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1. Let g(t) ‘(-» < t < =) be a real function with the following proper
ties:
a) g(t) € C”; b) supp g(t) = [-1,115 <) g(t) >0; d) g(t) = g(-t);

e) g(t) is increasing for -1 <t < 0, and decreasing for 0 <t < 1;
f) Jw g(t) dt = 1.
Let us consider the sequence (n = 1,2,...)

g,(t) = n gty . (1.1
It is well known that gn(t) is a (very smooth) singular kernel; i.e.

g (t) — & . (1.2)

n>o

Let S and T be two distributions. We shall define the multiplicative
product S.T by the formula

S.T = 1im {S * gn(t)}{T ® gn(t)} (1.3)

n->o
if the limit exists. Here the symbol * means, as usual, convolution,

This definition is a slight variant of the definition introduced by
Mikusinski in [ 21].

Our purpose is to evaluate, using definition (1.3), several "hete-
rodox" products that appear in applications, especially in the quan-
tum theory of fields.

Our new results are formulae (2.6), (3.1), (4.1), (4.2), (6.0), (7.1},
(7.2), (8.1), (8.2) (9.1), (4,bis.3) and (4,bis.4). The proofs of
theorems 5, 6, 7, 10 and 11 are also new.

[ k]

2. Two distributions will mainly appear in our considerations: & »

which is the k-th derivative of the & distribution, and x7k

(k = 1,2,...) which is defined by the formula

.



-k .
X + X when k is even ,

X = K : (2.1)
Xk - x_© when k is odd ‘

For the definition of x;k-and x:k

nition of x°K is W e C;):

cf. [2], p. 48. An equivalent defi-

m 2 .
G0 0= [ xR e e w0 - 2 1)+ 2 ) v
(0] . . .

2k=-2
X

+ K- W[Zk—Z](O)]} dx (2.2)

. o 3
G0 ) = [ )T e - 0 - 2 Ll Ho)e B 30
. .

2k-1
e T T?%_T—TTT wIZk_ll(O)]} . (2.3)

+

For future reference we. state the known formula
fx-lE o oy G g gy xR (2.4)

The distribution x ¥ is usually denoted by fp x_k, where the letters
fp denote "finite part", for k > 1; and x7!is usually denoted by
pv x_l, where the letters pv mean "principal value".

In what follows we shall use repeatedly the formula

1y 2
6[k] . {X—l}[k] - !'1!!k.) 5[2k+1] (2.5)
2(2k+1)!

where k is an arbitrary non-negative integer. This formula was proved
by’us and Scarfiello in our note [3], pp. 65-67. It was later redis-
covered by others: cf. [19], p. 202 and [20], p. 49, formula (3.37).

THEOREM 1. Let k and £ be non-negative integers. Then

6[k]{x-l}[l] [l]{x—l}[k] = (-1 k! 2! 5[k+£+1] : (z.6)

(k+£+1)!

+ 6

‘NOTE. It is important to observe that, in this formula, the left-hand
member must be considered as a single entity; or, equivalently, each
of its two members is meaningless; what has a meaning is the sum of
both of -them, interpreted according to (1.3).

Proof of Theorem 1. Let k be an arbitrary non-negative integer. Then
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the following formula holds:

k] 1

sl (Lliertd oy glienal  Lld gy Kille D) glawe2l g o)

(2k+2) !

The proof of (2.7) follows'by differentiating both members of (2.5).
If we now differentiate (2.7) we obtain, by using (2.5),

NESEUS TS

v olier2] (1K)

1
Al _
(_1)k:(k+1 ! 6[2k+3]_2 6[k+1].{%}[k+1} _ (_1)_ELL£12136[ZR+3],(2.8)

(2k+2)! (2k+3)!

This formula is the particular case of (2.6) when £ = k+2. If we proce
ed with (2.8) as we proceeded with (2.7), i.e., if we differentiate
(2.8) and use again (2.5) (where k has been replaced by k+1) we ob-
tain, after easy calculations,
6[k]{%}[k+3] 5[k+3]{%}[k] c 1y K (ke3) e (lek3)+1]
(k+ (k+3)+1)!

+

which is the particular case of (2.6) when £ = k+3.

Iterating the procedure we obtain, after n steps,

s[k]{%}[k+“] + 8

[ k+n] {l}[ k] =(_1)__k!__(_k+_n)L_ 5[ kt (k+n)+1] .+ (2.9)
X (k+ (k+n)+1)!

If we put in (2.9) k+n = £, formula (2.6) is proved.

NOTE. An ingenious proof of (2.6), which does not requiere the use of
formula (2.5), and uses instead the theory of Fourier transforms, has
been communicated to us by Professor A. P. Calderdn.

ﬁ 3. Let S be a distribution with compact support and let us put

T=21%*s, S (x)=58*%g(x) , T (x)=5(x)*1

THEOREM 2. HYPOTHESIS: The distribution S.T exists.
THESIS: The following formula holds:

2 1% (5.7} = {T.T. - 72 5.5} . (3.1)

NOTE. The right-hand side of this formula must be interpreted as a
single entity; this is the explanation of ‘the brackets which appear
in the right-hand member.
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"Proof of Theorem 2. Sn(x) € C:. Therefore, the following formula is

valid for n = 1,2,...

23 % (8,00 T} = (Te? -7 s )P L (3.2)

When Sn(x) is-a step function this relation is .due to Cotlar, [4],
p. 159. But it can be proved that (3.2) is also valid when
Sn(x) S C:, n=1,2,... . Since the support of Sn(x) is contained in

a fixed compact K € RI, we can pass to the limit in the left-hand mem
ber of (3.2), and the theorem is proved.*

4. We shall see that by using (3.1) it is possible to evaluate some
curious heterodox multiplicative products.

THEOREM 3.
(x L8] yIsh g2l lsly oogiy2 gm28-2 gy

Here S is a non-negative integer.

Proof of Theorem 3. Putting in (3.1) S =-6[s]'we obtain, taking into
account (2.4) and (2.5)

xSl 1y ES g2 4081 gUs)y _gpmtagslsT (ym1yI8)y | (512 282

and the theorem is proved. The partlcular case S=0 has been proved by
Mikusinski in [5]. ,

THEOREM 4.

(ol T8 g2l LRy oyl gy gy k82 (g

Here k and £ are non-negative integers.

Proof of Theorem 4. If we put in (3.1) S = a[k] + 6[£] we obtain

N S P N [kl (L2l _ P DPRES §3 I PJ I

-w2(s xlagix” +{x
The right-hand of this formula reads (if‘we take into account (2.4)

and (2.6)), ' .

* A factor Wz is missing in the first term of the right- hand side of
formula (55), p. 159, of [4].
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ki £: o lk+l+1]y | k+£

(k+£+1)!

-k-£-2
b

xbx -1 -1 k! £!

and the theorem is proved.

A natural generalization af Theorem 3 is obtained by putting in (3.1)

r
[v]
S = a_ §
vZO v

(according to a well-known theorem of L. Schwartz ([6], p. 100)), to

, where the a  are complex constants. This will allow

evaluate explicitly the right-hand side of (3.1) when S is a distribu
tion supported by the origin.

L, bis.* We shall prove here the existence of heterodox products sim-
ilar to - but much more general than - those which appear at the
left-hand sides of (2.6) and (3.1); but we shall not evaluate them
explicitly, as we have done in (2.6) and (3.1).

THEOREM 4, BIS. HYPOTHESIS. Let S and T belong to E'.** For their

Hilbert transforms we write

1 .
xs) = s+ L1 , (4,bis.1)
1 .
H(T) =T * % X (4,bis.2)
TESIS. The products
S . T - HS) . HT) , (4,bis.3)
and
S . H(T) + T.. H(S) (4,bis.4)

exist always.

NOTE 1. We shall 1limit ourselves to prove here the existence of the
products (4,bis.1) and (4,bis.2) in the sense of (1.3), using the
special mollifier, .

X

5@ =53 (3] -

]

(4,bis.5)

* This paragraph has been written following a suggestion of Professor
A. P. Calderdn.

** More generally, we could assume that S and.T belong to the class
/1+x2 Dil , introduced by L. Schwartz [23], pp. 6-2. This class
can be considered as the most general family of distributions for

which the convolutieon with % is possible.
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where g(x) = 1 T—l——f . Here y > 0, and y will tend eventhally to 0.
m + X
'
This generalized mollifier (we say ''generalized" because it does not
fulfill condition b) is the Poisson singular kernel for the upper

half-plane & = {z = x+iy , y > 0}. It is very well known that

g, (x) gy 8 - (4,bis.6)

NOTE 2. In the course of the proof of Theorem 4, bis, the following
theorem due to Martineau, [2], p. 203, Proposition 3, will play an
essential role. )

THEOREM (of Martineau). For the function £(z), holomorphic in & , to
have a limit in S'(R) when y ¥ 0 2t is necessary and sufficient that
a positive integer N exists such that

— " £(2)] <™ (4,bis.7)
1+ x% +y

for z € A.*

Proof of Theorem 4, bis. We consider the distributions M7= S + .1 H(S),
N=T+ i #H(T), and moliify them by gy(x):

a(x,y) = M * gy(x) , (4,bis.8)

b(x,y) = N * gy(x) . (4,bis-9)

One verifies without difficulty (by using definitions (4.bis.1) and
(4,bis.2)) that the following formulae are valid:

-7 i a(x,y) =S * LI ’
X + iy

- i b(x,y) =T % ———
X + iy

Therefore a(x,y)‘and b(x,y), for which we shall write a(z) and b(z),
are holomorphic functions in A, It is also immediate to verify, taking
into account (4,bis.6), that a(z) and b(z) tend, when y { 0, to M and
N respectively. Therefore, according to the Theorem of Martineau, a(z)
and b(z) satisfy relations of the type

* Condition (4,bis.7) has been communicated to us by Professor A. P.
Calderdn. The necessary and sufficient condition stated by Martineau
is different (and seems to contain an erratum).
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n
|—L—| tac <v;
1+ |zl
N . n
—X " 2 b (2) <M, ,
1+ |zl

for z € A, where n,, and n, are positive integers. Consequently we
have also

n1+n2

y P
Jda(z)b(z)l < My o,

1+ 1212

when z € A; and the Theorem of Martineau shows that the function
c(z) = a(z)b(z) tends to a limit in S'(R) when y { 0.

Now we have

c(z) = a(z)b(z) = {M * gy(x)} . {N * gy(x)}_=

{s * gy(x)} {T * gy(x)} - {H(S) * gy(x)} {¥H(T) *\gy(x)} +

1 [{S * gy(x)} {¥(T) * gy(x)} +

(3(s) * gy(X))(T * gy(X))]. (4,bis.10)

+

+

If we take limits in (4,bis.10) for y { 0 the Theorem is proved.

NOTE. A more elaborated proof shows that Theorem 4,bis continues to
hold if we define the products (4,bis.3) and (4,bis.4) according to
definition (1,3), the mollifier possessing the five properties é) -
f), stated there.

THEOREM 4, TER. HYPOTHESIS. Let Sv (v =1,2,...,n; 2<n< =) belong
to E'(Rl) or, more generally, to the class V1+x2 Dil of Scehwartz. For

their Hilbert transforms we shall write {Sv} =8 * % 1

N X ? v=1,2,..,.,0.

Let us put Mv = Sv + i MTSV} s v =1,2,...,n; and let us consider the

funetions av(x,y) = av(z) = Mv * gy(x), v=1,2,...,n
n

THESIS. The funection c¢(z) = ) a (z), holomorphic in & , tends to a
v=1

limit in S'(R) when y { 0.

Proof of Theorem 4, ter. The proof is identical with that Theorem 4,
bis, and is therefore omitted.

NOTE. If we evaluate explicitly the limit.of c(z) when y ! 0, its real
and imaginary parts contain "heterodox'" multiplicative products (which
reduce to (4,bis.3) and (4,bis.4) in the particular case n=2) which
are of interest in the quantum theory of fields.



5. Let us consider the distributions azy , p; 94)

-1
x tio} = x" sz i L;lli—— 6[n_1]
{ } Y (5.1)
n-1)!

where n is a positive integer. An interesting .consequence of (2.6)
and (4.2) is

THEOREM 5. o -2 )
(x £i0) . (x % io) = (x % io) (5.2)
Here k and L are positive integers.
Proof of Theorem 5. Let us write (5.1) in the equivalent form
n-1
(x *io)™® = L;ll___'{{x‘l}[“'ll : Wi&ln_l]} (5.3)

(n-1)!

From (2.6), (4.2) and (5.2) we conclude that the left-hand side of

k+£-1
(5.2) equals xk-¢ ¢ Ti N - 5[k+£‘1]. This proves the theorem.
(k+e-1)!

Theorem 5 has been proved, using other methods, by Vladimirov ([7],
p. 292) * and by Fisher [8]. The particular case k=1, £=1 is due to
Mikusinski [5], p. 512,

6. It is possible to generalize to R"™ the preceding theorems. One im-
mediate generalization consists in "tensorializing" our one-dimen-
sional formulae.

We shall give only one example. Let X = (xl,xz,...,xn) € R" and let

us coin the definitions (where the symbol x means '"tensorial product')

élzl(x) = slll(xl) X 6[£](x2) XoeooX Gltl(xn) ,

x {XEZ}ILJ Xe.oX {x;n}[£]

SUC RN

Then

* Vladinirov's theorem (and its proof) is the particular case S =

DX

(v=1,2, ..,n) of our Theorem 4,ter, if account is taken of formul
{(5.1).
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'y 2
sl (=13 [k] {g-ugk.) }“ sl 26410 0y (6.0)
2(2k+1)!

The particular case k=0 appears in [1], p. 252. Formulae (2.6), (4.1)
and (4.2) can be similarly generalized.

More interesting for applications are the multidimensional generali-
zations obtained by means of a change of variable . Our next theorems

will deal with this type of generalization.

Let Sé denote a distribution of one variable t. Let u € Cm(Rn) be such
that the (n—1)-dimensiona1 manifold u(xl,...,xn) = 0 has no critical
point. By Su(x)'Leray (cf, [9],p. 102) designates the distribution de
fined on R® by

(S, xyr 8D =S, w(t) ) . (6.1)
Here ¢ € C; (R™) and
v(t) = J ¢ (x) wu(x,dx) . (6.2)

u(x)=t

Here Wy is an (n-1)-dimensional exi-rior differential form on u defi-
ned as follows: du A dw = dx1 A dx2 A .. dxn and the orientation of
the manifold u(x) = t is such that wu(x,dx) > 0.

We shall consider the special case

u(x) = G(x) - m?2. (6.3)

Here

_ L2 2 .2 .2
G(x) = Xy ek xp xp+1 v xp+q , (6.4)

where p+q = n, and n? > 0.

We shall consider mainly two distributions, namely 6[k]2 and X°K 2 s

G-m G-m
which, for tipographical convenience, we shall designate by
élk](G - m?) and (G - mH)7¥ respectively.

According to (6.1) they are defined as follows:
Gl - m? e ) =M, = R o) (6.5)
(G - m®) 2 o)) = (72 y(e) ) = f T IR TE I

0

2 2k-2
2 qw(o) + Bl 2oy w e A yl2k=21(gy1y ax (6.6)
2! (2k-2)!
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(6 - )™ 5x) ) = (e72E L gy = fw 2% yie) - wee) +
0
3 2k-1
2t b o)+ B 3y v T g2kl g1y a4y L (6.7)
3! (2k-1) ! _

In these formulae the function ¥(t) is defined, according to (6.2),
by the formula

v(t) = o(x) w 5 (x,dx) . (6.8)
G-m
G(x)—m2=t

NOTE. The distribution {G - m?}™X can also be defined by the formula
(which is a multidimensional analogue of (2.1))

(G - mz);k + (G - mz):k if k is even ,
-k .

{G - m“} = (6.9)
6 - m®)F - 6 - n®)F if Kk is odd

In this formulae A is a complex number, and

(6 - m*)},e0) G - n®)* o (x) ax , (6.10)

¢-m220

(6 - m®Hre) = (-6 + m®)* ¢(x) dx . (6.11)
6¢-m2<0

The integrals which appear in the right-hand sides of (6.10) and
(6.11) converge and are analytical functions of the complex parametér
A, Re » > 0. For Re A < 0 they are defined by analytical continuation.

The ‘distribution (G - mz)"k, as defined by (6.9) coincides, when

n? = 0, with the distribution which Methée calls ozm; cf. [18], p.146

and also [ 6], p. 264.

7. If we change variables in both sides of (2.6) we get

[sl¥ (6 - m2)1.0 6 - n2)" 18 4 (el8 (6 - 1.0 - n2) Yl -

-1 - k! 2! 6[k+£+1]

G - m?) . (7.1)
(k+2+1)!

Similarly, changing variables in (4‘2) we get
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(1 }[kl : { : 2}[11 - w2l ¥ 6 - n?).slH (G - n?)) -
G- m

k+£ k
ki (7.2)

1
-1
N G - n?)

Let us now consider the distributions (5.1) (or (5.3)). Proceeding as

before we obtain

D k-1 \
G - m?: i0)7* = = ! =E "1E£jg)' okt o n?y (7.3)
br, equivalently,
Jk-1 C k-1
G - m2t i0)7¥ = E;‘i) UG 1 2] 3 wialk_l](G-mZ)} : (7.4)
-1 - m

The following proposition is an n-dimensional analogue of Theorem 5.

THEOREM 6.

2 2 2 k=L

6 - m?tio)" k. (G - m®ti0)t = (6 - m?tio) Kt . (7.5)

Here k and £ are positive integers.

Proof of Theorem 6. It runs exactly along the same lings as those of
Theorem 5; one has to use, instead of formulae (2.6) and (4.2), their
n-dimensional analogues (7.1) and (7.2).

NOTE. Gelfand and Shilov ([ 2], p. 289) consider the distribution

(m® + 6 i0)* = 1im (m? + Gxi e(xBe.. w2t (7.6)
e+0
where ¢ >.0 and A € C, They have not studied in detail the special
case in which a is a‘negative integer. This has been done by de
Jager [10] and by Bresters [11]. They arrived to results equivalent
to our formulae (7.3) and (7.4) by different methods. Trione ([12],
P- 24) has proved the formula

2,

{G + m“¢t io}x.{G + m?

t io}* = {G + m? % io}*t¥

for A and v € C.

Let us state the following equivalent version of Theorem 6.

THEOREM 7. Let k be any integer > 1. Then
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G - m?tio)”t ... (6 - mPtio)”! = (G - m¥tio)7K .| (7.7)

k-times

8. It is important to observe that for (7.1) and (7.2) to hold, m must
be different from zero. Indeed, formula (6.1) may not hold if we put
in it u(x) = G(x). This is due to the fact that the cone G(x) = 0 has
a critical point- (namely, the origin). A consequence of this is that

the distribution s\¥] (6) exists only if k <222 (cf. [2], p. 250).

This entails that formulae (7.1), (7.2), (7.3), (7.4), Theorem 6 and
Theorem 7 do not hold for every k when m = 0; and one verifies that
the analogues of these formulae and theorems read as follows.

THEOREM 8. Let the non-negative integers k and £ be such that

k+2+1 < % . Then

| (2] (k] .
sL¥ (6 . H + ot . H = ()R Ll oy gy
G . G (k+2+1)!

THEOREM 9. Let the non-negative integers k and £ be such that

kL2 < ‘32—2 . Then

H“‘] . Hm- 226 M o) sl )y = -kt (8.2)

G G Gk+£+2 *

THEOREM 10. Let k and & be positive integers such that k+l-1 < 2%%_

Then

G ti0}® . (6xio1 % = (G io} Kt . (8.3)

THEOREM 11. If k Zs a positive integer such that k < % the following
formula holds:

(Gtio)”! ... (Grio)”! = (Gtio)TK . (8.4)
k-times

NOTE. Gelfand and Shilov ([ 2], p. 275) consider the distributions

(Gt io)* = 1im (G # i e(>'<f+...+xfl)}A , (8.5)
>0

where ¢ > 0 and A € C. They show that this distribution is an holo-
morphic (distribution-valued) function of A, everywhere except at
A= - % - k , where k is ‘a non-negative integer. At these points

(G % io)A has first-order poles, and one has ([2], p. 276)
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n
Frqi 2
res [G *io]* = =2 . Sy s (8.6)
' -
B 45 k(e k)
2
Here
2 2 2 2
L= e 2 ) (8.7)
9x 2 99X 2 9xX 2 9X 2
1 P p+l ptq

They did not study in detail the special case in which A is a negative
integer which .is not a pole of (8.6). This has been done by de Jager

[10] and by Bresters [ 11]. We remark, finally, that an equivalent ver
sion of Theorem 10 has been proved by Trione in her thesis ([12], p.
28).

- 9. As an application of Theorem 10 we shall evaluate an heterodox
product which appears in the quantum theory of fields.

THEOREM 12. Let m be a positive integer such that m < % s and let k
be a non-negative integer. Then

{6 +i0}™ . (1L¥61 = ¢ [L¥*)5 | (9.1
Here

C=@(d™k+ D . k+mG+k) ... Grk+m- 17 (9.2)

Proof of Theorem 12. It follows from (8.7) that

4k rg+ Ka
lim {G % io}

a+0 i % q
e w

a-2-k ‘

2 = {L?‘} 5 . (9.3)

[SJE]

Let us call P the left-hand side of (9.1). We have, according to (9.3)
and Theorem 10,

4%kt 1 (3 + Ko _ a->-k-m
P=1im ———=—  {G *io0} =
a>0 Fi LS q %
e 2 g
Ky, . D
47k! I'(-Z- + k) Ci a-i'-k—m
= lim —————— — o {G % jo}

a>0 i 5 4q % C

e 2 "2 %

= oMy s (9.4)

Here we have put
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AR em)t (G4 k o+ om)
c, = —
F o>qi =
e 2 ,n,Z

One verifies immediately that

k n
47k! (5 + k
______EE____Z = {4m(k+1);..(k+m)(%+k)...(%+k+m—1)}_1. (9.5)

e 3
e " C,

The theorem follows from (9.4) and (9.5). The particular case n=4,
q=1, m=1, k=0 reads

2 2 2 .2 L. -1 21
{x1 X5 *xj x, * io} .6 = 8 os , (9.6)
where
2 2 2 2
0= 2+ 2.2 (9.7)
X X axy X

Formula (9.6), which is used in the quantum theory of fields, belongs
to Guerra, cf. [13], p. 530. A theorem similar to Theorem 12 appears
in our joint note [ 14].

10. We shall finish with a remark about a connection of our heterodox
products with quantum electrodynamics.

We have proved that formula (8.3) is valid only when k-1 < E%Z .
Now, we may define (Gt io)‘k, when k = % , % + 1,..., by taking its

finite part.

This finite pért has been explicitly evaluated by Trione, cf. [7],
p. 252, formula (1.7). Her result reads as follows (n >4 , m = 0,1,
2,...)¢

n
PE{G* io} 2 = C1[n,m,q]J eilxsy ’Q“1g(Q¢ioldy + C,(n,m,q) L®s .
R® :
(10.1)
In this formula we have put
_% -n-2m $% ai m+1
c,(n,m,q) = =—2 e 1) , (10.2)

m! r(% + m)

(% + m)

1
C,(n,m, =32 1g 2 + [1 + L
2 (n,m,q) { g 7 T m
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+%qi

[N E]

T Z-n-me e

- (10.3)
m! F(% - m)

Here v denotes the Euler constant.

When m=0 the expression 1 + % oo % which appears in C, must be
replaced by 0.

NOTE. It is interesting to observe, with Trione ({71, p. 252), that
putting. in (10.7) q=0 and taking Fourier transforms in both sides,
one obtains an important formula due to Schwartz (stated by him with
out proof); cf. [6], p. 258, formula (VII, 7;4).

11. The particular’case n=4, q=1 of (10.1) is especially important.

If we put in it % +m=4£ , it reads as follows:

2 2 2 2, -l
Pf {x1 +ox; o+ X5 X, % io}

i{x,y ), 2 2 2 2.0-2 2,02, 2 2 _.
= c1(4,£-z,1)j ael Yy Tty oty Lely +y,*y5-y, Fioldy +
R

+C (4,L-2,1) 0425 (11.1)

In this formula the constants C; and Cy are defined by (10.2) and

(10.3) respectively, and O is the wave operator (9.7). The expression

1o+ % oot Z;T which appears in C (4,£-2,1) must be replaced by 0.

when £=2,
Let us consider the distribution

D (x) = Lz (x2 o+ xZ 4 x5 - x2 - qort (11.2)
4w

This distribution is the famous "photonic causal delta", of Feynman.
In quantum electrodynamics appear the multiplicative products

{Dg}z. We know (cf. Theorem 11) that these products are infinite for

£ > 2. In order to give a sense to these products (or to "regularize"
them, as physicists say) it is a very natural pfescription (as it
seems to us) to define them by their finite parts. If we accept this
‘prescription we get, taking into account (1.1,

c,f _ i j4 : , ilx,y )y .2 2 2 2.8-2
&yt - {Z{F} ¢ 4,2, | e W2 e y2ey? oy

R4
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Y2
2 2 2 \ : -
< lglyy + vy ¢+ y3 - yz - io) dy + {—li} C,(4,2-2,1)0 £-2 4
4

(11.3)

This relation is an example of 'analytical regularization", a prescri
ption introduced in [15] for eliminating the infinities from the se-
ries solution of the Schrodinger equation of quantum electrodynamics.
The method has been much developed by others, notably by Speer ; cf.

[16]
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