Revista de la Unión Matemática Argentina Volumen 29, 1980.

AN ATOMIC DECOMPOSITION OF DISTRIBUTIONS

IN PARABOLIC H^P SPACES

Angel B.E. Gatto *

Dedicado al Profesor Luis A. Santaló

ABSTRACT . In this paper we extend the method employed by A.P.Calderón in [1] to obtain an atomic decomposition of distributions in parabolic H^p spaces with diagonalizable dilation groups, to a general parabolic H^p space. The main tool we use is a partition of unity of Whitney-type in this context.

1. PRELIMINARIES AND STATEMENT OF THE MAIN RESULT.

In this section we shall first state some background material of H^p spaces of A.P. Calderón and A. Torchinsky; we shall omit the corresponding proofs; they can be found in [1], [2] and [3].

We will be using the letter c to denote a constant which need not be the same in different ocurrences.

Let H^p , $0 , be the classes of distributions in <math>\mathbb{R}^n$ introduced in [3]. That is: we consider a multiplicative group A_t of linear transformations of \mathbb{R}^n such that if $x \in \mathbb{R}^n$ and |x| denotes its norm, then $t^{\alpha} |x| \le |A_t x| \le t^{\beta} |x|$, $1 \le \alpha \le \beta$, $t \ge 1$. The infinitesimal generator of A_t will be denoted with P. Let $d(x,y) = \rho(x-y)$ be the associated metric in \mathbb{R}^n , where $\rho(x)$ is the unique value of t for which $|A_t^{-1}x| = 1$. Given φ in the class S of infinitely differentiable, rapidly decreasing functions in \mathbb{R}^n and f in S', the class of tempered distributions, let

$$\varphi_{t} = t^{-\gamma} \varphi(A_{t}^{-1}x) , \quad \gamma = \text{trace } P ;$$

$$F(x,t) = (f * \varphi_{t})(x) , \quad x \in \mathbb{R}^{n}, t > 0$$
and
$$M_{a}(x,F) = \sup_{p(x-y) \leq at} |F(y,t)| , a > 0$$

* This research was supported by the CONICET.

Then $f \in H^p$ if $M_a(x,F) \in L^p$, $0 , <math>\hat{\varphi}(0) \neq 0$; and the norm of an element of H^p is defined by $\|f\|_{H^p} = \|M_a(x,F)\|_p$. As is well known the space H^p does not depend on the choice of φ or a, and for any two choices of φ and a the resulting norms are equivalent. For $0 the distance function <math>\|f-g\|_{H^p}^p$ turns H^p into a complete metric space.

The transposed of A_t with respect to the ordinary inner product (x,y) in R^n will be denoted with A_t^* . The function ρ satisfies (see [2], 1.4)

(1.1) $\rho(A_x) = t \rho(x)$.

(1.2) $\rho(x) \leq 1$ if and only if $|x| \leq 1$.

(1.3) $|x| \leq \rho(x)^{\alpha}$ if |x| or $\rho(x) \leq 1$, $1 \leq \alpha$.

A k-atom α is a bounded function with compact support and with vanish ing moments of all orders less than or equal to k. The p-norm of the atom α is defined as $\|\alpha\|_{(p)} = \|\alpha\|_{\infty} (\inf |B|^{1/p})$ where |B| is the measure of a ball $B = \{x: \rho(x-x_0) \leq r\}$ containing the support of α . If $0 and <math>k \geq (\gamma/p) - 1$, then $\alpha \in H^p$ and $\|\alpha\|_{H^p} \leq c \|\alpha\|_{(p)}$, where the constant c depends on k and the choice of the norm in H^p . We shall now state our result, which coincides in the diagonalizable case with the result obtained by A.P.Calderón in [1].

THEOREM . Let f in H^p , $0 and <math>k \ge (\gamma/p)-1$. Then there exists a sequence α_j of k-atoms, such that $f = \sum_{i=1}^{\infty} \alpha_j$ in H^p , that is $\|f - \sum_{i=1}^{N} \alpha_j\|_{H^p} \to 0$ as $N \to \infty$, and given a norm in H^p and the value of k there is a constant c such that

 $c^{-1} \| f \|_{H^{p}}^{p} \leq \sum \| \alpha_{j} \|_{(p)}^{p} \leq c \| f \|_{H^{p}}^{p} .$

2. We consider as in [1] an infinitely differentiable function ψ with compact support contained in $|\mathbf{x}| \leq 1$ and with vanishing moments up to order k, with the property that $|\hat{\psi}(A_{\mathbf{x}}^{*}\mathbf{x})|$ does not vanish identically in t for $\mathbf{x} \neq 0$. Then there exists a function $\varphi(\mathbf{x}) \in S$ such that $\hat{\varphi} \in C_{0}^{\infty}$ and $\hat{\varphi}(\mathbf{x}) = 0$ near the origin and has the property

(2.1)
$$\int_0^{\infty} \hat{\varphi}(A_t^* x) \quad \hat{\psi}(A_t^* x) \quad \frac{dt}{t} = 1 , \quad x \neq 0 ;$$

(see [2], lemma 4.1).

Then the function

$$\hat{\eta}(\mathbf{x}) = \int_{1}^{\infty} \hat{\varphi}(\mathbf{A}_{t}^{*}\mathbf{x}) \ \hat{\psi}(\mathbf{A}_{t}^{*}\mathbf{x}) \ \frac{dt}{t} , \quad \mathbf{x} \neq 0$$

$$\hat{\eta}(\mathbf{0}) = \mathbf{1}$$

is infinitely differentiable, has compact support, and equals 1 near the origin. Furthermore, as is readily verified

(2.2)
$$\int_{t_0}^{t_1} \hat{\varphi}(A_t^*x) \ \hat{\psi}(A_t^*x) \ \frac{dt}{t} = \hat{\eta}(A_t^*x) - \hat{\eta}(A_t^*x) .$$

Given $f \in S'$ we define the functions

$$F(x,t) = (f * \varphi_t)(x)$$

 $G(x,t) = (f * \eta_t)(x)$,

and

where
$$\eta(\mathbf{x})$$
 is the inverse Fourier transform of $\hat{\eta}$.

If $f \in H^p$, then

$$M(x) = \sup_{\substack{\rho(x-y) \leq 3t}} (|F(y,t)| + |G(y,t)|)$$

belongs to L^P.

Now, the distribution f can be expressed in terms of F(x,t) as

$$f = \int_{0}^{\infty} \int F(y,t) \psi_{t}(x-y) dy \frac{dt}{t}$$

where the integral in t converges in the weak sense, that is

(2.3)
$$\lim_{\substack{\epsilon \to 0 \\ \delta \to \infty}} \int \zeta(x) \int_{\epsilon}^{\delta} F(y,t) \psi_{t}(x-y) dy \frac{dt}{t} dx = (f,\zeta)$$

for every ζ in S. This is seen by taking Fourier transforms. Furthermore, using (2.2) we have

(2.4)
$$\int_{t_0}^{t_1} \int F(y,t) \psi_t(x-y) dy \frac{dt}{t} = G(x,t_0) - G(x,t_1) .$$

3. A PARTITION OF UNITY.

Let 0 be an open subset of R^n of finite measure. Then there exists a countable family of functions ξ_j with the following properties:

(1)
$$\forall x \in 0$$
, $0 \leq \xi_j(x)$ and $\sum_{j \in j} \xi_j(x) = 1$.

(2) $\sup (\xi_j) \subset B_j$, where B_j is a ball of radius r_j i.e. $B_j = \{x: \rho(x-x_j) \leq r_j\}$, such that $d(B_j, 0^c) \leq c r_j$ and $\sum_j |B_j| \leq c |0|$.

(3)
$$|\xi_j(x+z) - \xi_j(x)| \leq c \frac{1}{r_j} \rho(z), \forall x, z \in \mathbb{R}^n.$$

Proof: For each integer k we consider the set $\boldsymbol{\Omega}_k$ defined by

(3.1)
$$\Omega_{\mathbf{k}} = \{ \mathbf{x} : 2^{-k-1} < d(\mathbf{x}, 0^{c}) \leq 2^{-k} \}.$$

Since |0| is finite, we have $0 = \bigcup \Omega_k$. Let $\{B_r, (x)\}$ be a covering $k \ge k_0$ of Ω_k with balls $B_r, (x)$ of radius $r' = 2^{-k-5}$ and with centers in Ω_k . Then $E' = \bigcup \{B_r, (x)\}$ is a covering of 0 and the $k \ge k_0$ sup {radius $(B_r, (x))$ } is finite. Therefore, we can select a disjoint countable subfamily $\{B_{r_j}, (x_j)\}$ such that (see [2], lemma 1.6), $0 \subset \bigcup B_{3r_j}, (x_j)$.

We take $r_j = 4 r'_j$ and $B_j = B_{r_j}(x_j)$, that is, the ball with center x_j and radius r_j . Then $E = \{B_j\}$ satisfies

- (i) $0 = \bigcup_{j=j}^{N} B_{j}$
- (ii) $\sum_{j} |B_{j}| \leq c |0|$
- (iii) $d(B_i, 0^c) \leq c r_i$
- (iv) Let $B_j\in E.$ Then there are at most N balls in E which intersect $B_j.$ N depends only on the dimension.

Let $B_{r_j}(x_j)$ be a ball of E, then there exists k such that $x_j \in \Omega_k$ and $r_j = 2^{-k-3}$, therefore if $z \in B_{r_j}(x_j)$ we have

$$(3.3) 2^{-k-1} - 2^{-k-3} \le d(z,0^c) < 2^{-k} + 2^{-k-3}.$$

Now, from (3.3) we have $B_{r_j}(x_j) \subset 0$, and using (3.2) we obtain (i). Observe that $\sum |B_{r_j}(x_j)| = 4^{\gamma} \sum |B_{r_j}(x_j)| \le 4^{\gamma} |0|$, which is (ii). Also (iii) follows from (3.3), with $c = 2^{3}+1$.

173

In order to prove (iv), we note that, on account of (3.5) if $B_{r_j}(x_{j'})$ is a ball which intersects $B_{r_j}(x_j)$, then r_j , must be one of the values $2r_j$, r_j or $2^{-1}r_j$ and therefore the corresponding $B_{r'_j}(x_{j'})$, $(r'_j, = 4^{-1}r_j)$, is contained in the ball $B_{4r_j}(x_j)$. Since the balls $B_{r'_j}(x_j)$ are disjoint, we must have

$$N \omega_{n} (8^{-1}r_{j})^{\gamma} \leq \omega_{n} (4r_{j})^{\gamma}$$

where N is the number of balls which intersect B_j , ω_n the measure of the unit ball. The desired result follows from this inequality. Let now, $\xi(x)$ be a function in D with the properties: $0 \le \xi \le 1$, $\xi(x) = 1$ for $\rho(x) \le 1$ and $\xi(x) = 0$ for $\rho(x) \ge 1 + 3^{-1}$. We define

$$\xi_{j}(x) = \xi(A_{3r_{j}}^{-1}(x-x_{j}))$$

where x_j is the center of B_{r_j} , $r_j = 4r'_j$;

$$\Xi(x) = \sum \xi'_j(x)$$
 and $\xi_j(x) = \frac{\xi'_j(x)}{\Xi(x)}$

Notice that $\xi'_j(x) = 1$ for x in $B_{3r'_j}(x_j)$ and $\xi'_j(x) = 0$ for x in the complement of $B_{r_j}(x_j)$, and, according to (iv) we have $1 \le \Xi(x) \le N$ thus the functions ξ_j are well defined, they belong to $D, 0 \le \xi_j, \ \Sigma \xi_j(x) = 1$ for x in 0, and $\operatorname{supp}(\xi_j) \subset B_j$. Now these properties combined with (i),(ii) and (iii) give (1) and (2).

Finally we shall prove (3). Let $\rho(A_{3r,j}^{-1},x) < 1$. We observe that

$$\xi_{j}(x) = \frac{\xi(A_{3r_{j}}^{-1}(x-x_{j}))}{\sum_{i}\xi(A_{3r_{i}}^{-1}(x-x_{i}))}$$

where i takes the values for which B_i intersects B_j , and x_i is the center of B_i . As we have shown there are at most N values of i, and r'_i must be r'_j or $2r'_j$ or $2^{-1}r'_j$. On the other hand, the function

$$\xi(y - A_{3r_{j}}^{-1}, x_{j})$$

$$\sum_{i} \xi(A_{a_{i}}^{-1}(y - A_{3r_{j}}^{-1}, x_{i}))$$

where i takes the same values as before, and $a_i = 1, 2$ or 2^{-1} for $r'_i = r'_j$, $2r'_j$ or $2^{-1}r'_j$; has bounded derivatives, and the bound c depends only on N, ξ , and the group A_i . Therefore

$$(3.4) | \varepsilon_{j}(x + z) - \varepsilon_{j}(x) | = = \left| \frac{\varepsilon(A_{3r_{j}}^{-1}, x + A_{3r_{j}}^{-1}, z - A_{3r_{j}}^{-1}, x_{j})}{\sum \left[\varepsilon(A_{a_{i}}^{-1}(A_{3r_{j}}^{-1}, x + A_{3r_{j}}^{-1}, z - A_{3r_{j}}^{-1}, x_{j})) - \frac{\varepsilon(A_{3r_{j}}^{-1}, x - A_{3r_{j}}^{-1}, x_{j})}{\sum \left[\varepsilon(A_{a_{i}}^{-1}(A_{3r_{j}}^{-1}, x - A_{3r_{j}}^{-1}, x_{j})) \right]} \right| \le \le c |A_{3r_{j}}^{-1}, z| .$$

Since $\rho(A_{3r_j}^{-1},z) < 1$, then $|A_{3r_j}^{-1},z| < 1$, and using (1.3) we have

(3.5)
$$|A_{3r_{j}}^{-1}z| \leq [\rho(A_{3r_{j}}^{-1}z)]^{\alpha} \leq \rho(A_{3r_{j}}^{-1}z).$$

In the other case, that is $\rho(A_{3r_j}^{-1}z) \ge 1$, since $\xi_j \le 1$, we have

(3.6)
$$|\xi_{j}(x+z) - \xi_{j}(x)| \leq 2\rho (A_{3r_{j}}^{-1}z).$$

Now, using the property (1.1) of ρ , from (3.4), (3.5) and (3.6) it follows that

$$|\xi_{j}(x+z) - \xi_{j}(x)| \le c\rho(A_{3r_{j}}^{-1}z) \le c \frac{1}{r_{j}}\rho(z)$$

as we wished to show.

4. The function M(x) is lower semicontinuous and consequently the sets

$$D_{1} = \{x: M(x) > 2^{1}\}$$

are open.

Let ξ_{ij} be the functions of the partition of unity in θ_i . We consider also the subsets of $R^n \times R^+$

$$\tilde{\theta}_{i} = \{(x,t) : 0 < 2t < d(x,\theta_{i}^{c})\}$$

where $d(x, \theta_i^c)$ denotes the distance between x and the complement

 θ_i^c of θ_i , and let $X_i(x,t)$ be the characteristic function of the set $\tilde{\theta}_i - \tilde{\theta}_{i+1}^c$.

Now we define the functions

(

$$\alpha_{ij}^{(\varepsilon)}(x) = \int_{\varepsilon}^{\infty} \int \xi_{ij}(y) \chi_{i}(y,t) F(y,t) \psi_{t}(x-y) dy \frac{dt}{t}$$

$$\alpha_{ij}(x) = \lim_{\epsilon \to 0} \alpha_{ij}^{(\epsilon)}(x) , (p,p) ,$$

We shall prove that the $\alpha_{ij}(x)$ are k-atoms which give the desired decomposition of f.

(a). We shall first estimate the supports of the $\alpha_{ij}^{(\varepsilon)}$. Let B_{ij} be the balls considered in 3.(2) such that $\operatorname{supp}(\xi_{ij}) \subset B_{ij}$ and r_{ij} the radius of B_{ij} . Then if $y \in B_{ij}$ we have $d(y, 0_i^c) \leq c r_{ij}$; therefore $x_i(y,t) = 0$ if $t \geq \frac{c}{2} r_{ij}$, for all $y \in B_{ij}$. Since $\operatorname{supp}(\psi_t(x-y)) \subset \{x:\rho(x-y) \leq t\}$, if $B_{ij} \cap \{\rho(x-y) \leq t\} \neq \emptyset$ and $x_j(y,t) \neq 0$, we must have $d(x, B_{ij}) \leq t \leq \frac{c}{2} r_{ij}$. Consequently

supp(
$$\alpha_{ij}^{(\varepsilon)}$$
) $\subset B_{c'r_{ij}}$

where $B_{c'r}_{ij}$ is the ball with the same center, and radius $c'r_{ij}$. (b). We shall now estimate the sizes of $\alpha_{ij}^{(\varepsilon)}$. Given $x \in R^n$, consider the following values of t:

$$t_{o} = \frac{d(x, \theta_{i+1}^{c})}{3}, \ \overline{t}_{o} = d(x, \theta_{i+1}^{c}), \ t_{1} = \frac{d(x, \theta_{i}^{c})}{3}, \ \overline{t}_{1} = d(x, \theta_{i}^{c}),$$

then $0 \le t_{k} \le \overline{t}_{k}$, $\overline{t}_{k} \le 3t_{k}$, $k = 0$, 1; and

$$\begin{array}{l} x_{i}(y,t)\psi_{t}(x-y) = 0 \quad \text{for} \quad t < t_{o}, \ t_{o} \neq 0 \quad \text{or} \quad 0 \leq \overline{t}_{1} < t, \\ 4.2) \\ x_{i}(y,t)\psi_{t}(x-y) = \psi_{t}(x-y) \quad \text{for} \quad 0 \leq \overline{t}_{o} \leq t < t_{1}, \ t_{1} \neq 0, \ t \neq 0. \end{array}$$

Observe that $x_i(y,t) = x^{(1)}(y,t) x^{(2)}(y,t)$, where $x^{(1)}(y,t)$ is the characteristic function of $\tilde{\theta}_i$ and $x^{(2)}(y,t)$ is the characteristic function of $\tilde{\theta}_{i+1}^c$. Now if $y \in \operatorname{supp}(\psi_t(x-y))$ then $\rho(x-y) \leq t$, and, we have

$$d(y, 0_i^c) \le d(x, 0_i^c) + t \le 2t$$
, for $0 \le \overline{t}_1 < t$,
 $d(y, 0_i^c) \ge d(x, 0_i^c) - t > 2t$, for $t < t_1, t_1 \neq 0$;

and consequently

 $\chi^{(1)}(y,t) \Psi_{t}(x-y) = 0 \text{ for } 0 \leq \overline{t}_{1} < t$

$$\chi^{(1)}(y,t) = \psi_t(x-y)$$
 for $t < t_1, t_1 \neq 0$.

Similarly, we find that

$$\chi^{(2)}(y,t) \Psi_{t}(x-y) = 0 \text{ for } t < t_{o}, t_{o} \neq 0$$

$$\chi^{(2)}(y,t) \Psi_t(x-y) = \Psi_t(x-y) \text{ for } 0 \le \overline{t}_0 \le t, t \ne 0.$$

From these estimates we obtain (4.2).

First, we will estimate the integral (4.1) over the intervals (a, \overline{t}_k) , $t_k \leq a < \overline{t}_k$, k = 0, 1. We notice that if $x_i(y, t) \neq 0$ then $(y,t) \in \widetilde{\theta}_{i+1}^c$ and therefore $|F(y,t)| \leq 2^{i+1}$. Also $\int |\psi_t(x-y)| dy$ is a constant independent of t and x, and because $\overline{t}_k \leq 3t_k$, we have

$$(4.3) \qquad \left| \int_{a}^{t_{k}} \xi_{ij}(y) \chi_{i}(y,t) F(y,t) \psi_{t}(x-y) dy \frac{dt}{t} \right| \leq \\ \leq 2^{i+1} \int_{t_{k}}^{\overline{t}_{k}} \left| \int |\psi_{t}(x-y)| dy \right| \frac{dt}{t} \leq c 2^{i}.$$

Now , we shall estimate the integral (4.1) over the interval (a,t_1) for $0 < \overline{t}_0 \le a < t_1$ or $0 = t_0 < a < t_1$. We have

$$(4.4) \qquad \int_{a}^{t_{1}} \int_{a}^{\xi_{ij}} (y) F(y,t) \psi_{t}(x-y) dy \frac{dt}{t} = \\ = \int_{a}^{t_{1}} \int_{a}^{t_{ij}} [\xi_{ij}(y) - \xi_{ij}(x)] F(y,t) \psi_{t}(x-y) dy \frac{dt}{t} \\ + \xi_{ij}(x) \int_{a}^{t_{1}} \int_{a}^{t_{1}} F(y,t) \psi_{t}(x-y) dy \frac{dt}{t} .$$

Using (2.4) we find that the last term is equal to

(4.5)
$$\xi_{ii}(x) [G(x,t_1) - G(x,a)]$$

and since (x,t_1) and $(x,a) \notin \tilde{\theta}_{i+1}$, we have $|G(x,t_1)| \leq 2^{i+1}$,

 $|G(x,a)| \le 2^{i+1}$, and consequently the absolute value of this term is less than or equal to $c2^{i}$. Setting z = x-y in the first term,we

obtain

(4.6)
$$\int_{a}^{t_{1}} \int [\xi_{ij}(x+z) - \xi_{ij}(x)] F(x+z,t) \psi_{t}(z) dz \frac{dt}{t};$$

now $|F(x+z,t)| \le 2^{i+1}$ and on account of the property (3) of the ξ_{ij} , (4.6) is dominated in absolute value by

(4.7)
$$c 2^{i+1} \frac{1}{r_{ij}} \int_{a}^{1} \int \rho(z) |\psi_t(z)| dz \frac{dt}{t}$$

t.

We saw in (a) that $\operatorname{supp}(\alpha_{ij}^{(\varepsilon)}(x)) \subset \operatorname{B}_{\operatorname{cr}_{ij}}^{}$ which implies that $t_1 \leq \operatorname{cr}_{ij}^{}$; on the other hand $\frac{1}{t}\rho(z) = \rho(\operatorname{A}_t^{-1}z)$ then $\int \frac{\rho(z)}{t} |\psi_t(z)| dz$ is a constant independent of t and x. Therefore we have that (4.7) is less than or equal to

(4.8)
$$c 2^{i+1} \frac{1}{r_{ij}} \int_{0}^{cr_{ij}} dt \le c 2^{i}$$
.

Which combined with the previous estimate give $|\alpha_{ij}^{(\varepsilon)}(x)| \leq c 2^{i}$. (c). The fact that the moments up to order k of $\alpha_{ij}^{(\varepsilon)}$ vanish,follows by integration from the vanishing of the moments of $\psi_t(x-y)$ as a function of x.

(d). We shall show now, that the same results (a),(b) and (c), are valid for α_{ii} . In order to obtain this, it suffices to prove that

 $\alpha_{ij}^{(\epsilon)}$ converges almost everywhere. In fact, if $\overline{t}_1 = 0$ or $t_0 \neq 0$, then $\alpha_{ij}^{(\epsilon)}(x)$ is constant, otherwise, since (4.5) converges almost everywhere as $a \neq 0$ and the integral (4.6) converges absolutely in $(0,t_1)$, we find that (4.4) converges as $a \neq 0$ almost everywhere and the desired result follows.

From the results above we have

(4.9)
$$\|\alpha_{ij}\|_{(p)}^{p} \leq c 2^{ip} |B_{ij}|$$
,

and we obtain

$$(4.10) \quad \sum \|\alpha_{ij}\|_{(p)}^{p} \leq c \sum 2^{ip} |B_{ij}| \leq c \sum 2^{ip} |0_{i}| \leq (1 - 2^{-p})^{-1} \sum 2^{ip} (|0_{i}| - |0_{i+1}|) \leq (1 - 2^{-p})^{-1} \|M(x)\|_{p}^{p} \leq c \|f\|_{H^{p}}^{p}$$

Thus, since $\|\alpha_{ij}\|_{\mu^p}^{p} \leq c \|\alpha_{ij}\|_{(p)}^{p}$, the series $\sum \alpha_{ij}$ converges in the

metric of H^p ; denoting by g its sum, we have

$$\|g\|_{H^{p}}^{p} \leq \sum \|\alpha_{ij}\|_{(p)}^{p} \leq c \|f\|_{H^{p}}^{p}.$$

Finally we shall show that g = f. Observe that the functions $\alpha_{ij}^{(\varepsilon)}$ satisfy (4.9), and then (4.10) for each ε i.e. $\sum \|\alpha_{ij}^{(\varepsilon)}\|_{(p)}^{p} \leq c \|f\|_{H^{p}}^{p}$. Let $g^{(\varepsilon)} = \sum \alpha_{ij}^{(\varepsilon)}$ in H^{p} . On the other hand, from the properties (a),(b),(c) and the convergence almost everywhere of $\alpha_{ij}^{(\varepsilon)}$ to α_{ij} , it follows that $\|\alpha_{ij}^{(\varepsilon)} - \alpha_{ij}\|_{H^{p}} \to 0$ as $\varepsilon \to 0$. Then $\|g^{(\varepsilon)} - g\|_{H^{p}} \to 0$ as $\varepsilon \to 0$.

Now, if $\zeta(x) \in S$, we have

$$(g^{(\varepsilon)},\zeta) = \sum (\alpha_{ij}^{(\varepsilon)},\zeta) = \sum \int \zeta(x) \int_{\varepsilon}^{\infty} \int \xi_{ij}(y) \chi_{i}(y,t) F(y,t) \psi_{t}(x-y) dy dt$$

Since $|F(y,t)| \le c t^{-\gamma/p}$ and $\sum_{ij} (y) \chi_i(y,t) = 1$, we may sum under the integral sign, and using (2.3) we obtain

 $(g,\zeta) = \lim_{\epsilon \to 0} (g^{(\epsilon)},\zeta) = (f,\zeta),$

which implies g = f. This concludes the proof of the theorem.

REFERENCES

- CALDERON, A.P. An atomic decomposition of distributions in Parabolic H^p spaces. To appear.
- [2] CALDERON, A.P. and TORCHINSKY A. Parabolic Maximal Functions Associated with a distribution. Advances in Mathematics, 16, (1975), N° 1, 1-63.
- [3] CALDERON, A.P. and TORCHINSKY A. Parabolic Maximal Functions Associated with a distribution. Advances in Mathematics, 24, (1977), N° 2, 101-171.
- [4] COIFMAN, R.R. A real characterization of H^p. Studia Math. 51, (1974),269-274.
- [5] FEFFERMAN, C. and STEIN, E.M. H^p spaces of several variables. Acta Math. 129, (1972), 137-193.
- [6] LATTER, R.H. A characterization of $H^p(\mathbb{R}^n)$ in terms of atoms. To appear.
- [7] STEIN, E.M. Singular integrals and differentiability properties of functions. Princeton, 1970.

Universidad de Buenos Aires Argentina.

Recibido en marzo de 1979.