ of
2 axo L hi Xy + gii f , then 3§i (ao,al,...,an) = 0.

The converse is obvious.

L, TERRIBLE POINTS.

DEFINITION 4.1. Let V be a projective (irreducible) variety V C Pn(k)
and P a rational point in Pn(k), then P is called a terrible point
for V if the set of rational points Q € V such that PQ is tangent to
V at Q is not contained in a proper éubvariety of V.

THEOREM 4.2. Let V be a projective (irreducible) variety in Pn(k), P

*a rational point in Pn(k), where k Zs a field of characteristic zero.
Then P is a terrible point for V if and only if V 28 a cone with ver-
tex P.

Proof. Take a coordinate System such that P = (1,0,...,0) and I is the
(prime) ideal of V. Let I, be the ideal generated by I and the deriva-

0
tives a%‘ for all f € I. (If £ f_ is a set of generators for I,
0

1reeesfy
. - af, of
then I0 is generated by fl""’fr’ 5;; seees Eiﬁ), so I0 2 1I.

If I0 # I, since I is prime, it defines a proper subvariety of V.
If Q € V and PQ is tangent to V at Q then Q is a zero for Ib (Cor.3.2),
hence if P is a terrible point the set of zeros of I, is not contained

in a proper subvariety of V, so I, = I, hence I is closed under 3%— ,
’ 0

which means (in characteristic zero) that I has a set of generators fi

with £, independent of Xg-

But this is equivalent to the fact that V is a cone with vertex P.

The converse is trivial.

THEOREM 4.3. Let V be a projective (irreducible) variety in P_(k), P a
rational point in P (k), where k s a field of characteristic p # 0,
and suppose we have a coordinate system such that P = (1,0,...,0) and
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1-is the (prime) ideal of V. Then P is a terrible point for V- if and
only if 1 has a set of generators'{fi} with £, € k[xg,xl,...,xn].

Proof. As in the previous theorem, if Q € V and PQ is tangent to V at’
Q, then Q is a zero of Io. If I # Ib it defines a proper closed subset
of V, hence P is not terrible. So I = IO, i.e., I is closed under

5%— , and the theorem follows from Lemma 2.1.

5. POLARIZATION.

In [ 3] and [4], Hipps, Mount and Villamayor defined and studied the
po:.arization map, extending to fields of positive characteristic the
classical polarization of a homogeneous polynomial.

In this section we will summarize their construction and apply it to
the terrible points. '

Let U be a vector space over a field k and U* its dual. Call 0TU* the
r-fold symmetric product of U*. If €2y is a basis for U, call
xo,...,xn’its dual basis in U*, so OYU* has as a basis all monomials
of degree r in the xi's. Then, the rational points of Pn(k) are the
one dimensional subspaces of U. :

DEFINITION 5.1. Let w be a homogeneous polynomial of degree r. Then

the polarization map Polé(w): U —> 0%"!u* is the linear map defined
- v '
by PO].O(W) (ei) = ax—i .

Call vertex,w = Ker(PolO(w)).
Suppose Poli_l(w) and vertexi_l(w) have been defined, then we can de-

fine Poli(w)l by the following properties

vertexi_l(w)

a) Poli(w)(x+y) = Pbli(w)(x) + Poli(w)(y) for x,y € U.
b) Pol, (w)(kx) = Fik Pol (w)(x) for k € k, x € U.

c) If ST RRRFL is a basis for vertexi_l(w), e e 2 basis for U

10

and XpseeesXy its dual basis

_ ow
Poli(w)(ej) = T for ej € vertexi_l(w).

k|
LEMMA 5.2. The map Poli(w) i8 independent of the basis. ([ 4], Lemma

2.2).

DEFINITION 5.3, If I is an ideal in k[xl,...,xn] generated by homoge-
neous polynomials aﬁ;...,ah of. the same degree, call vertexs(I) =
= N vertex_ (w.).

i st i
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THEOREM 5.4. Let V a pfojective variety V C Pn(k) defined by an <deal 1
generated by forms W, all of the same degree. Then a rational point
PepP (k) i8 a terrzble point for V if and only if P € vertexo(I)

Here we are identifying the points of P (k) with the one dimensional
subspaces of U.

Proof. It follows from Th. 4.3 and [4] Th. 6.4.

6. A GENERALIZATION.

If V is a projective variety V C P: (k) over a field of characteristic
p # 0, Pis a terrible point for V and Q € V, then the intersection
mu1t1p1icity of PQ NV at Q is always a multiple of p.

This fact suggests the idea ofAsearching if the set of points Q such
that the intersection multiplicity is bigger than p has properties si-
milar to the set of points Q such that PQ is tangent to V at Q.

We can use the results of [4] to extend the definition of terrible
points in the following way.

DEFINITION 6.1. If V is a projective (irreducible) variety V C P (k)
where k is a field of characteristic p# 0 and P is a rational p01nt
in P (k), then P is called e-terrible for V if the set of rational
p01nts Qev such that the 1ntersect10n multiplicity PQ NV at Q is a
multiple of' p€ bigger than p®, is not contained in a proper closed
‘subset of V.

Then, following the reasonings of §3 and §4, we can. prove:

THEOREM 6.2, Let V be a projective ({rreducible) variety in P (k),

PepP (k), where k is a field of characteristic p # 0, and assume there
i8 a coordznqte system such that P = (1,0,...,0) and I <s the ideal of
V. Then P is e-terrible for V if and only <if 1 has a system of genera-

tors {fi} with fi e k[ retlx .,xn].

02 X1

THEOREM 6.3. Let V be ¢ projective variety in P (k) defined by an ideal
I generated by forms LA all of the same degree. Then a rational point
P e Pn(k) i8 an e- terrzble point for V if and only if P € vertex (I).



[1]

[ 2]

[3]

[ 4]

[5]

[ 6]

84
REFERENCES

DIEUDONnﬁ, Jean, Le caleul differentiel dans Les corps de caracté-
nisiique p > 0. Proc. Internacional Congress of Math. 1954, Amster
dam (1957), 240-252.

FULTON, W., Algebradlc. Curves, W.A. Benjamin, Inc., New York, 1969.
HIPPS, N., MOUNT, K.R., VILLAMAYOR, O.E., Sux La polanrisation des
polinomes homogénes en caracténistique p > 0. C.R. Acad. Sci. Pa-
ris, 284 (1977), 1433-34.

HIPPS, N., MOUNT, K.R., VILLAMAYOR, 0.E., Vexrtices and polanriza-

‘tions fon homogeneous polynomials, To appear.

MOUNT, K.R., VILLAMAYOR, 0.E., Tayfor sernies and highen dernivations.
Dpto de Matemdtica,Univ. Buenos Aires, N° 18 (1969). :

NAKAI, Y., SUZUKI, S., On M-adic differentials, J. Sci. Hiroshima
Univ. Ser A. 24 (1960), 459-476.

Departamento de Matemdtica
Facultad de ciencias Exactas
Universidad de Buenos Aires
Argentina

Recibido en Junio de 1978.



