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ABSTRACT. A large class of operators, including· those corres,!,ondingto 
G1 elements of the Calkin algebra can be "lifted" to a G1 operator 

by means of a compact perturbation. However, the class (G 1+ compact) 
is nowhe.re dense in the algebra of all operators acting on a complex 
separable infinite dimensional Hilbert space. 

KEY WORDS AND PHRASES. Calkin algebra, growth condition on the resol­

vents, (essentially) G1 operators, normal operators, compact perturb!!:. 
tions, (essential) numerical range, normal reducing .eigenvalues, spe£ 

trum, Calkin essential spectrum, Weyl essential spectrum. 

1. INTRODUCTION. 

Let £ (JC) be the algebra of all (pounded linear) operators acting on 
the complex separable infinite dimensional·Hilbert space X, let K be 
the ideal of compact operators and let ~: £(JC) --+ £(X)/K= A be the 
canonical projection onto the Calkin algebra. T E £ (X) is (essential-

ly) G1 if II (A - T)-I 11 = l/d(A) (II (A - ~(T))-111 = l/dE(A), resp.) for 

all "A outside of the spectrumA(T) (essential spectrum E(T), resp.) 

of T, where deAl dist[A,A(T)] (dE(A) = dist[A,E(T)], resp.). 

Let G (e(G),resp.) denote the class of all G1 (essentially GI , resp.) 

operators iu£(JC). In [8], Glenn R. Luecke conjectured that every 
T E erg) has a compact perturbation in G. In Section 2 a characteriz!!:. 
tion of those T E £ (X) such that T + KEG for some compact Kwill 

be given. This characterization provides an affirmative answer to 
Luecke's conjecture but, unfortunately, this answer is not completely 
satisfactory (in a sense that will be made precise below). Some conse­

quences of the main result and an example of an operator (indeed, a 
nilpotent of order two) that.cannot be compactly perturbed to a G1 
operator are discussed in Se"ction 3. Moreover,thisexample is used 
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to show that G + K, is a nowhere dense subset of .f. (JC) and e (G) is a 

nowhere dense subset of G + K. 

The aU~,dr ,wishes to thank Professors Jose Barrh and Pedro Alson for 

several helpful discussions. 

'2. A CHARACTERIZATION ~F G + K. 

'Let T E .f.(JC); then the subsetsw(T)- {~ E A(T):~ -T is not a Fredholm 

operator of index O} and Aa(T)= {~E A(T):~ is isolated in A(T) an~ 

the corresponding spectra~ subspace is finite dimensional} are called 

the Weyl. essential. speatrUTn of T and the set of normal. eigenval.ues of 

T. It is well ,known that wet) - t"I{A(T+K):K'E K} [10], so that wet) can. 

no~ be modified by compact perturbations. 

Throughout this paper, A ~B will mean that A and B are unitarily equ~ 

valent Hilb~rt space operators, 81 will denote orthogonal. direct sum 

andT(a) will denote the orthogonal direct sum of IX (0';; IX .;; 00) co 

pies' of the operator T. Finally, ~(T) - {A: A ~ T} is the unitary or 

bit of T E .f. (JC) and X- and ax denote the closure and the boundary of 

X, respectively~ 

LEMMA'1. Let T E e(G). Given £ > 0 there e:x:ists K E K suah that 

T-K ... T .. N~ INhere N is a normal. operator suah that heN) - E(N) aw(T) • 

Proof: Let {II } '" 1 be a sequence of bare points of aw (T) (i. e., for n n-

each n, there exists An E £ and rn > 0 such that r - dist[A ,w(T)]-
n n ' 

I ).n-IInl .< I An-III, for all II E W(T)\{lI nJ) and assume that ({lIn }n=7)--: 

aw(T) and l{n: lin-lim} - Na' for all m 1,2, •.•• 

According to th,e first part of the proof of Theorem 1.2 in [,4], there 

ex:j.sts a normal operator M defined by Men- linen with respect to a sut 

table ONB {e} "'I and operators A,C, T1 such that E(C) i:: E(T), n n-

T~")8I T1 E U(T)-, T~")8I T1- T E K and 1IT~"')8I T1 - Til < £ ,where 

To - [: :j 
,ClearlY.T~"') 81 T1 E e(G). Let A ~ wet) an4 assume that II (A-Ta j-1 11 > 

> 1/dB(A) (In this case, dE(A) dist[A,w(T}]); then 111r(A-T)- l ll-

- max{Uw';(A-T 1),"1 11 , II (A-Ta )-l l1 } > 1/dE(A), a contradiction. 

Therefore, II (A-T )-1 11 = 1/dE(A) for all A ~ wet). 
, a 

Let II,A ,e be as above; then n n n ' 
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eon] (T -A )-1 
o n 

[
(M-A )-1 

n 
-1 -1 -(C-A) A(M-A) n n 

Since the norm of this vector cannot be larger than 1/1 lin-Ani = 

, w€ conclude that 0 = -(C-A )-lA(M_A )-l e = 
n n n 

I ( -1 - l/(lI n- An)1 C-An) Aen . Hence, Ae for all n 1,2, ..• , and there 

fore A = O. 

It readily follows tha~ T-K = M(w) e IC(w) e TIl = N erN e C(w) e Tll= 

= N e (T'-K), where N = t1(w) is normal and A(N) = B(N) = ow(T). 

LEMMA 2. LetB E £ (X) and let N be a normal operator suah that A(N) = 
= E (N) = oweB). Then there exists K E K suah that T = NeB + KEG " 
A(T) = weT) U Ao(T) and every A E Ao(T) is a reduaing normal eigen­

value aorresponding to a one-dimensional eigenspaae. 

Proof: According to 1101, there exists Kl E K such that A(B + K1) = 

weB). Thus, without loss of generality we can assume that A(B) = 
= weB) (Le.', K1= 0). Similary 121, up to a compact perturbation we 

can assume that Nen = vnen with.respect to a suitable ONB {en }n=7 and 

that tin: v =v } = ~ for all 1 2 n m 0 m= , ,.;. . 

If I~I = IIBII"then II (A-B)-l 11 OS;; l/(IAI-IIBII). Thus, if Ak = 

= 2I1BII.exp{(k-l) lI"i/3} , k = 1,2, ... ,6, and L6 E £(£6) is the diago­

nai (normal) operator defined by L6fk= Akfk , k 1,2, ... ,6, with res-

pect to the canonical, ONB of £6, then II (A_B)-I 11 

= max {l/IA-A kl: k=1,2, ... ,6}, for all AE£ with IAI:" 2I1BII,A" Ak 

(k = 1, 2 , •.. ,6) . 

Let A6 = 0k:k=1,2, ... ,6} and r6 = ° (/. w(B):II(A-B)-l l1 ;;. 

:"1I(A-IL 6 e NI)-l I1L Clearly, olr6 U w(B)1 is contained in the open 

disc of tadius 211BII. Let A7 E or6 be a point such that distIA 7 ,w(B)I= 

It readily follows that II (A_B)-I 11 < II (A-L 7)-I 11 for all A ~ r7 U weB) U 

U 07}' where r7 '" fA E r 6\07}:1I (A_B)-I I1 :.. II (A-IN e L71)-1 11 } is the 
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complement.in r6 of a suitable open neighborhood of 1.. 7 ' 

Define A7 

obtain r k 

A6 U {A 7}. By an obvious inductive argument, we either 

o for some k ~ 6, or an operator L = diag{A 1'''2''''} 

(diagonal with respect to a suitable ONB) such that ({Ak}k=~) n 

n weB) = 0, dist["k,w(B)] is non-increasing and tends to ° (k ->- "') 

and" (,,_B)-I" <" (,,-[N e LI)-I" for all " ~ weB) U A(L), where 

A(L) c ({"k}k=~ ) u aw(B} (in the first case, we set ",j = vI for all 

j/~ k). Set n(l) = 1/ inductively, we define n(k) as ithe seaond index. 

,strictly larger tha¥ n(k-1) (k=2,3, ... ) such that l/"k-vn(k)1 < 

< 2 dist["k,w(B)t. , 

Finally, define IK = diag01-v1,0,0, ... ,0'''2-vn(2)<n(2) ,0,0, ... ,0, 

i}..3-vn(3)<n(3) ,o,o, ... ,o'''k-vn(k)<n(k) ,o, ... } with respect to the 

ONB {en}n=~' Clearly, K E K and N + K 

"2,Vn (2)+I, ... ,vn (k)_1,A k ,vn (k)+I""} ~ N eLand therefore 

" (A_B)-I" < " (,,_[N+KI)-I" = " (A_T)-I" = 1/d(A) for all "E A(T), 
where T = (N~K) e B. Hence T = (N e B) + (K e 0) E G. 

As an immediate ~orollary of Lemmas 1 and 2, we have 

THEOREM 1. Let T E e(G). Then there exists K E K suah that T+K E G. 

THEOREM 2. Let T E .c (XL then T E G + K if and onZy if there exists 

K' E K suah that T + K' ~ NeT for some normaZ operator N with A(N)= 

= E(N) = a[ £\E(T)] ",> where the subindex "",,, denotes the unbounded eom 

ponent of the set £\E(T). 

Proof: Assume that some compact perturbation of T belongs to G. With­

out loss of " generality, we can assume that T E G . Let A (T)={A} be o n 
the set of normal eigenvalues of T. Since An is an isolated point of 

A(T), it follows from [11] that An is a reducing eigenvalue of finite 

multiplicity an' n=1,2, ••• 

Let v lim(j ->- "')An(j) for a suitable subsequence {An (j)}j.7 of 

. (a (1» (a (2» }) T 
(dl.agOnO ) n '''n(2) n ,'" • \I and it 

is clear (e.g., by using the arguments of [10]) that T + Kv~ T· vI 
for a suitable K E K. Combining this observation with the result of 

v 
[2] and the arguments of.[ 10J, we conclude that; if 
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r = (3[C\E(T)] )nA (T)-,then there exist K E K and a normal oper_a o ,....,~ co 0 0 

tor No such that T + Ko ~ T e No and A(No) = E(No) = roo 

On the other h~, if p is a bare point of r 1 = (a[£\E(T)] ",,)\ro ' then 

p E E(T) and We"~n proceed exactly as in the proof of Lemma 1 in or-
der that T+ K. ~ T e pI for a suitable K E K, • By similar arguments 

-p. p 

we conclude thatT + Kl ~ T e N1, for some Kl E K and some normal o-

perator Nl such that A(N 1) = E(N 1) ,r1-. 

Therefore, T t (Ko + K1) ~ T e (No e N1), where Ko + Kl E K and 

N = No e Nl is a normal operator with the desired .properties. 

Conversely, if T + K' '"' TeN for a normal operat~r N such that 
A(N) =E(N) = 3[£\E(T)]"" , then there exists K" E K such that 

A(T + K") = £\[£\E(T)]oo (see [11) and we conclude that T + KEG for 

some K E K by applying the same arguments as in tJ?e proof of Lemma 2 

to(T + K") e N. 

3. COMPLEMENTARY RESULTS. 

Theorem 1 affirmatively answers Conjeature 1 of [8], but it does not 
provide a satisfa,ctory answer, in the sense that A(T + K) is very dif 
ferent from wet), in general. 

CONJECTURE 1~ If T E e(G), then there exists K E K such that T+K E G 
and A(T+K) = wet). 

A satisfactory answer to Luecke's Conjecture (i .. e., an affirmative 
answer to Conjeature 1 above) would involve a very deep analysis of 
t~e distance from the resolvent of a perturbated operator to K, in the 
lines of [1], [3], [7], [9] and [10] . 

Recei,ltly, P. Alson (personal communication) affirIIfa':tively answered 
Conje~ture 2 of [8] by showing that 

(1) ~iven T E £(JC), there exists K6 with rankK 6 ..:; 6 such that T + K6 
isao~ve:x;oid; 

(2) Qiven T E £(JC) , there exists K E K such that W(T+K) = We(T), 
where W(.) and We (.) denote the numeriaal-range and the essentiaZ nu­

meriaairange, respectively (see [5], [8], [121 for definitions and 
properttes) • 

Since WqT) .(We(T), 
A(T) (E (T), resp.), 
hull of ACT) (E(T), 

resp.) is always a compact convex set containing 
and WeT) - (W (T), l'esp.) coincides w1th the convex . e 
resp.) for all T E G (T E e(G), resp.), second 

Alson's result yields the following (very) partial answer to the a.bove 
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conjecture. 

COROLLARY 1. If T E e(G) and weT) is aonvex. then there exists K E K 

suah that T+K E G and A(T+K) = w(T). 

First Alson's result might suggest that every operator has a compact 

perturbation in G. This is definiteZy faZse. 

EXAMPLE 1. Let Q = [~ 6) E £(£2) and let T 

dist[T,G+K] ;,;. 1/10 •. 

Q(oo) E leX). Then 

Proof. Assume that "A-T" < 1/10 for some A E G+K. Then a straight­
forward computation shows that the spectrum of A is contained in the 
the open disc of radius 3/10 about the origin. Thus, if 

A E ill £\E(A)] 00 is a bare point, then A - AI - K has an infinite dime!!. 
sional reducing subspace· (use the proof of Theorem 2) for a suitable 
compact K and, a fortiori, 7r ([ A-AI] + [A-AI] *) cannot have an inverse 

in A. On the other hand, "I - [(A-AI)+(A-AI)*]2" = " (T+T*)2_[ (A-AI) + 

+ (A-AI)*]2" .;;;; ("T+T*II + "(T+T*)-[ (A-AI)+(A-AJ)*] "J 2 - "T+T*"2 .;;;; 

.;;;; (1 + Z[ "T-A" + 11.1])2 - 1 < 1, whence we obtain that (A-AI)+(A-AIJ* 
is invertible in leX), a contradiction. 

COROLLARY Z. (i)G+K is nowhere dense in £ (X). 

(ii) e(G) is nowhere dense in G+K. 

Proof. (i) According to [6, Lemma 21, given A E £ (X) and E > 0 there 

exists AE E £ (X) such that "A-A E" < E and 

A 
E 

where E/4 < E' < E/Z, A belongs to the unbounded component of £\E(C), 
dist[1.,E(C)l = E/Z and T is the operator of ExampZe 1. Minor modifi­
cations of the above proof show that dist[AE,G+K] is positive. 

(ii) Combining the proofs of [6, Lemma 2], Lemma 1 and Lemma 2. it is 

not difficult to show that if A E e(G), given E > 0 there exists an 

operator A "" A·$ (1.I+e:'[O(oo) Ell Tl}' where d4 < E' < E/Z, A belongs 
E 

to the unbounded component of £\E(A),dist[A,E(A)] = E/Z and T is the 

. operator of ExampZe 1. such that "A-Ae:" < E . 

. By Theorem 2. AE E G+K and another modification of the proof given in 

ExampZe 1 shows that dist[Ae:,e(G)] = e:'. 

The proof is complete now. 
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