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AN ATOMIC DECOMPOSITION OF DISTRIBUTIONS

IN PARABOLIC HP SPACES

*
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ABSTRACT . In this paper we extend the method employed by A.P.Calde-
rén in [1] to obtain an atomic decomposition of distributions in para

bolic HP spaces with diagonalizable dilation groups, to a general pa-

rabolic HP space. The main tool we use is a partition of unity of
Whitney-type in this context.

1. PRELIMINARIES AND STATEMENT OF THE MAIN RESULT.

In this section we shall first state some background material of HP
spaces of A.P. Calderdén and A. Torchinsky; we shall omit the corres-
ponding proofs; they can be found in [1], [2] and [3].

We will be using the letter c to denote a constant which need not be
the same in different ocurrences.

Let HP, 0 < p < =, be the classes of distributions in R®™ introduced

in [3]. That is: we consider a multiplicative group A, of linear trans
formations of R® such that if x € R® and |x| denotes its norm, then

t* x| < IAtxl < tb [x], 1<a <8, t>1. The infinitesimal generator
of A, will be denoted with P. Let d(x,y) = p(x-y) be the associated )

metric in R™, where p(x) is the unique value of t for which IA;lez 1.
Given v in the class S of infinitely differentiable, rapidly decrea-

sing functions in R™ and f in S', the class of tempered distributions,
let

e, = t7Y v(A;Ix) » 7y = trace P ;

F(x,t) = (£ *¢ )(x) , x€ R, t>0

and M _(x,F) = sup {Fiy,©)] , a>0.
a p(x-y) % at .

* This research was supported by the CONICET.
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Then f € HP if Ma(x,F) €LP, 0<p<n, &(0) # 0; and the norm of an
element of HP is defined by I £l p = HMa(x,F)Hp. As is well known the
H

space HP does not depend on the choice of ¢ or a, and for any two

choices of ¢ and a the resulting norms are equivalent. For

0 <p <1 the distance function Hf-ngp turns HP into a complete

. H
metric space.

The transposed of A, with respect to the ordinary inner product (x,y)

*
in R™ will be denoted with AL . The function p satisfies (see [2], 1.4)

(1.1) p(AX) =t p(x).
(1.2) po(x) <1 if and only if |[x| < 1.

(1.3)  |x] <po(x)* if |x] or op(x) <1, 1< a.

A k-atom o is a bounded function with compact support and with vanish
ing moments of all orders less than or equal to k. The p-norm of the
atom o is defined as "“"(p);= llall (inf LBlilp) where |B| is the mea-
sure of a ball B = {x: ptx-xo) < r} 'containing the support of a. If
0<p<1 and k> (y/p)-1 , then o« € HP and HuHHp <c Haﬂ(p),

where the constant c depends on k and the choice of the norm in HP.

We shall now state our result, which coincides in the diagonalizable
case with the result obtained by A.P.Calderén in [1].

THEOREM . Let f <n HP, 0 < p <1and k > (y/p)-1. Then there exists a

sequence o of k-atoms, such that £ = oy in HP, that is

=018

e -3 ajH — 0 as N — = , and given a norm in HP and the value of
1 H

k there is a constant c such that

-1 P p P
c £ < la.ll < c lfll
ll "HP = z I“J (P) = HP

2. We consider as in [1] an infinitely differentiable function y with
compact support contained in |x| < 1 and with vanishing moments up to

~ % .
order k, with the property that |[y(A.x)| does not vanish identically"

in t for x # 0. Then there exists a function ¢(x) € S such that

p e Cg and S(x) = 0 near the origin and has the property

, T oAk Ao dt

(2.1) fw(AX) VA X) =1, x#0;
0 t t t

(see [2], lemma 4.1).



- Then the function

) = [ et bamo &, x g
1
\

n(o) = 1

is infinitely differentiable, has compact support, and equals 1 near
the origin. Furthermore, as is readily verified

t

1 . * ~ * dt ~ * ~ *
(2.2) [ om0 tam E-hal 0 - hal

ty 0 1

Given f € S' we define the functions

F(x,t)

(E*e ) ,

and G(x,t) (f * nt)(x) R
where n(x) is the inverse Fourier transform of n.

If f € HP, then

M(x) = sup (IF(y,t)| + [6(y,t) )
p(x-y) < 3t .

belongs to LP,

Now, the distribution f can be expressed in terms of F(x,t) as
£= [ [Fo.0 v on oy &,
0

where the integral in t converges in the weak sense, that is

(2.3)  lim J £ (x) J Fly,t) v, (x-y) dy &£ ax = (£,0)
€>0 e : }
S+

for every ¢ in S. This is seen by taking Fourier transforms.

" Furthermore, using (2.2) we have

t
. 1 .
@0 [ [ro.o e en) @y £ -Gt - oty
! .
o

3. A PARTITION OF UNITY.

Let 0 be an open subset of R® of finite measure. Then there exists a
countable family of functions Ej with the following properties:
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(n yxe€o0, 0< gj(x) and Zgj(x) = 1.
(2) supp(gj) C Bj, where Bj is a ball of radius rj i.e.
= {x: - <r, 9 <
Bj {x: p(x xé) rJ}, such that d(Bj,O ) <c rj‘

and ) |B.| <c |0].
3 J

(3) lej(xv2) - e ()] <c o2, vx, zer™
J

Proof: For each integer k we consider the set Qk defined by

(3.1) Q = (x: 275! <ax,0%) <27M.

Since |0| is finite, we have 0 = U ﬂk' Let {B_,(x)} be a covering
kzko

of Qk with balls Br,(x) of radius r' = 2—k—5 and with centers in Si.

Then E' = U {B_,(x)} is a covering of 0 and the

k>k
- 0
sup {radius (Br,(x))} is finite. Therefore, we can select a disjoint

countable subfamily {Br,(xj)} such that (see [2], lemma 1.6),

J
0 C v BBrE(Xj)'
J J
We take ry = 4 rj and Bj = Br (xj), that is, the ball with center

J
xj and radius rj . Then E = {Bj} satisfies

S

(i) 0 = UB,
i 3

(i1) ] IBy] <c |0]
J

PRI - c

(iii) dLBj,O ) <c rj

(iv) Let Bj € E. Then there are at most N balls in E which intersect

Bj' N depends only on the dimension.

Let Br.(xj) be a ball of E, then there exists k such that xj € E&

J
and o= Z—k_3, therefore if z € Br_(xj) we have

]

-k-1

(3.3) 2 -2 k

< d(z,0°) < 27F 4 27k°3

-k-3

Now, from (3.3) we have Br_(xj) C 0, and using (3.2) we obtain (i).
J

Observe ' that Z]Br_(xj)l = 4Y 7 !Br,(xj)l < 47 |0], which is (ii).
, k| b

Also (iii) follows from (3.3), with c = 23+1 .



"In order to prove (iv), we note that,on account of (3.3) if Br (xj,)
it
is a ball which intersects Br (xj), then rj, must be one of the va-
R

lues er , T. oT Z_Irj and therefore the corresponding Br, (xj,) s
. Al

3 j
(rj, = 471
B_,(x,) are disjoint, we must have
r!hj J
J

rj.), is contained in the ball B (xj). Since the balls

4t .
J

N ow_ (s‘lrj)Y < v

N
(4rj)

n

where N is the number of balls‘which intersect Bj’ w the measure of
the unit ball. The desired result follows from this inequality.

Let now, £(x) be a function in D with the properties: 0 < g < 1,
E(x) = 1 for p(x) <1 and £(x) = 0 for p(x) = 1 + 371, We define

= -1 _
gi1(x) = £(A3r5(x x;))
where x., 1is the center of B , r. = 4r!
J rj J - J
gl (x)
E(x) =} g!(x) and £.(x) =
3 J = (x)

Notice that Eg(x) = 1 for x in B3r,(xj) and gé(x) =0 for x in

the complement of Br (xj), and, according to (iv) we have
3

1 < E(x) <N thus the functions gj are well defined, they belong to
D, 0 < Ej’ Zéj(x) = 1 for x in 0, and supp(gj) C Bj. Now these pro

perties combined with (i), (ii) and (iii) give (1) and (2).

Finally we shall prove (3). Let p(Agi,x) < 1. We observe that
' ]

: (Agij, (x-x,))
£5(x) = ,
J -1

Lo (5, (x-x;))

where i takes the values for which B, intersects B., and x; is the
. J
center of Bi‘ As we have shown there are at most N values of i, and

ri must be rg or 2r§ or Z'Irj . On the other hand,the function

-1
E()’ - A3r5Xj)

T ety - A3x)
i 1 ]
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- where i takes the same values as before, and a; = 1, 2 or 271

for ri = rg . er or 2_1r5 3 has bounded derivatives, and the bound
c depends only on N,t, and the group'At. Therefore

(3.4) IEj(x +z) - Ej(X)I =

-1 -1, -1 -1 -1
E(Agp X + Agiaz - AgpaXy) E(Ag X - AgXy)
_ 3 i ] ) j i <
g o1 - I -1 '
JECAL (Ag v x + Aj a2z - Agi,x,)) Zg(Aa.(Aargx - Agpix;))
i i i j 3j i i 3 j

-1

< ¢ |A3rJ!z|

Since p(A;i!Z) <1, then.\lA;i!zl <1, and using (1.3) we have

J J
(3.5) |A;i!z| <[-p(A;i!z)]a <p(A;:!z).
J J J
In the other case, that is p(A;iéz) > 1, since gj < 1, we have
(3.6) le;Gerz) - g5 ()| < 20 (A3}, 2).

J

Now, using the property (1.1) of p, from (3.4), (3.5) and (3.6) it
follows that

|€j(x+z) - gJ(x)l qu(Agi;iZ) <c :.—J.—D(Z

as we wished to show.

4, The function M(x) is lower semicontinuous .and consequently the sets
0i = {x: M(x) > Zi}

are open.
Let Eij be the function:. of the partition of unity in Oi' We consider

also the subsets of R® x R*

5i = {(x,t) : 0 <2t <d(x,05)}

where d(x,OE) denotes the distance between x and the complement
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OE of‘Oi, and let X;(x,t) be the characteristic function of the set

Y “Jc
0; - 0541
Now we define the functions

©

«$00 = [ [ 5,00 0,0 Bt v ey ay 2

€

aij(x) = lim a£;)(x) » (pyp)

e>0

We shall prove that the aij(x) are k-atoms which give the desired

decomposition of f.

(a). We shall first estimate the supports of the a§;). Let Bij be

the balls considered in 3.(2) such that supp(sij) C Bij and rij

the radius of B... Then if y € B.. we have d(y,0%) < ¢ r..; there-
ij ij ) i ij

. C .
fore xi{y,t)‘ 0 if t > 7 rij’ for all y € Bij.n81nce

supp (¥, (x-y)) C {x:p(x-y) < t}, if By N lo(x-y) < t} # ¢ and
Xj(y,t) # 0, we must have -d(x,Bij) <t< % Tige Consequently
supp( af{$) ) c B,

r. ’
ij

where Bc'r is the ball with the same center, and radius C'rij“
ij
. . () . . n
(b). We shall now estimate the sizes of a5g Given x € R, con-
sider the following values of t:

d(x,05 ) . d(x,0%)
+1 - » -
to = _3‘1— ’ to = d(xyoi_',l) ’ tl = T]'-"' ’ tl = d(X,Oz),
then 0 <t < Ek s fk <3t ,k=0,1; and
X;05t)y (x-y) = 0 for t< t, t, #0 or 0< ?1< t,

(4.2)

xi(y,t)wt(x-y) wt(x-y) for 0 <t <t<t, tl# 0, t # 0.

Observe that xi(y,t) = X(l)(y,t) X(Z)(y,t) , ﬁhere X(I)(y,t) is
the characteristic function of Ei and X(Z)(y,t) is the characteristic
function.of 5g+1. Now if y € supp(wt(x-y))' then p(x-y) < t, and,

we have
d(y,og) < d(x,o;) *t<2t, for 0<% <t,

d(y,o‘i‘) > d(x,og) - t>2t, for t < ti, t,



and consequently

xM (y,t) ¥ (x-y) =0 for 0<F <t

1]

X(l)(y,t) Wt(x-y) wt(x-y) for t<t t. # 0.

Similarly, we find that

X(z)(y,t) \pt(x-y) =0 for t < tO’ t #0
(2 (y, ) Ye(x-y) = ¥ (x-y) for 0<t <t,t#0.

From these estimates we obtain (4.2).
First, we will estimate the integral (4.1) over the intervals (a,fk),

t, <a< ?k » k = 0,1. We notice that if x; (y,t) # 0 then

i+l

(y,t) € 0 and therefore |F(y,t)| < 2 . Also v, (x-y)]| a
i+l t Y

is a constant independent of t and x, and because fk < Stk, we
have

?k

; - dt
(4.3) [ e;00 %000 Fo,0 v oy ay 88| <

a

k
ljlwt(x-y)l dy] %E < c 2.

k

< 2i+1

ot — |

Now , we shall estimate the integral (4.1) over the interval (a,tl)

for 0<t <a< t1 or 0 = to <a< tl' We have

o

t 1 .
(4.4) J J 813 () F(y,t) v (x-y) dy %£'=
a

1] [e. . ( ) dt
i3 ) - £55,001 FOy, )y (x-y) dy &= +

Rt

t

1
+ gy J J F(y,t) Ve(x-y) dy %£ .

a

Using (2.4) we find that the last term is equal to

(4-5) Eij(x) [G(X,tl) - G(x,a)]

and since (x,t;) and (x,a) ¢ 5i+1 , we have IG(x,tl)l < 2i+1,
|G(x,a)| < i+l

less than or equal to c2t. Setting =z = x-y in the first term,we

, and consequently the absolute value of this term is



177

obtain
t

(4.6) j J le;;(x+z) - £;500] F(x+z,t) ¥ (2) dz %$ ;
a

now |F(x+z,t)]| < it!

(4.6) is dominated in absolute value by

and on account of the property (3) of the gij;

t
1 .
@ e [ ) @] 4z

1] a

" We saw in (a) that supp(agi)(x)) C Bcr which implies that
ij
1

{;3 on the other hand ¢ p(z) = p(A7'2) then J"—%El lv, (2) |dz

t, <cr
is a constant independent of t and x. Therefore we have that (4.7)
is less than or equal to

crij
(4.8) c 2™t L j at < ¢ 2t
ij 0

.~ Which combined with the previous estimate give |a£§)(x)l <c 2t.

(c). The fact that the moments up to order k of u§§) vgnish,follows

by integration from the vanishing of the moments of wt(x-y) as a
function of x.

(d). We shall show now, that the same results (a),(b) and (c), are
valid for aij‘ In order to obtain this, it suffices to prove that

agg) converges almost everywhere. In fact, if fl =0 or t #0 ,
then a£§)(x) is constant, otherwise, since (4.5) converges. almost

everywhere as a » 0 -and the integral (4.6) converges absolutely in
(O,tl), we find that (4.4) converges as a - 0 almost everywhere and

the desired resuit follows.

From the results above we have

o . .
(4.9) o, .l < c2'? |B

ij" (p) I

ij
\
and we obtain

(4.10) Jlhag WP <c ] 2iP|Bij| <cj 2™ jo,| <
' (p .
-py-1 i -py-1 oo
< (1-27P)70  2'P(Jog] - lo,,, D) < (1-27R) IIM(x)Ili <c Ilfll;p

A X P
Thus, since [a. .|
1]

P
< . seri i
P c ”aij"(p)’ the series J @;; converges in the
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metric of HP ; denoting by g its sum, we have

P P P
hgh < [ la,.l < c Ifll
uP ij” () uP

~

Finally we shall show that g = f. Observe that the functions agi)

P P
. €
satisfy (4.9), and then (4.10) for each e i.e. ) "“gj)"(p) <c lIfIIHp

Let g(e) =7 a£§) in HP. On the other hand, from the properties

(a), (b),(c) and the convergence almost everywhere of a£§) to %0
it follows that Ha(?) - o, — 0 as € — 0. Then
ij ij y4p

"g(e)_

gll b 0 as e — 0.
H

Now, if ¢(x) € S, we have

©

€0 = 1,0 - I [ ] [e;00%,0,0F0, 0% Goyayae

€

" Since |F(y,t)| <c £ Y/P and Zgij(y)xiﬁy,t) = 1 , we may sum under

the integral sign, and using (2.3) we obtain

(g,0) = lim (g¢%),0) = (£,0) ,

e~>0

which implies g = f. This concludes the proof of the theorem.
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