
Revista de la 
Union Matematica Argentina 
Volumen 29, 1980. 

REMARKS ON A PROBLEM IN THE FLOW OF HEAT 

FOR A SOLID IN CONTACT WITH A FLUID 

A. Benedek and R. Panzone 

Ved~eado ai P~o6e~o~ Lu~~ A. San~ai6 

120 

ABSTRACT; The main objective of this paper is to exhibit the role pla
yed by the null series of an ordinary differential irregular boundary 

problem obtained by separation of variables in the solution of the 
original partial differential equation. In this case we treat a problem 
already studied by R.E. Langer where the heat equation is involved. 

1 .• We consider the following problem studied by R.E. Langer, [L]. 

A right cylindrical solid has its lateral surface insulated against 
the passage of heat and has an initial distribution of temperature de

pending only on the longitudinal coordinate x. Let x-O and x-l be the 
coordinates of the plane terminal faces. The face at x-O rn<l,Y be insu
lated or may permit the passage of heat. The face at x-l at the time 
t=O is placed in contact with & well-stirred liquid that at each 
instant will have a uniform temperature throughout it. There mayor 
may not be passage of heat from the liquid to the surrounding medium. 
The problem is to determine the temperature of the liquid and the 
dis~ribution of temperature in the solid at each instant t > O. 

The differential equation 

(1) 2 a au 

where u(x,t) is the temperature at x at the time t and a is a physical 
constant, controls th~ one dimensional flow of heat in the cylinder. 

Let vet) be the temperature of the liquid, Tl the constant temperature 
of the medium that surrounds the liquid and To the constant tempera
ture of the medium that is placed in contact with the terminal face at 
x-O. 

Let uo(x) be the initial temperature in the cylinder and Vo that of 
the liquid. 

Then, following Langer [L], we must hiive: 
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(2) (1-1I) au I 
ax x=O+ 

o ~ 1I ~ 1, ~ constant 

(3) au I + ax + v (u - T I ) x=l- o , 

where a > 0, v ~ 0 are constants. 

The initial conditions of this problem are: 

(4) 

(5) 

lim u(x,t) = uo(x) , 0 < x < 1 , 
t+O+ 

lim vet) 
t+O+ 

v o vet) u(l-,t) . 

If u(x,t) = z(x) + w(x,t) ,with 

(6) z" (x) = 0 (1-1I) z' (0) - lIz(O) -liTo' z' (l)+vz(l) 

then 

[ (l_lI)aW - lIw] 
ax x=O+ 

o , [2- aw + aw + vw] 
a 2 at ax x=l-

Separation of variables in (7) yields, if w(x,t) "'(t) op (x) , 

(8) 

(9) 

"" (t) - s2 a 2 "'(t) = 0 , 

1 
op"(x) - s2 op(x) 0 

(1 - 1I) op'(O) - ~ op(O) = 0, 

op'(l) + [v + a s2) op(l) = 0 

o • 

F.or the discussion that follows we shall assume a 2 = 1, T O. This 
o 

does not introduce a qualitative change in the problem. 

To simplify still more the situation we shall assume v 0, that is, 
the liquid insulated against the passage of heat to or from its sur-
rounding medium. 

In this case the problem is already homogeneous and we put z = 0 and 
u = w. The constant 0 depends on the cylinder and the liquid and we 
shall suppose that 0 = 1. Thus, the system to discuss is given by: 
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i) a 2u au t > 0 o < x < 1 
ax2 = at 

ii) (l-lJ) au (O+, t) - lJu{O+, t) 0 0.;; lJ ';;'1 t > 0 ax 

(10) iii) au + au I 
IT ax x=1-

0 t > 0 

iv) u{x,t) -+ uo{x) 0 <x< 1 , t > 0 , U o (x) real , 
t .... O+ 

v) u{l-,_t) = vet) -- v t > 0 v real 
t .... O+ 0 0 

Separation of variables gives: 

(11) 1/1' (t) A I/I{t) 0 2 
A - s 

r 
!{I" - A !{I = 0 

( 12) b) (l-lJ) !(I' CO) - lJ !(I CO) 0 

c) !(I' (1) + s2 !(I(1) 0 
2 . 

A s = 

The boundary problem (12) was studied in detail ~y Langer in his pa
per [L]. In connection with it, cf. also [M], [Ch], [F) and [WJ]. In 
the references of the last paper other interesting works about this 

subject are mentioned. 

, 

2. In [L], § 4, it is proved that theeigenfrequencies s , s ~ 0, are 
n n 

pure imaginary and simple. The eigenvalue 0 appears exactly when lJ = 0, 

that. is, when the terminal face at x=O is inS'ulated. From [L], (22), 

it follows that 

S ±n 

Besides !{In = !(I_n' Since we are interested in expansions in eigenfunc

tions we shall ignore in the future the eigenfrequencies s_n 

n = 1,2,3, ... 

Also 

is x 
n 

+ ...J!- sin is x 
1S n 

for 
n 

and then we must expect in this situation that the solution of (10) 

can be written in the form: 

. t 
( 13) u ex, t) 
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We shall e~clude the case ~ = 0 and therefore the eigenvalue O. (If 

~ 0 

Z 
0 

the series 

[~ u dx + 
0 

1 + Q 

in (13) would be equal to u(x,t) - Zo 

(1 v 
o , (cf. [L], (28)), and the necessary changes in 

what follows are obvious). 

Because of the initial" conditions we must.have: 

<P n (x) 

(14 ) 

v 
o 

o .;;; x < 1 

Langer proves for u E L1 that I c I{)n(x) is uniformly equiconvergent 
o 1 n 

with the Fourier series of U o (x) on [&,1- e:l , 'If & > 0, if 

( 15) C 
n 

and also -that with this choice of coefficients the second relation in 

(14) hdds. 

Let us call V 
n 

we see that 

( 16) 

and -also that 1{)~(l)/lIl{)nll O(sn)' Therefore 

V (1) = I{) (1)/111{) II = - 1{)'(1)/1I1{) lI.s 2 = O(l/sn) n n n n n n 

Besides C = ((u ,V ) + v V (1))/(1 + 1{)2(1)/1I1{) 112) as it follows from non . 0 n n n 

(15). If u E L2 then {(u ,V)} E 12 , ([BP], §1). Also {V (l)}>E 12 
o 0 n n 

and in consequence {C } E 12. Therefore, from [BP], Th.1, the first 
n 

series in (14). which is equal to I C V (x) , converges in L2 to 
n n 

uo(x). I bn Vn is called a null series if it converges to 0 in 

L2(O,l). The dimension of the subspace of 12 of sequences of coef

ficients of null series will be called the degrees of freedom of the 

system {V n}' 

Denoting with g the degrees of freedom of the system, we know from [G], 
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Ch.V, that 'g=l and fromCh. HI, T,h. 4, that a certain expansion of 

uo (x), its Orr expansion, aonverg·es ;to 0 at x= 1. 

Then, 1) each null series is imiq.uely determined by its sum at 

2) ~he expansi<;ln (14) is obtainedstimming to the Or.r series of 

x=l, 

uo(x) 

is equal to v at x=l. In fact, if Uo == O. then the null series that 
,. 0 

the series I Cn Vn L· cn 'Pn is a null series that converges to Vo at 

x=l. Because of g=l, 1) is proved, and 2) follows immediately. From 

what we said above it follows that null ser·ies converge uniformly in 

compact sets of (0,1). (In relation with Orr and null series cf. 

Appendix of this note). 

3. If Uo E L2, Uo = L c 'P (L 2), v = L c 'P n (1), then (13) satisfies n non 

iv) (10)'. In fact, from [BP], Th.1, we have 

and from this it follows that L C V exp (.-1 A I t) converges in n n n 

L 2«(0,1) x (0 ,N) to a functio~ u(x,t). Each function 'Pn(x) exp(-IAnlt) 

a2u au ---2 - ~ = 0 on (-~,~)x(O,~), and therefore u(x,t) 
ax llt 

is a solution of 

is a solution of 'this )l'ypoelliptic equation in the sense of distribu

tions and must be a C~(x,t) - function. (This is proved later by a 

straightforward computation). It holds that ([ BP], Th. 1): 

Il I I'" 1 -IA It 12 o uo{x) - u(x,t) 2 dx < K I Cn (l -e n ) -t ... O 
o • 

It follows from § 2 that if uo(x) is not only square summable but is 

also a continuous function of bounded variation (that satisfies a 

Holder cOndi !ion) on (0,1) then L c 'P (x) converges (uniformly in n n 

compact sets of (0,1)) to uci(x), 0 < x < 1. From a well-known prope,!. 

ty of Dirichlet series ([ Wi], 2.5) we see that , 
u(x,t) = L c n 'Pn(x) exp(-IAnlt) tends (uniformly in compact sets of 

(0,1)) to uo(x) for t --+ 0 , 0 < x< 1. 

That is, iv) (10) is verified and in different topologies depending 

of the regularity properties of uo(x). 

(16) implies that Iv~j) (x) I = ISn1j . 0(1) and also that the series 

in 

(17) 

2 -Is I t 
e n 
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converges uniformly in compact sets of (-~ < x < 00) x (0 < t < 00), (in 
2k+' fact, C = 0(1) , {,} = O(l).ls I J). 

n n 
-I A I. t 

In particular we have for t > 0 that u(x,t) = L Cn Vn(x).e n 

-I An I. t 
pointwise and then that vet) = u(l-,t) = u(l,t) = L C <p (1) e 

1 n n ' 

--+ i Cn <pn(l) = va for t --+ 0+. Thus v) (10) holds. 

ii) (10) follows from b) (12) since because of (17) and what we said 
above it is sufficient to check it term by term. 

iii) (10) is proved in an analogous way using i) (10) and a) and c) 
(12). Thus we have proved i) of the following theorem. 

THEOREM 1. i) There exists a COO - solution for problem (10) such that 

lIu(. ,t) - u II ---+ O. 
a 2 t+O+ 

ii) 'There exists at most one solution of (10) such that 

u(x,t) E C2 ([0,1] x (0,00)), lIu(.,t) - ua ll 2 l O. 
t+O 

Proof ofii). It is enough to prove uniqueness for real solutions. 
Let us define: 

G (t) J: u 2 (x,t) dx . 

Then: i G'(t) J: au . u dx f: a2u . u dx au 11 r au 2 

at ax2 ax 
. u 0 - 0 (ax) dx. 

From (10), ii) and iii), we obtain: 

(18) iG'(t) = - 12 ~t U2 (X,t)\ - 1-11 (~u/\ - fl C:u )2 dx. 
Q x=l- 11 aX x=O+ 0 X 

Then ~t [Get) + u 2 (1-,t)] .;;; O. Calling F(t) the function inside the 

brackets, we have, by hypothesis: F(t) -+ lIuolI~ + v~ ~ O. Therefore 

F(t) is a non-negative non-increasing function such that 

= v 
a 

o then F == 0 and in consequence u == O. 

Taking into account that problem (10) is linear, ii) follows. QED. 
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4. From what we said in the proof of ii)Theorem 1 it follows that, 

This implies aontinuity on the initial. data in a certain sense. In 

fact, let us call W = ,[O,ll, x [O,T]. If u!n) (x) tends to uo(x) in 

L2 (0,1) and v!n) tends to Vo then Ifw,u(n) (x,t) - u(x,t) 12 dx dt 

tends to 0 for n --+- "". 

We call Co = {OJ x (O,T] , C = [0,1] x {OJ, C1 = {1} x (O,T]. 

The following result implies aontinuity on the initiaZ data in the 

ordinary sense. 

THEOREM 2. Assume that uo(x) is aontinuous on [0,1] and in t1ase 1J=1 

uo(O) = O. Then there exists a aonstant K suah that the soZution 

bJhose existenae is asserted in Theorem 1 verifies: 

sup lu(x,t) I ~ K(liuoli"" + Ivol) 
Osxsl 
O,;t<"" 

, 
In the proof of this theorem we use the following lemmas. 

LEMMA 1. Let 0 <'1J < 1 • u absol.uteZy aontinuous bJith u' E L2 (0, 1). 
o 0 

Then there exists a aonstant K independent of W suah that 

(19) sup lu(x,~) I ~ K(lIuoli"" + IVoil . 
w 

Proof. First we assume Vo = u o (l). In this case the first series in 

(14) with coefficients (15), l C 'V (x), converges uniformly to u (x) , n n , '0 

in [0,1] as is proved by Churchi1l([ ChI. Th. 2). Therefore u(x,t) is 

continuous on W cr Wi], 2.5) and since it is a solution of the heat 

equation the maximum of u on W must occur on Co UC 1 U C, ([ W], p.60). 

Then , 

(20) (x,t) E W • 

If lu(o,tjl ,0 < t ~ T, has a positive maximum in a point TE (0,T1 

,then from the boundary condition ii) (10), it follows that 

au U(O,T). ax (O,T) > O. In consequence, there exists ~ E (0,1) such that 

IU'(~,T) I >' IU(O,T) I ,.and from (20) we get: 

(21) 
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Besides, with the notation of Theorem 1 we have: 

From (20), (21) and (23) we get (19) with K=l. Secondly we assume 

uo(x) = 0 on [0,1). Thenu(x,t) is the solution of (10) obtained from 

a null series L a Vn(x) suc'h that La V (1) v. To prove that n n n 0 

(24 ) sup lu(x,t)1 < K'. Iv, I w 0 

it is enough to show that u(x,t) is bounded when Vo 
series form a one-dimensional linear space. 

since null 

An examination of the proof of [F], Th. 2, shows that in any case the 
parti'al sums of a null series are uniformly bounded. From a well -
known property of Dirichlet series it follows that u(x,t) is bounded 
on W. Since the solution in the general case is the sum of two solu
tions of the types already considered, (19) follows easily. QED. 

LEMMA 2. Let p=l and Uo absoLuteLy continuous, u~ E L2 (0,1) and 

uo(O) = O. Then, "(19) hoLds with a constant K independent of W. 

Proof. The p~oof of the preceding lemma can be repeated step by step 
but taking care of using instead of Churchill's theorem there mentio
ned the following modification of it. 

PROPOSITION 1. Let Yi(x), i = 1,2, ... , be the characteristic func

tions of the probLem 

{ 
y" + ().+q) y = 0 , q reaL and continuous on 0 .;; x .;; 1 

(-25) 
yeO) = 0, a l y(l) + y'(l) + b l y"(l) = 0 b l > 0 

If f(x) is absoLuteZy continuous on [0,1], f(O) = 0, and f' (x) E L2, 

then the series L [B(f,y.)/B(y.,y.)] y.(x) aonverges uniformZy in 
~ ~ 1 ~ 

[0,1] to fex), where B(f,g) = J: f(x) g(x) dx +b l f(l) g(l). 

Proof. The proposition is a consequence of the principle of reflection 
and the following differential boundary problem for which Churchill's 
result holds: 
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j 
y" + (>.+q)y = 0 -1 ,.;;x,.;;l q(x) q (I x I) , 

(26) a 1 y (-1) - y' (-1) + b 1 y" ( -1) = 0 

a 1 y(l) + yi (1) + b i y"(l) = 0 

The ei.genfunctions of (26) are either even or odd functions. The res

trictions to [0,1] of the odd ones are all the characteristic func

tioris.of problem (25). If f(x) is odd and equal to f(x) for 0,.;; x,.;; 1, 

then Churchill's expansion theorem applies to f and only odd charac

teristic functions of (26) appear. This yields the proposition. QED. 

If q=O, proposition 1 holds even when f(x) is continuous of bounded 

variation on [0,1] . as is shown by Miranda in [MJ, Th. II L 

Proof of' Theo.rem 2. Let u (n) (x) be absolutely continuous with 
. . 0 

(d/dx) u(n) E L2, u(n) (0) = 0 if ].1=1, such that lIu(n)-u 1I--+-0 for o 0 . . 0 0 

n --- co. Let u(x,t) and u(n)(x,t) be the solutions given by i) Th. 1 

which. correspond to the initial data uo' vo and u~n), Vo respectively. 

To prove the theorem it is enough to verify (19) for u(x,t). We know 

that JT dt JI lu(x,t) - u(n)(x,t)1 2 dx tends to 6 for n --+- 00 • 

0' 0 

'Besides,because,of lemmas 1 and 2, l:I(n)(x,t) converges uniformly on 

W, and necessarily to u(x,t). Then 

sup lu(x,t)1 = lim sup lu(n)(x,t)I";;K lim(lIu(n)n + Ivol) 
W n+oo W . 0 ."" 

K (II u II + I v I) QED. 
. .0 00 0 

Finally we state a corollary to theorem 2 whose proof we leave to the 
reader, and which ,reduces to Th. V of [MI when p=l. 

COROLLARY. Assume that uq(x) is continuous on [0,1] and in aase p=l • 

uo(O) = O. then. whenever vo = Uo (l).the soLution whose e$istenae is 

asserted in Theorem 1 is continuous and its defining series (13) aon-

, verges uniformLy in [0,11 x [0,"")' 

In a forthcoming paper [ZI we discuss anothe'r mathematical model from 

the same point of view as in the present one. 

APPENDIX 

Here we characterize the expansions to which we referred as Orr expan

sions, (cf. [BPI, Th. 1,(3) and Th. 5). 

THEOREM 3. Assume that Vk ; k = 1,2, ... is a normaLized LinearLy inde~ 
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pendent se~ in L2 with g degrees of freedom such that for any v E L2 

there exists an expansion (in L2): v L c k Vk 
k=l 

is a continuous linear functional on v and has the form 

(27) 

with Sj constants (independent of v). 

Then the set functionals {ck : k = 1,2, ... } is uniqueZy determined. 

Proof. Let us assume that {ck} is another set of functionals satisfying 

the hypothesis. Without loss of generality we can put jo = j~. Then 

for any v E L2, 
I 

L (ck - ck) (v)Vk = O. If {L Nt Vk ; j=l ,2, •••• g} 
k=l k=l 

is a linearly independent set of null series, i. e. , the series con-

verge to 0 in L2 and {{Nj ; k = 1.2, ... }; j = 1,2, ... ,g} C 12 is a 
k 

lin~arly independent set, we have: 

(28) 
g 

(ck - ck) (v) = L a.(v) Nj 
j=l J k 

Assume for a moment that there exist kl' k2' ... , kg' k i > jo' such 
that 

(29) 

In this case, 

Then aj (v) 

(30) 

for any v 1 

g 

l a. (v) Nj 
J k. j-l 1 

det (Nj ) '# 0 • 
k. 

1 

G [Vk , ... ,Vk J, 
Ig 

in view 

(Sk. - S' ) (v.Vk ) . 0 k. 
1 1 1 

o '\I j and so 

If v E G1 = L2 e G • 

of (28). we get 

If k > J = max(k 1 •... ,kg) and v is the projection of Vk on G1 then 

v '# O. Thus. by (30), Sk = Sk '\I k > J. In consequence: v E L2 implies 
J 

Of (Ck - ck) (v) Vk · Therefore. c k = ck for k = 1,2 .... ,J. 

This proves the theorem under hypothesis (29). Let us see that (29) 
is always satisfied. If not we would have for certain 0 and constants 

Ys ' 

(31) If 

Then 



o L 
j=1 

(N~' -
J 
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\' Y N~) V 
£. s J J' sf.a 

L Y s N~j VJo , and in conse-."'a 
quence N~ 

J 
o for j ~ jo. This together with (31) shows 

tha t Na depends linearly from LNs : -s f. a} , a qmtradiction. QED. 
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