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ABSTRACT. The main objective of this paper is to exhibit the role pla-
yed by the null series of an ordinary differential irregular boundary
problem 6btained by separation of variables in the solution of the
original partial differential equation. In this case we treat a problem
already studied by R.E. Langer where the heat equation is involved.

1. We consider the following problem studied by R.E. Langer, [L].

A right cylindrical solid has its lateral surface insulated against

" the passage of heat and has an initial distribution of temperature de-
pending only on the longitudinal coordinate x. Let x=0 and x=1 be the
coordinates of the plane terminal faces. The face at x=0 may be insu-
lated or may permit the passage of heat. The face at x=1 at the time
t=0 is placed in contact with & well-stirred liquid that at each
instant will have a uniform temperature throughout it. There may or
may not be passage of heat from the liquid to the surrounding medium.
The problem is to determine the temperature of the liquid and the
distribution of temperature in the solid at each instant t > 0.

The differential equation

(@B 0" =

where u(x,t) is the temperature at x at the time t and & is a physical
constant, controls the one dimensional flow of heat in the cylinder.

Let v(t) be the temperature of the liquid, T; the constant temperature
of the medium that surrounds the liquid and T, the constanti tempera-
ture of the medium that is placed in contact with the terminal face at
x=0.

Let u,(x) be the initial temperature in the cylinder and v, that of
the liquid. '

Then, following Langer {Ll, we must bhave:
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(2) (1-w) 32 = w{u(0+,t) - T} ; 0 <u <1, u constant
=0+
(3) UL WLy @w-T)) =0,
o 9t 9X x=1-

where o > 0, v > 0 are constants.

The initial conditions of this problem are:

4) lim u(x,t) = uo(x) , 0<x< 1,
t>0+

(5) lim v(t) = v, o v(t) = u(l-,t) .
t>0+

If u(x,t) = z(x) + w(x,t) , with
(6) z"(x) =0 , (1-u) z'(0) - wz(0) = -uT_, z'(1)+vz(1) =T,

then

9X az it X

(1) o* 2% =3ﬂ-,[(1-u)ﬂ - uW] -0, [i— W, o, vw}. -0 .
at x=0+ x=1-
Separation of variables in (7) yields, if w(x,t) = ¥(t) ¢(x) ,

(8) V) - s e ye) =0,

0

e"(x) - s? e(x)
(9 (1-w e'(0) - we=0,
Lo (1) + [v + o s’ e() =0

For the discussion that follows we shall assume o? = 1, T° = 0. This
does not introduce a qualitative change in the problem.

To simplify still more the situation we shall assume v = 0, that is,
the liquid insulated against the passage of heat to or from its sur-
rounding medium.

In this case the problem is already homogeneous and we put z =0 and
u = w. The constant o depends on the cylinder and the ligquid and we
shall suppose that o = 1. Thus, the system to discuss is given by:
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2
[ iy 2o t>0, 0<x<1 ,
X at
1) (1-w) 3% (0+,8) - wu(0+,8) =0 , 0<u<1 , t> o,
P L
(10) | iid) g5+ 35,0, =0 , t>0 ,

iv) u(x,t) —— uo(x) , 0<x<1,t>0, uo(x)»real ,
t>0+ '

v) u(l-,t) = v(t) —— v , t >0 , v_ real .
— o o]
: >0+

Separation. of variables gives:

n
o
-
1]
[}
>
-

an vr(t) - ¥()

a) ¢" - 29 =0
(12) b) (1-u) ¢'(0) - we(0) =0 ,

A e +stem =0, s2=2

The boundary problem (12) was studied in detail .by Langer in his pa-
per [L]. In connection with it, cf. also [M], [Chl, [F] and [WJ]. In
the references of the last paper other interesting works about this
subject are mentioned.

2. In [L], § 4, it is proved that the eigenfrequencies S S # 0, are

pure imaginary and simple. The eigenvalue 0 appears exactly when u = 0,
that. is, when the terminal face at x=0 is insulated. From [L], (22),

it follows that :
1 - S
_T[L]),l...o(%) .

Sin = ¥ (n -

Besides ¥, =¢¥_, . Since we are interested in expansions in eigenfunc-
tions we shall ignore in the future the eigenfreqﬁencies S_n 0
n=1,2,3,... .

Also

+ M

—— sin isnx for 0 <uxg1

w,(x) = (1-u) cos is x s

and then we must expect in this situation.that the solution of (10)
can be written in the form:

® 2 s
(13) u(x,t) = §J c ¢ (x) e ™
=1 !
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We shall ewclude the case p = 0 and therefore the eigenvalue 0. (If
u = 0 the series in (13) would be equal to u(x,t) - Z,

1
J u dx + o v
z = 0 o (2]

o 1+ ¢

, (cf. [L], (28)), and the necessary changes in

what follows are obvious).

Because of the initial conditions we must.have:

c, wn(x) uo(x) , 0<x<1 |,

(14)

v
o

Cn ¢n(1)

—D18 D18

]

Langer proves for u € L} that ) <. ¢n(x) is uniformly equiconvergent
1

with the Fourier series of uo(x) on [e,1-¢] , ve >0, if

1
(15) c_ = IO Yo Py X * Vo %5 (1)

n 1
2 2
]0 Y. dx + wn(1)

and also -that with this choice of coefficients the second relation in
(14) holds.

Let us call v, = wn/ﬂwnﬂz » € = cn"¢n"2‘ From wn(x) = knsin isn(x-hn)

we see that
(16) Vn(x) = wn(x)/llwnll2 = 0(1) sin isn(x-hn)
and -also that ¢;(1)/N¢9H = O(Sn)' Therefore
\ 1 2 _
Vn(1) = ¢n(1)/H¢nH = - wn(T)/HwnH-sn = 0(1/sn)

Besides c, = ((uo,Vn) + VOVn(1))/(1 + ¢§(1)/H¢nH2) as it follows from

(15). 1f u_ € L? then {(u_,V )} € 1, ([BP], §1). Also v_(nye?
and in consequence {Cn} e 12, Therefore, from [ BP}, Th.1, the first
sertes in (14), whiéh i8 equal to X Cn Vn(x) , converges in L2 to
uo(X). ) bV is called a null series if it converges to 0 in
L2(0,1). The dimension of the subspace of_l2 of sequences of coef-
ficiénts of null series will be called the degrees of freedom of the

system {Vn}.

Denoting with g the degrees of freedom of the system, we know from [G],
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Ch.V, that 'g=1 and from Ch.I1I, Th. 4, that a certain expansion of
uo(X), its Orr expansion, converges to 0 at x=1.

Then, 1) each null series is uniquely detérmined by its sum at x=1,
2) the expansion (14) is obtained summing to the Orr series of uogx)
the null series that is equal to v, at x=1., In fact, if u = 0 then

the series J C_V_ =] c_ ¢ is a null series that converges to v, at

x=1. Because of g=1, 1) is proved, and 2) follows immediately. From
what we said above it follows that null series converge uniformly in
compact sets of (0,1). (In relation with Orr and null series cf.
Appendix of this note). '

2 . .
3. If u € L%, u°,é ) c, wn(Lz), v, = I c, ¢,(1), then (13) satisfies
iv) (10). In fact, from [BP], Th. 1, we have

1 M’ -la 1t 2 M' 2
Jo |£ C 6 e V| dx < (1 +0(1/M) % |cn|

and from this it follows that } Ca Va exp(-]xnlt) converges in
LZ«O,I)X(O,N» to a functios u(x,t). Each function ¢n(x) exp(-|An|t)
22u  am

is a solﬁtion‘of 7 - — =0 on (-»,2)x(0,=), and therefore u(x,t)
9X At

is a solution of ‘this hypoelliptic equation in the sense of distribu-
tions and must be a C€”(x,t) - function. (This is proved later by a
straightforward computation). It holds that ([BP], Th. 1):

X

It follows from § 2 that if uo(x) is not only square summable but is

2 v -lxnlt 2
u (x) - u(x,t)|“dx<KJ [C(1-e )| —— 0.
° 1 n t+0

also a continuous function of bounded variation (that satisfies a
Hélder condition) on (0,1) then J ca ¢n(x) converges (uniformiy in
-compact sets of (0,1)) to u (x), 0 <x < 1. From a well-known proper
ty of Dirichlet series ([Wi], 2.5)'we see that

u(x,t) =7 c, v, (x) exp(-lkn|t) tends (uniformly in compact sets of
(0,1)) to uO(x) fort — 0, 0 <x { 1.

That is, iv) (10) is verified and in different topologies depending
.of the regularity properties of u, (x).

(1)

(16) implies that |v_

in

x)| = !sn|j . 0(1) and also that the series
s 2
p itk ® ;) - 2.k -ls | ¢
17) A - I (x) . (-5 n
17) T otk u(x,t) § CVHIX) (s |77 e



converges uniformly_in compact sets of (-» <x < «)x (0 <t <), (in

-
fact, C. = 0(1) , {.} = o(1).|s_|?¥*).

=i
In particular we have for t > 0 that u(x,t) = Z Cn Vn(x).e n

® | .t
pointwise and then that v(t) = u(l-,t) = u(l,t) = J
® 1
—> J c_ 9 (1) =v_ for t — 0+. Thus v) (10) holds
1 n n o

C
n

_I)‘
p (1) e T

ii) (10) follows from b) (12) since because of (17) and what we said
above it is sufficient to check it term by term.

iii) (10) is proved in an analogous way using i) (10) and a) and c)
(12). Thus we have proved i) of the following theorem.

THEOREM 1. i) There exists a C - solution for problem (10) such that

lu(.,t) - uOH —_ 0.
t>0+

ii) ‘There exists at most one solution of (10) such that

ulx,t) € ¢*(10,10 x (0,9)), Hu(.,t) - ull, — o.
t+0

Proof of 'ii). It is enough to prove uniqueness for real solutions.
Let us define;

G(t)

1 2
J u®(x,t) dx .
0

1 1.2 1 1 2
Then: % G'(t) = J 3y ax = J 3 U yax =28, ul - j A% ax
03t 0 :

From (10), ii) and iii), we obtain:

1
1 12 2 T-u ,ou,2 Ju, 2
(18) = G (t) = - = ~— u (X t) - — (.__.) - J (..__) dx .
2 2 5t Gt T m ax’ | oos o 9%

Then %{ [G(t) + u2(1—,t)] < 0. Calling F(t) the function inside the

brackets, we have, by hypothesis: F(t) — Huoﬂg + vg > 0. Therefore

F(t) is a non-negative non-increasing function such that

F(0+) =llull?+v . Ifu =v =0 then F = 0 and in consequence u = 0.
o 2 o o (<]

Taking into account that problem (10) is linear, ii) follows. QED.



126

k., From what we said in the proof of ii) Theorem 1 it follows that

Tl 2 2
J j u?(x,t) dx dt < (lugi? + v3).1 |
0°‘0 ’

This implies continuity on the initial data in a certain sense. In

fact, let us call W ={0,1] x [0,T]. If uén)(x) tends to uo(x) in

L2¢0,1) and vgn) tends to v_ then JJ

lu(n)(x',t) - u(x,t)|? dx 4t
w .

tends to 0 for n — =,

We call Co = {0} x (0,T] , C =1[0,11 x {0}, C, = {1} x (0,T].

1
The folloWing result implies continuity on the initial data in the
ordinary sense.

THEOREM 2.  Assume that uo(x) i8 continuous on [0,1] and in case u=1,
uo(O) = 0. Then there exists a constant K such that the solution
whose existence is asserted in Theorem 1 verifies:

sup |u(x,t)| <K(lull, + [v |)

O<x<1
0st<w

In the proof of this theorem we use the following lemmas.

LEMMA 1. Let 0 <pu <1, u abéolutely continuous with ué € L2(0,1).

Then there exists a constant K independent of W such that

(19) sup |u(x,t)| < K(lu Il + IVOI) .
W

Proof. First we assume v, = u°(1). In this case the first series in
(14) with coefficients (15),VZ Cn‘Vn(x), converges uniformly to uo(x)

in [0,1] as is proved by Churchill ([ Ch], Th.-Z). Therefore u(x,t) is
continuous on W ([Wil, 2.5) and since it is a solution of the heat
equation the maximum of u on W must occur on € uUC; uC, ([wl, p.60).
Then ,

(z0) . lu(x,t)| < sup Ju| , (x,t) € W.
. ) Coucluc o

1f |u(0,t)| , 0 <t <T, has a positive maximum in a point t € (0,T]
~then from the boundary condition ii) (10), it follows that

u(0,1). %§'(0,r) > 0. In consequence, there exists £ € (0,1) such that

jug,t)] > |u(0,t)| , and from (20) we get:

\ .
(21) sup |u| < sup Ju| = sup |u|
C

Co Couclu CIUC
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Besides, with the notation of Theorem 1 we have:

2

(22) a2 + v2

= E(0+) > F(t) = G(t) + u?(1,t) > u2(1,0) ,

2 2
(23) sgp [ul < u iy + v |7 <Nl + Ivol.
1
From (20), (21) and (23) we get (19) with K=1. Secondly we assume
uo(x) =0 on [0,1]. Then u(x,t) is the solution of (10) obtained from

a null series ) a, V (x) such that ) @ V. (1) = v . To prove that

(24) sup |u(x,t)| < K'.|v |
W o

it is enough to show that u(x,t) is bounded when v, = 1 since null
series form a one-dimensional linear space.

An examination of the proof of [Fl, Th. 2, shows that in any case the
partial sums of a null series are uniformly bounded. From a well -
known property of Dirichlet series it follows that u(x,t) is bounded
on W. Since the solution in the general case is the sum of two solu-
tions of the types already considered, (19) follows easily. QED.

LEMMA 2. Let u=1 and u absolutely continuous, u; € LZ(O,T) and

uo(O) = 0. Then, (19) holds with a constant K independent of W.

Proof. The proof of the preceding lemma can be repeated step by step
but taking care of using instead of Churchill's theorem there mentio-
ned the following modification of it.

PROPOSITION 1. Let yi(x), i=1,2,... , be the characteristic func-
tions of the problem

y" + (A+q) ¥y = 0 , q real and continuous on 0 € x <1 ,
(25)
y(0) =0, a, y(1) +y'(1) +b, y"(1) =0 , b, >0 .

If £(x) Zs absolutely continuous on [0,1], £(0) = 0, and £f'(x) € Lz,

then the series ) [B(f,yi)/B(yi,yi)] yi(x) converges uniformly in
1 .
{0,111 to f(x), where B(f,g) = j -f(x) g(x) dx + b1 £(1) g(1).
0
Proof. The proposition is a consequence of the principle of reflection

and the fellowing differential boundary problem for which Churchill's
result holds:
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y* o Ory =0, -l<x<1 ., q( =a(x],
(26) {a; y(-1) -y'(-1) + b, y"(-1) =0 ,
a, y(1) +y' (1) + b, y"(1) = 0

The eigenfurictions of (26) are either even or odd functions. The res-
trictions to [0;1] of the odd ones are all the characteristic func-
tions.of problem (25). If E(x) is odd and equal to f(x) for 0 < x <1,
then Churchill's expansion theorem applies to f and only odd charac-
teristic functions of (26) appear. This yields the proposition. QED.

If 9q=0, proposition 1 holds even when f(x) is continuous of bounded
variation on [0,1] as is shown by Miranda in [M], Th. III.

Proof of Theorem 2. Let uén)(x) be absolutely continuous with

@/ax) ul® e 1%, ul™ (0) = 0 if =1, such that hu™-u I — 0 for

n — «, Let ﬁ(x,t) and u(n)(x,t) be the solutions given by i). Th. 1
' (n)

which correspond to the initial data Uss Vg and u v respéctively.

To prove the theorem it is enough to verify (19) for u(x,t). We know-

T 1 v
that f dt J Jlu(x,t) - u(")(x,t)l2 dx tends to 0 for n — =,
0 0 ) :

'Besides, because of lemmas 1 and 2, g(n)(x,t) converges. uniformly on
. W, and necessafiiy to u(x,t). Then

lim sup |[u (x,0)| < K 1im@u{®i_ + v |) =

sup |u(x,t)|
W n*e W

K'(ugou; + v 1) , QED.

F1na11y we state a corollary to theorem 2 whose proof we leave to the
reader, and which reduces to Th. .V of [M] when u=1.

COROLLARY. Assume that u,(x) Zs continuous on [0,1] and in case u=1,
uy,(0) = 0. Then, whenever Vo = u, (1),the solution whose existence is
asserted in Theorem 1 is continuoug and its defining series (13) con-
. verges uniformly in [0,1] x [0,=).

In a forthcoming paper [Z] we discuss another mathematical model from
the same point of view as in the present one.

e APPENDIX
Here we characterize the expansions to which we referred as Orr expan-
sions, (cf. [BP], Th. 1, (3) and Th. 5).

THEOREM 3. Assume that Vk ; k=1,2,... Z8 a normalized linearly inde-
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pendent set in L2 with g degrees of freedom such that for any v € L2
there exists an expansion (in LZ): v= 3 c V., where each c, =c (v)
Wi Tk Tk K “k

18 a continuous linear funcetional on vV and has the form

(27) cj = cj(v) = (V,Vj) Bj whenever j > j

o b
with Bj constants (independent of V).

Then the set functionals {ck: k =1,2,...} ¢s uniquely determined.

Proof. Let us assume that {ci} is another set of functionals satisfying

the hypothesis. Without loss of generality we can put jo = jé. Then

2 ©0 /‘ 00 . .
forany v e L%, ] (¢ - ¢}) (V) Ve = 0. If { ] N Vs 3=1,2,...,8}
: . k=1 » k=1 :
is a linearly independent set of null series, i.e., the series con-
verge to 0 in L? and (N k= 1,2,0005 5 = 1,2,...,8 c1? is a

linearly independent set, we have:

& .
(28) (ep - ¢)) ) = .21 a, M N, vve L2, vk .
j=
Assume for a moment that there exist kl’ kz’ , kg, ki > jo, such
that
(29) det (M ) # 0
i
In this case, for any v L G = [V sees,V, 1, in view of (28),we get
Y kg kg
g -
I a,(v) NJ =( -8!') (v,Vv, ) =0.
j=1 kg ky kgt kg

Then aj(v) =0 V j and so
(30) ) =c(v) v vec =12e6.

If k >J = max(ky,... k) and v is the projection of vV, on G! then

v # 0. Thus, by (30), B = ai v k > J. In consequence: v € L2 implies

J
0 = § (e, - ) (V) V.. Therefore, ¢, = ¢4 for k = 1,2,...,J.

This proves the theorem under hypothesis (29). Let us see that (29)
is always satisfied. If not we would have for certain ¢ and constants

YS’

Gn N = F y NS v §>i,-

Then
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I jo _

0= 37 N - § y_ N)vVv.= 71 (N9 - ] y_N) V., and in conse-
je1 3 gdo S 37 3 521 T3 g4p 8 373 ’

quence N; -7 Yo N; = 0 for j < j_ . This together with (31) shows

s#0

that N° depends linearly from {N°: s # ¢} , a contradiction. QED
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