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ABSTRACT. Let G be a'connected, semisimple, rank-1 Lie group with fi-
nite center. Let K be a maximal compact sub-group of G.

Using a generalization of S. Helgason's technique for the spherical
case, we prove Paley-Wiener theorems for the space of left and right
K-finite, compactly-supported, infinitely differentiable functions on
G.

INTRODUCTION. Let G be a connected, semisimple, rank-1 Lie group with
finite’center. Let XK be a maximal compact subgroup of G.

The purpose of this exposition is to give a (preliminary) description
of the image, under the complex Fourier transform, of the space of
left and right K-finite, compactly-supported, infinitely differentia-
ble functions on G (the Paley-Wiener problem).

Historically, L. Ehrenpreis and F. Mautner [2],[3] and [ 4] were the
first to prove Paley-Wiener theorems for G = S1(2,R).

S.Helgason [ 8] proved a Paley-Wiener theorem for K-biinvariant func-
tions on a rank-1 semisimple Lie group, later on -extended by R. Gan-
golli [5] to K-biinvariant functions on a general-rank semisimple Lie
group. Using Helgasons's technique, K. Johnson [9] proved a Paley-
Wiener-type theorem for general K-types on a rank-1 group, although
his conditions were difficult to check in practice.

Helgasons's technique was also used by Gupta (Thesis, University of
Washington) to prove a Paley-Wiener theorem for one-dimensional K-ty-
pes of SU(2,1) where the only conditions were, as expected, symmetry
and growth conditions. His result was extended in Wallach [ 14] to the
case of one dimensional K-types of SU(n,1) and its finite coverings,
again with the same conditions of growth and symmetry. K. Johnson's
work. consists, essentially, in reducing the Paley-Wiener problem to
the analysis of a certain combination of residues at the singular
‘points in the asymptotic expansion of generalized spherical functions

* This is essentially. our Ph. D. Dissertation: at Rutger's University,
in 1976 and:we express our gratitude to profesgssor Nolan R. Wallach,
our advisor. )
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(see theorem>2.2.2). Our work carries on the study of that combination
of residues. -

In chapter 1 we introduce some needed notation and results on the asym
ptotic expansion of generalized spherical functions.

The first section of chapter 2 is devoted to the introduction of vari-
ous Paley-Wiener spaces and in section 2 we give a proof of the alrea-
dy mentioned theorem 2.2.2,

In the last section of chapter 2 we state and prove the main theorem
(theorem 2.3.1.) which gives a necessary and sufficient condition for

a function to be the (vectorial) complex Fourier transform of an ele-
ment of C:(G;r) (see 2.1.5. for notation). Also in the last section of

chapter 2, we prove theorem 2.3.3. which gives a family of functions

‘(namely, ¢(X£,v(zl)"'"Xg,v(zn))' E_ where ¢ is an entire function,

Xg |y is the infinitesimal character of the principal series and
b

Z Z  are elements of the center of universal enveloping algebra)

170
for which the combination of residues in theorem 2.2.2. is a finite 1i
near combination of matrix entries of the discrete series for G and
hence it has zero Fourier transform (Harish-Chandra [6]).

In chapter 3 we restrict our attention to the case of M-multiplicity
1 K-types. We begin by introducing the spherical trace functions asso-
ciated with the principal series representations and the various

Paley-Wiener spaces associated with the complex (scalar) Fourier trans
form.

The main results of section 2 are theorem 3.2.1., which is the analo-
gue of theorem 2.3.1. in the scalar case, and theorem 3.2.3. which cor
_responds to 2.3.3. Theorem 2.3.3. can be applied, assuming suitable
growth conditions, to prove that certain functions- are Fourier trans-
form of elements of certain corresponding Lp—spaces of G (for one such
application, see R. Miatello, Thesis, Rutgers University).

In section 3 we prove a Paley-Wiener theorem in the case of an M-irre-
ducible K-type which generalizes the results of Helgason and Wallach
‘with the same type of conditions, i.e., symmetry and growth.

In the last section of chapter 3 we give an example of a Paley-Wiener
theorem for a two-dimensional K-type of SU(Z,1) where, besides the
gfowth and symmetry conditions, there is another extra condition, rélg
ted to the existence of partially-defined intertwining operators betwe
en the principal series representations. Also in the last section of
chapter 3 we give an example of a four-dimensional K-type of SU(2,1)
which shows that in our proof of theorem 3.2.1. the derivatives in de
finition 3.1.5. are necessary.

The basic references throughout are Wallach [12] and Warner [ 15] and
[16].

We should emphasize the fact that the nature of the results is preli-
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minary since it is not clear the group theoretic significance of con-
dition ii) of 2.1.5. and 3.1.5.

NOTE. Recently P.C. Trombi has apparéntly worked out the details of

the application of theorem 2.3.3. mentioned above in "LP-Harmonic Ana
- 1lysis on Real semisimple Lie Groups: The Split rank one case'" (pre-
print). .

1.. THE ASYMPTOTIC EXPANSION .OF GENERALIZED SPHERICAL FUNCTIONS.

1.1. NOTATION. Let G be a connected semisimple Lie group with finite
center. Let G = KAN be an Iwasawa decomposition with dim A = 1 (i.e.,
G has split-rank 1). Let 8 be the Cartan involution on G such that
8/K = identity.

We denote by M the centralizer of A in K. g5 k, a, n, m will denote
the respective Lie algebras of G, K, A, N and M. We will denote by i
a set of representatives of equivalence classes of (finite dimensio-
nal, unitary) irreducible representations of K.

If (r,VT) is a finite dimensional (not necessarily irreducible) repre

sentation of K, we set Vf = HOmM(VT,VT) = space of endomorphisms A of

VT such that A o t(m) = t(m) o A, for every m in M. If (E’HE) is a

representation of M, we write [tIM:g] = dim(HomM(VT,HE)).

Let a = R.H where H is such that ad(H)In has eigenvalues 1 and pos-

sibly 2. If p is the dimension of the eigenspace of eigenvalue 1, q

the dimension of the eigenspace of eigenvalue 2, set p = %(p+2q).

If g € G, g = k(g)a(g)n(g) with k(g) € K, n(g) € N, a(g) € A,

a(g) = exp(H(g).H) = aH(g), H(g) € R; and the measure dg on G is nor
. ' _ _2tp

malized so that dg = e dk dt dn.

Also, for v € C, (E’HE) € ﬁ,»let ut denote the Hilbert space comple-

tion of the space of continuous funbtions f:l('-——-—'»»HE such that f(km)=
= em) " (£(K)), k €K, m € M, with respect to I £l2 = J €2 dk.
. - v

If feH® let
(re L (8) () () = expl (-/"Tv-p)H(g k)1 . £(k(g™!.K))

for all g € G, k € K (note that = is independent of v).

g,vlK
Then (IE V,HE) is a representation of G and if v € R, it is unitary,
» B N

These are the, so called, principal series representations of G.
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1.2. GENERALIZED SPHERICAL FUNCTIONS. Let (8:H,). € M, v € C, and let
(T,Vt) be a finife dimensional representation ofbK. Suppose (TI;VT ),
: : , AR

.,(t_,V_ ) in K are its irreducible constituents,
. n T . A
n

. n —————— "
Set x (k) = .21 dim(V_ ) tr(r;(k)) , all k € K.
1= 1 N

We denote by HE the space of functions £ in H® such that

£aE 0 = | X001 00D

Note that, by Frobeniu$ Reciprocity (c.f. Warnmer [15]), dim(Hf) =
= [1IM:Eg] ..

. . £
Let us denote by (y,VY) the representation (wg’le,HT).

We are going to use the following
1.2.1. LEMMA. Let T, be the element of Homy(H:,HS) defined by
<T0¢;w> = <¢p(e),p(e)> for all ¢,V in Hf and set

T (| ymTym i) e @
M
Then, for all Xx € G we have

E -(x)ET =»JK v (k(xk))T y(k}_lexp[—(fTTv+p)H(xk)]dk.

T
T .,V

Proof. Let ¢,¢ be in HE. Using that k(xk)m = k(xkm), H(xk) = H(xkm)
for m € M and the invariance of the integral we see that

<Jk ¥ (R GI))T v (k)™ Lexpl - (/Tvip)H(xk)] dk (¢) , >

<jK Y(K(XK)) Ty v (k)™ Lexpl ~(/~Tv+p ) H(xk) ] dk () , 4o

expl - (/Tvre) HGxK)] <(Tor (071, v(k(xk)) hy>  ak =
K

= | <00,y ST dk = <our ST (9)>

JK expl - (V= Tvrp)H(xK)] <(y (k) 1) (e), (v (k(xk)) "1y) (e)> dk =

K

L a1 % )
Since =w —(x 1) = (x), the lemma is proved.
Es™V sV

Te



In Warner [ 16] it is shown that there exist Homc((Hf)M,(Hi)M)—valued
meromorphic functions.cl,c_1 and a function ¢ (v: at) for vecC, t>0
M
)

in R, with values in Homc((Hf ,(HE)M), meromorphic_in Q, real ana-

lytic in t, continuous in both variables simultaneously as a map into
the extended plane, such that

(1.2.2.) ePt JK v(k(a k)T y(k)_lexp[(—/TTv—p)H(atk)] dk =
=e(vi a)(c,(WV)(T)) + e(-v: a,)(c_; (v) (M)

(the functions ¢ and c,, depend on ¢ and t).

1

Furthermore, if N = o(N), also from Warner [ 16], we know that

(1.2.3.) cl(v)(T) T o-(J_ y(k(ﬁ))_lexp[-(/TTv+p)H(E)] dn) =
N

1}

T o cl(v)

for Im(v) < 0.

1.2.4. NOTE. It is not difficult to check that the integral on the
right-hand side of 1.2.3. defines an element of (Hf)M when it is abso

lutely convergent and this is true for Im(v) <0.

Combining 1.2.1. and 1.2.2. we obtain

(1.2.5.) ePTE A, (@ )E =e(via ) (c,(v) (e (-via,) (c_; (v) (T))

The functions g — Er"g v(g)ET are generalized spherical functions.
3
In Wallach [13] (see also Schiffmann [ 10]) there is a proof of the

fact that the matrix entries of cl(v) are expressible as linear combi-
nations of functions of the form

B(m, (V-Tv/r) + 2s-2n-m) B(n, (/~Tv/r) + s-n)
where m,n,s are nonnegative integers or half integers, r=1 or 2 and B

denotes the classical beta function {c.f. Whittaker and Watson [171).

Elementary properties of the beta function and a minor modification of
the argument used in Warner [16] to prove lemma 9.1.7.4. shows that we
can find constants C,N,R > 0 such that for Im(v) < -R, the matrix en-

‘tries of cl(\:)'1 are bounded, in absolute value, by C(1+|v|)N.

1.2.6. NOTE. From the expression of the matrix entries of cl(v) in
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terms of beta functions we obtain that det(cl(v)) is holomorphic for
Im(v) < 0 and the poles form a discrete subset of the imaginary axis.

On the other hand (Harish-Chandra [7])
- —
O s R O L O

and the poles of "é(v) form a discrete subset of the imaginary axis
(c.f. Warner [16]). Therefore, a zero of det(cl(v)) which is not a po-
le of “g(v) must be a pole of det(cl(c)*) and hence must also be on
the imaginary axis.

From the preceding discussion we obtain a number R > 0 such that all
the zeros of det(cl(vl) are on Im(v) > -R. We thus conclude that for
any real number o, there are finitely many singularities of c]‘(\:)_1

on Im(v) <« , a fact that we are going to need.

Finally, it is not difficult to see (c.f. Wallach [12]) that if M* de-
notes the normalizer of A in K and m* € M*-M, then for Im(v) > 0

(1.2.7.) c_ M = y@) et ) oToy @*)

1.2.8. NOTE. Both sides of 1.2.3. and 1.2.7. are meromorphic functions
and hence the equalities hold for the meromorphic extensions.

1.3. THE RATIONAL FUNCTIONS rk(v). Let 8¢ denote the complexification
of g, A the set of roots of g¢ with respect to a Cartan subalgebra con

A . . + s . .
taining a, and contained in ® A a set of positive Toots in A,

3 ® g
E: the root subspace of g corresponding to each a € A , B( , ) the

Killing form of 8¢ and for each a € A* 1let us choose elements

Xa € g% . X_a € g]: such that'B(Xa,X_“) = 1. If P is the subspace of g

of elements X such that e(X) = -X, write
xia= Yia+ ziu
+
where Yiae lc_c N Ztue Pe » for all a € A .

Finally, let Xl,...,X- be a basis of m, , (g the inverse

i,j)1¢i,j¢m

of the matrix (B(xi’xj))lzi.jsm and set
W, = .. X, X,
07 by B

Then in Warner [16] it is shown that (for a given finite dimensional

representation (T,VT) of K) if (Y’Vy) denotes (7 HE) then

£,v|K?
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(1.3.1.) o(v: a.) = exp (V-Tvt) f ekt rk(/TTv—p)
k=0

where the functions rk(v) are defined by the following relations:

(1.3.2.h rk(v) 0 for k a negative integer

1

T

and for k > 0 it satisfies

B(H,H) "k (2v-k+20) T, (v) (T) =Ly (Wg) T, (v) (T)-T, (v) (Toy (wy))] =

2p B(H,H)™Y 7 (v-k+2n) Tppa(M(T) +
n21

+ 4q BAH,H)TY ] (v-kedn) 1, (W(T) +
nx1

"8 ngl G§A+ (2n-1) Y(Ya.)-°I|k+1—2n(\))(T)°Y(Y-a) *
 a(w)=1

£ 1T @) Yol g, () Mer(Y ) -
) a(H)=2

-8 ] nly(Y Y
nxl G£A+ o=
a(H)=1

W T oan (V) (TI+T o (V) (Moy (Y Y_ I -

-8 10Ty (Y )ery () (DT () (D ey (YY)
a(H)=2

for all T € Vt.

Furthermore, (see Helgason [ 8] or Johnson [9]) there exists a polyno-
mial P(v) and constants A,B > 0 such that for Im(v) > 0 we have

(1.3.3.) IIP(v) rk(/TTv—p)H < A exp(kB) , for all integers k.

1.3.4. Note that 1.3.3. implies, in particular, that ¢ (v; at) has fini-
tely many singularities for Im(v) > 0.

Also, it is not difficult to see that they are all on the imaginary
axis. R ‘
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2. THE PALEY-WIENER PROBLEM FOR RANK-1 GROUPS.

2.1. THE PALEY-WIENER SPACE. For each f € C.(G), ¢ € HE , let

F, (ma,) (¢) (k) = eft J f(kmatnk'i)¢(kl)dk1 dn ,
KxN

forme M, t € R, k € K,

L) = JG £(x) 7, | (x)dx

Then we know (c.f. Wallach [12]) that

/=1

@110 7 (O® = [ em [ Fea)@ e dt

If f e ¢”(G), h € € (K), we write

(o ) () = [ nOOFGT'g) dk
K

(£2.h) (g) J £(gk)h(k) dk , all g € G.
K

Let 1 be a finite dimensional representation of K.

2.1.2. NOTATION. If f € C”(G) satisfies that f = i}*Kf*KxT (see 1.2.),

we write £ € C7(G;t). Then for f € C:(G;r) we have that

- E nE
(2.1.3)  w () = B 7, (£ € Homg (HZ,HD)

and the following

2.1.4. THEOREM. Let f € c:(c;r) and set F(g,v) = 7.  (f). Then for

each & € M , F(E,v) Zs an entire function of v such that

i) F(&,v) = 0 whenever [t|M: €] = 0.
ii) Let Esenesby be the M-types of 1 and for each i = 1,...,T, let

, £ ,
{Vi,j}j be an orthonormal basis of Ht < Let vy,...,vy be in C.

IFf} a1 J K (__E|v =y, <r§i’v(x)(vi’j),vi,j> =0 for all x € G, with

f.m.

i,k in C, then
! t]

i l m _
Z J k (d miv V ) <F(Ei’v)(vi,j)"vi,k> =0 °
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iii) There exists a comstant A > 0 so that for any integer N > 0 we
ean find a éconstant CN:> 0 for which

IF (e, < € (1+]v[)™N exp(AlIm(v) |) .

. Proof.- i) Follows from 2.1.3. and Frobeniﬁs Reciprocity (c.f. Warner
r1s]). '
ii) Is immediate from the definition of wg,v(f);

iii)'Is a consequence of 2.7.1. and the classical Paley-Wiener theorem
noting thét F. is a C:-funttion on A, .

The Paley-Wiener problem consists in finding a converse for this theo-
Tem. ‘

2.1.5. DEFINITION. A function F defined on M x C such that for every
g € ﬁ, F(g, ): C — Homc(HE,HE) is an entire function satisfying

i), ii) and iii) of theorem 2.1.4. is said to be in the r—Paley-Wiener'
space for G and we write F € P-W(1).

2.25 THE TECHNIQUE OF S.HELGASON. Let f € C:(G). Then the Plancherel
theorem says that, if f is K-finite,

£) - L. [ e @ e may
1 £eM o E,vig 11
is a finite linear combination of matrix entries of the discrete series
of G, where ”g(”)dv denotes the Plancherel measure on G and Lg(f)(x) =

f(g.x), all g,x in G. But Te v(Lgf) =Ty v(g'l)w (f). This suggests
N ’ ’ [

E,v
"that given F € P-W(1), we should study the expression

@210 @ - L] tr(B 7, (g IF(E,v)E Juy (v)dv.

In this direction we have the following -

2.2.2. THEOREM(JOHNSON). Let f be defined as above. Then £ € C(G;t)
.and there exists A > 0\ such that for t > A we have

‘,(2.263.) £(a,) = 2r /7T Pt

. 1.0 1 Y Res tr[¢(v:a )(Tocltv)*")F(g,v)] -
EeM Im(v)>0 t .
[tlM:El 40

- % Res trle(-via, ). (y@") oct (v)PoToy *)"1F (g, )1}
Im(v < .

. a' % - ~ .'*_
where m & M -M as before, and F(£,v) = y(m*)F(E,V)Y(m ) L
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Proof: We know that (c.f. Warner [16]) uE(v) is analytic on an open
strip of C containing R and that there exist constants €, N, R, >0

such that if v € R, [vl 2 R,, then

lug ()1 < c(1+l v

Therefore, for each g € G, there exists C, > 0 such that if v € R ,
Ivl = Ry

NE, ™ (& DF(E,vE u (I < € O+vDNIECE, )l

£,V
Since F € P-W(r) we see that f is well defined and differentiable on
G.

That f belongs in fact to €c”(G;t) is a consequence of the transforma-
tion rules of generalized spherical functions and the orthogonality
relations in K.

Since ue is analytic on an open strip of C containing R, using 1.2.
and 1.3. we can find a number € > 0 such that for 0 < |Im(v)l < ¢

there are no singularities of the functions ¢(v;at)(Toc1(v))u€(v) ,

: ¢(-v:at)(y(m*)cl(U)*Ty(m*)_l)ug(v), for [tIM:g] # 0. Now

L3

IR AN G OO R PO

£(a,)

s

lim J_S tr(E, wg’v(azl)F(g,v)ET)ug(v)dv.

S>>+

[}

Choose a 0 < 6 < ¢ and let 9 denote the curve below.

Then by analyticity,

S
[ e, g @hREWIE I M)y -

e, m GHFGEMIEDN ().
o t

(a_l)E =E = V(m*a n*!

MTHE = yNEr, (8 )E v (D)7
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= y(m).e(via) (Toc! (9))y )7 +

+ymMee(-via) (rmM)oct () e Toy () ™.y () 7!
and we know that (Harish-Chandra [7]) u (v).T - ") where
I is the identity of HE, thus

-1 .
tr(E, 7, (a7 )F(E,0)E dng (v)
1yl
= tr{[¢(v:at)(Toc (v) )+
+ @('V:at)(Y(m*)ccl(V)AloToY(m*)_l)]E(E,V)}

Hence

(2.2.4.) J tr(ET b

£y (3 DF(E,0)E Ju, (Vdy =

Q

s

AP
trl¢(via,) (Toc™ (V) JE(g,v)]ldv +

"
Q—

s

trle(-via,) (y(m")oc (v) LoToy (m*) "1 F(e,v) T dv

+
Q—

s
By the results in 1.3., we can find Al’Bl’ Cl’ Nl’ R1 so that the
series defining @(viat) is uniformly and absolutely convergent for

t > Al’ Im(v) > R1 and

-N, KB, v
Hrk(/—1v—p)H < C1(1+Iv|) e , for all k.

—_— -
From the discussion in 1.2., we can find C2, Nz’ R2 so that cl(v) !

is analytic for Im(v) >R and

2
— %=1 N
hel@®* 1 < ¢, (1+1v1) 2.
2

Let R = max(Rl,RZ). Then for Im(v) >R, we can find a C3 >0 so
that

ltrle(via,) (Toc! (D * HF(E, 011 <
Ny-Ny ~Im(v)t o k
< C;(1+vl) NF(g,v)lle kzolexp(Bl-tN

Since F € P-W(v), we can find B,, C, >0 so that
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-N,+N. -2 le Im(v)l

IE(e, )1 < C,(1+1v]) 27717

Let A2 = max(Al,Bl). Therefore, for Im(v) >R, t > A2’ we haye a
C5 > 0 so that

) 1 — %~ 1s _9 (Bz—t)Im(v).
Itr[@(v.at)(Toc (v) F(g,v)]I< C5(1+|v|) e

and hence if A = max(Az,Bz), we can find a C > 0 so that for t > A,
Im(v) = R we have

— %=1 _~ -
ltrle(via,) (Toct ()™ DF(E,v1] < cOi+|v])72.
Then, for t > A, Im(v) > R, we have

+s+/=1R -1
trle(via,) (Toc' (0" HF(e, Iy | <

ts

s

R
< C'J [1+(s2+u®) /2172 qu) —
0

Also, by analyticity,

s+/-1R 1
—_ kTl
tr[¢(v:at)(T°c1(v) F(g,v)] dv =
-s+/<1R
NS
J tr[¢(v:at)(Toc v) JE(g,v)] dv and hence
[v-V=1R|=s
Im(v)2R
s+/jR 1
.-
trlo(via,) (Toc' (v)" DF(E,W)] dv| <
-s+/=1R
L3
<c f s(1+[s? cos2e+(R+s sine)?11/2)72 g5 <
0
cm
< 5 e 0

Similarly we can see that
N

ts—/jR
lim trle(-via,) (y(m*)oc! (v) T LoToy ) " HF(e,v)] v =

s+t

«n
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s—/—lg
= lim ] tr[¢(-o:at)(Y(m*)ocl(v)‘loroy(m*)‘l)i(g,v)]dv =0
>+
s -g-v=-1R

Therefore, computing the first integral on the right-hand side of
2.2.4 along the contour

-s+/-1R s+/=1R

-s-/-1R s-/~R

and taking.limits for s » += , the theorem follows.

2.2.5. We would have an answer to the Paley-Wiener problem if we were
able to show that the residues in theorem 2.2.2. are a finite linear
combination of matrix entries of the discrete series for G (Harish-
Chandra [6]). In what follows we are going to deal with this question.

2.3. A PALEY-WIENER THEOREM FOR RANK-1 GROUPS.

2.3.1. THEOREM. Let the notation be as before. Then F € P-W(t) <f and

only if there. exists f € C:(G;r) such that F(g,v) = “E v(f)'

Proofi From 2.1.4. and the definitions it is clear that if

fe é:(G;T) then F(g,v) =7, (£) is in P-W(1).

For the converse, let £;,...,5. be the M-types of t. For each i = 1,

E.
.»r, let {v; .}. be an orthonormal basis of H P JY
> T *i,l

i’] i,s (i)
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: O I 0 and '
_the poles of Q(v.at)(Toc (v) ) on m(v) > an Vi, s(i)y+1 e
. . * 1 -1 *_ -1
Vi’n(i) the poles of @('\’-at) (Y(m )oc (\)) oToY(m ) ) on Im(v) <0.

Say N is the maximum among the orders of the poles.

e w &) (v, .),v. > for all g € G.
dv v=v. Ei'v 1,377 ik

Let {¢1,...,¢n} be a maximal linear%y'independent subset of

£L,m .
{"i,j,k‘}i,j,k,L,msN—l : Say
; n
£,m - £L,m,a
¢i:j:k azl ai’J’k ¢a

Let 1 < o < n be fixed. Then there exists ha in C:(G;r) such that

I hn(x)oa(x)dx =34

c o8

Then Fn(e,v) = tg'v(ha) is in P-W(x). Define fa as in 2.2.1, using Fa
and ‘then, applying 2.2.2., we find an A > 0 such that for t > A

; -l o
f (a)) = 2n/-Te Pt I {] Res tr[¢(v:at)(Toc1(v)* JE (g,v)] -
"t EeM Im(v)>0
[t|M:gl40

- ) Res tr[e(-v:a )(Y(m*)oCI(V)_loToY(m*)—I)F (g,v)1} =
Im(v)sO0 t *

s(1i)

( oy~
= 2n/-71 Pt Z { Z Res tr[@(v:at)(Tacl(v)* I)Fa(gi,v)] -

i=1 £=1 v=vi’£

n(i) 1, y-1 -1,%
", ) Res  trle(-via ) (y(m*)oc™ (V) "oToy(m*)"")F (&;,9)1} .
=s(i)+1 \)=\)i’£

Now, for 1 < £ < s(i)

tr[w(v:at)(Tocl(;)*_l)i;(ﬁ,v)] =

s‘jzk <Y(E*)—l°’(“:at)(T°cl(;)'_l)ov(n*)(Vi.k).vi.j>'

.<Fﬂ (ii'\’) (vi,j) ’vi.k>
Therefore, being l'~"J analytic in v,

Res tr{o(v:at)(Tocl(;)‘—l)ﬁ;(ﬁi.v)] =
VeV
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- £,m ﬁmf /
T b aEOGRE] ) Ty vy o where
v i,2 '

ui’j k(at) is m! times the (—m-])th-Laurenf coefficient of

%, -1 N T .

() Foe (via) (Toc I oy ™) (v )y, > at v =y, .
’ -9

But, by 2.1.4. and the assumption on ha,

(L )<F (E.,9) (V. .),v. > = alsms
dv® | v=y . P a‘i? i,j7? i,k i,j,k
i,
Therefore
. 1, = a-1\% _ £,m £,m
VESS tr[¢(v.at)(Toc ) )Fa(gi,v)] = ; E . ui:j,k(at) ai:j,k
i,2 Jk,
Similarly, if s(i) + 1 < £ < n(i),
* - % 1~
-Res tr[@(-v:at)(y(m )ocl(v) loToY(m ) lFa(Ei,V)] =
V=YL
- £,m 2,m,a
S b Uy A
Thus, for t > A we have
£f,(a,) = 2n/~T . e Pt ) utom (at)a@’?’; =Q%(a,) .
i,j,k,Lym i,j,k '1,J’ @t

Applying the Plancherel theorem to ha , we obtain by analyticity,
that Q: extends to a function Q; in €”(G;t) which is a finite

linear combination of matrix entries of the discrete series for G.

Suppose now we are given an F in P-W(t). Define f as in 2.2.1.,
apply 2.2.2. and find a C > 0 such that for t >C,

—pt & 8D 1= a-1%
f(a,) = 2a/-Te™”" ] { } Res trle(via ) (Toc” (V)* 7 )F (g ,v)]-
i=1 i=1 vEVL e

n(i)

- Res tr[¢(—v:at)(Y(m*)oél(v)-loToY(m*)_l)F(Ei,v)l}-
L=s(i)+1 v=v, , .

Now again

Res  trlo(via ) (Toc' (M* HF(,,v)] =
VVie
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= 3 Wb o & ) <F(Eg,v) vy 2),vy o>
.k i,k % ol i? i,i’Vi,k
j.k,m v, i 2
and since F € P-W(1),
an _ T £L,m,a
(ﬁ - ) <F(Ei",'\’) (Vi,j)’vi\‘,k> = azl ai,j,k Ca(F)
i, £ :

for some ca(F) inC, o = 1,...,n. Hence

. 1= 4-1\% - o £,m L,m,a
vzsf Ktr[@(v.at)(Toc ) JF(&;,v)] uZlca(F) j’g,mui’j’k(at) ai,j:k
1’

Doing a similar analysis with the rest of the terms we conclude that
for t > C,

: n

f(a,) = agl ¢, (F) Qi(a,).
. n .

The?efore, f - azlca(F)Q; is in . (G;).

Finally, using that Te v(Q;) 0 for every v in R (Harish-Chandra

n
[6]), it follows that F(g,v) £ - 3 ca(F)Q;) for every v in

=
E’v a=l
R. Being both sides of the equality analytic functions, the theorem

is proved.

" 2.3.2. OBSERVATION. From the proof of theorem 2.3.1. we see that con-
dition ii) of the definition of P-W(t) (2.1.5.) is only needed on a
finite number of poles in the asymptotic expansion of finitely many
generalized spherical functions and that the number of derivatives to
consider is bounded, for each 1, by N-1, where N is the maximum of the
orders of such poles.

We conclude this section with a theorem about condition ii) of 2.1.5.
itself, but first some notation.

Let z be the center of the universal enveloping algebra of g and let

{Zl,...,Zn} C z. Let X v denote the infinitesimal character of

£,
(1rE V,HE)_(c.f. Warner [ 15]).

2.3.3. THEOREM. Assume ¢: C® v C is analytic and set F(g,v) =

= ¢(X§,v(zl)"'"xe,v(zn))Et' Then F satisfies ii} of 2.1.5. and the
right-hand eide of 2.2.3. extends to an element of CG{G;T).WhiCh i8 a
finite linear combination of matrix entries of the discrete series
for G. '



In particular, if G has no discrete series, it is zero.

i i
- Proof. Let ¢(x1,...,xn) = Ia . xll'...xnn and assume we are

il""’ln

given (as in 2.1.5. ii)) a relation of the form

(2.3.4.) Ipbom

R Mg @y 5oy > = 0

\)=\)£ 1

. 2,m .
for all g € G, with bi,j,k in c.

For each ¢ = 1,,..,n, let Za act on both sides of 2.3.4. as a left-
invariant differential operator of the .g-variable.

‘Since Za<"gi,v(g)(vi,j)’vi,k> =

= Xgi,v(Za)<n§i’v(g)(vi’j),vi,k> we see that

£,m

dm il i
i,k C= E 4

) i PP | Xe L v(Z)

0=17hb ~
dv v=v,

. <1rgi,v(g) (Vi,j) ’vi,k>

for all g € G. Therefore, evaluating at g = e and summing on
il,...,in we obtain
£,m

i,3,

. a"
0= DT CE] L, ) 0 W)k 2

\)=\)£

and hence F satisfies ii) of 2.1.5.
Going through the argument in the proof of 2.3.1., we conclude that
the sum of the residues on the right-hand side of 2.2.3. extends to

an element of C”(G;t) which is a finite linear combination of matrix
entries of the discrete series for G.

Therefore, if G has no discrete series, the sum of the residues is
zZero.

3. THE CASE OF M=-MULTIPLICITY 1 K-TYPES.

~

K

m

3.1, THE PALEY-WIENER SPACE. In what follows we assume (T,VT)
and it satisfies [t|M: €] = 0 or 1 for every (E,Hg) € ﬁ (this is the

case for every (T’VT) € K if G = SO0(n,1) or SU(n,1), c.f. Warner
[15]). :
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For f € C:(G) set

0g, () = tr(r, (£)

is the character of (w

48
g,V | E’V’H )).

(i.e., ©

if °z’v(x) = 1;1-(}3‘t 'g,v(x)Er) for all x € G, then for every f in

C:(G;T) >

(3.1.1.) eg’v(f) =.J £(x). ¢;’v(x)dx

G

(c.f. Wallach [12]).

3.1.2. NOTATION. If f € C:(G;r) satisfies that f(g) = f(kgk_l) for
all g € G,k € K we write f € I:(G;T).
Note that if £ €C7(G;t) and we set f (g) = J f(kgk™1)dk, then

K

fr € I0(637) and o (£) = o,  (f).

£,V

3.1.3. LEMMA. Let f € I.(G;1). Then
i) A T, (6 = o, | (£E,
. - _ T ~-1
i) d(x) oy (L) = e () of (g7

(here d(r) = dim VT).

Proof: It is easy to check that "é;v(f) is :in HomK(HE,HE) and hence,

by irreducibility of (= HE) we conclude i).

E,v|K?

Now, d(x) 0, (L £) = d(x) tr(ug’v(g'l)yg’v(f)) -

=-d(t) tr(ET wg’v(g';)ET wg’v(f)). Therefore, ii) follows from'i).

As a direct consequence of 2.1.4. we have

3.1.4. THEOREM. Let f € I:(G;T) and set F(E,v) = 0, (f). Then

E,v

F: M x C > C <8 an entire function of v such that

i) F(g,v) = 0 whenever [T|M: €] = 0.
ii) Let-gl,...,gr be the M-types of t and ViseeesVy complex
numbers. .

k . .
If ] a; 5.k QQ_E ) 0; v(x) =9 for all x in G, with ai,j,k
i dv u=vj i
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in C, then.

| i
Iag 5k (;ZE
v

iii) There exists g iconstant A > 0 80 'that for ahy integer
N > 0 we can find a cons%dﬁtvcu >0 for which

) (F(g;,v)) = 0.
v= \)q.

|F(E;v) | <J9ﬁ[h;]v|)én exp(AIIm(v)l).

The preceding lemma and theorem motivate, in tHis case, the following

3.1.5. DEFINITION. Given F: ﬂ x C+—— C such that F is an entire fung
»tion‘of the second variable satisfying conditions i), ii) and iii) of
theorem 3.1.4., we say F is in the t-Paley-Wiener space of G and
write F € P-W(t) (see 2.1.5.).

3.2. A PALEY-WIENER THEOREM. Let the notation and assumptions be as
in 3.1.. We can now prove the following

3.2.1. THEOREM. Given F: M x C —> C; F € P-W(t) <f and only <if there

exists f € I:(G;T) such that F(g,v) = 65 v(f)'

Proof. One implication is clear. So, suppose F € P-W(r) is: given.
Define

] - -1 ® -1 .
OIS OIS I e LGB IS
[t|M:g]=1

An argument similar to the one in 2.2.2. shows that f' G'IN(G;T) and
there exists A > 0 such that for t > A

(3.2.2.) £'(a,) = 2n/7T e °F

. 5. () Res (F(&,v) tr[¢(v;at)(T°c1(U)*‘1)1) -
EeM ~Im(v)>0 .
[t|M:g]+40

- L Res (RCELv) trlo(-via,) (ym*)oc! (v) TaToy (m*) " 11D 3.
m(v)< .

‘Proceedingvnoﬁ as in the proof of 2.3.1., we can show that the right-
hand side of 3.2.2. extends to an element of I”(G;t) which.is a finite
linear combination of matrix entries of the discrete series for G and

from there that 3 f € I:(G;r)/eE v(f) = F(g,v).

As in 2.3.3. with the same notation, we have now the following
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3.2.3. THEOREM. Let ¢: C" — C be ahalytic and set F(E,v) =
= @(xg’v(zl),...',xg’v.(zn')). Then F satisfies ii) of 3.1.5. and the

'right-hand side of 3.2.2., extends to an element of IQ(G;&) which is a
finite linear combination of matrix entries of the discrete series
of G.

Proof. Follows from 2.3.3.

3.2.4. NOTE. This result can be used to prove that certain functions
are Fourier transforms of elements in the Schwartz spaces. For one
such application see R. Miatello, Thesis, Rutgers University.

'3.3. ‘THE CASE t|M IRREDUCIBLE. In what follows, assume (,V) € K is

such that (1|M,VT) is irreducible. Set (r|M,VT) = (E,HE).

We can now prove the following

3.3.1. THEOREM. Let F: C +— C be entire. Then there exists

f e I:(G;t) such that o,  (f) = F(v) ¢f and only if F satisfies

i) F(v) = F(-v)

ii) There exists a constant A > 0 so that for any integer
N > 0 we can find a constant Cy > 0 for which

[FM) | < ¢+ v exp(alIn(v) ).

Proof. Assume f € I:(G;r) and F(v) = eE v(f). Then ii) is immediate

'from iii) of 3.1.4. Also, from 2.1.1., it is not difficult to see that .

OE v = eE v (c.f. Wallach [12]) and hence i) follows.

For the converse, let 2 denote the Casimir element of g. Then

Xg,(2) = -VZ-AE-pz (c.f. Wallach [12],p. 280).

If F is given as above, then

F(v) = X a vzn.
n=0

Set ¢(z) = ] (-1"a_(z+r,+p2)".
n=0 n &
Therefore, ¢ is an entire function and F(v) = o(-vz-xg-pz) =
= 4xg,, ().
.Using 3.2.2. we see that F satisfies i), ii) and iii) of 3.1.5. and
hence 3.3.1. follows from 3.2.1.
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3.3.2. NOTE. This result was proved in the case G = SU(2,1), dim(t) =
= 1, by Gupta (Thesis, University of Washington). For a proof in the
case G = SU(n,1), dim(t) = 1 , see Wallach [ 14]. )

3.3.3. NOTE. In the case of G = Spin (4,1), we can take

K = SU(2)xSU(2) and M =-{(A,A)|A € SU(2)} C K. Then every t € K of the
formt =y 1 or t = 1@ y, where y € Sﬂ(Z) and 1 is the trivial re-
presentation of SU(2), restricts to M irreducibly and hence 3.3.1.
applies.

Therefore, 3.3.1. includes results in Shimuzu [11].
3.4. EXAMPLES IN THE CASE OF G = SU(2,1). Let us now consider

G = SU(2,1) = group of 3x3 complex matrices A, with determinant 1,

such that JA*J = A_l, where

On G, we consider the Iwasawa decomposition given by

K={[A 0 _1J|AGU(2)}
0 det(A)
. 0 0
A = a, = exp (tH) ‘ H= (0 0 0f , teR

and N is the connected Lie subgroup of G with Lie algebra

-/=iu z V/-1u
n = -z 0 z ueR, zeC
-/=Tu z V/-Tu
Then
e/?e 0 0
M ={m(e) = |[p o277 Te 6 € R
' 0 0 e/ Te

and the Cartan involutionvis given by e8(g) = (g*)'l, for every g € G.

-Correspondingly, g = su(2,1) = space of 3x3 complex matrices A such
that the trace of A is zero and JA*J = -A,
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k =‘{[ A g ] | Ae u(Z)]
: 0 -tr(A)

and 8 = s1(3,C).

T 0 0
If we take X, = | 0 -2/-1 , noting that B(X,Y) =
: 0 0 /-1
= 6 Re(tr(XY)), we have w, = (-1/36)x§.

We also note that p = 2.
Let V, = space of polynomials in two complex variables, homogeneous

of degree. u. For each integer £, let o u be the representation of
t .
K on v, given by )

A_’__Lr L .o.-1
oul| 0 T deca) (£) (x) = det(A)C.£(a"L.x)

for every f € Vu, x e c2.

-

Then {(r£ u,V = K (c.f. Wallach [ 12]).

u) }uzo,ZEZ

u-i _i

If we set vi(zl,zz) =z Zy then {VO,...,Vu} is a basis of Vu

N

such that if A € (vu)f sthen A(v,) = a; v;, a, €C, 0 <i <u.

1 1
»u

. _ u . s M
Hence, if Pi(vj) = 6i,j Vj, {Pi}i=o is a basis of (Vu)T .
’

" Let T = Tg o - An easy computation shows that T(mo)(Vi) =

= [(31—1’.—u)/6]2.vi , 0.< i <u, and hence, from 1.3.2. we see -that

for each i = 0,...,u the singularities of @(v:at)(Pi) are at the
points '

ve /T ks GDISEe 2]
for k = 1,2,... , j =0,...,u.

EXAMPLE 1. Let t = Ty.1 » i.e., T is the two-dimensional representa-
. t

tion of K such that

-2v/-18
e .

T(m(8)) (vy) vy = Eo(m(e)).v,

e"TT".v1 = g, (m(6)).v,

t(m(8)) (v,)

Then the only singularity of ¢(v:at)(P0) on Im(v) > 0 is a simple po-
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le at v = 0 and ¢(v:af)(P1) is analytic on Im(v) > 0.

Using an argument as in Wallach [12], 9.11.9,, (see also Cohn [1]) ,
we obtain

1 _ 1 . r((/-Tv+1)/2)
(W) vy) = c (v).v, = c. .
C v VO C0 v Vo C r(( - v+4)/2) V0

<ty = el = g["/TT “J L(/Tv/2)

1+/77 v) T((/"Tv+3)/2)

where ¢ is a real constant and I' is the classical gamma function
(c.f. Whittaker and Watson [17]).

1—* 1 ‘ - . 1,.4-1
Therefore ¢ (v) = c”(-v), the only singularity of cl(v) on
Im(v) < 0 is a simple pble at v = -/~1 and c(l)(\))"1 is anal&tic on

Im(v) < 0..

3.4.1. NOTE. The singularity of @(v:at)(Po) at v = 0 shows why we
have - to avoid 0 in the proof of 2.2.2.

In this example, since the singularities appearing on the right-hand -
side of 3.2.2. are simple poles (see 2.3.2.) and spherical trace func
tions are linearly independent or equal (c.f. Wallach [12]), condition
ii) of 3.1.5. reduces to

i1') eg = eg v implies F(£,v) = F(&',v').

From the results in Wallach [ 14], we can see that

T T
¢E,V = ¢E',V'
if and only if £ = §' and v = xv' or (g,v) = (50,0), (g',v') "=
= (Eli/—_f)"

Therefore, we have the following

3.4.2. THEOREM. Let F: ﬁ x C+—— C'be an entire function of the second
variable. Then there exists f € I:(G;r) with eg’“(f) = F(g,v) <Zf and
only <if
i) F(&,v) =0 for ¢ # £, » 1=0,1.
ii) F(g,v) = F(g,-v) , F(gy,0) = F(g,,/"T).
iii) There exists a constant A > 0 so that for any N > 0 we can

find CN‘> 0 for which

[E(g,v) | <,CN(1+]v|)'N exp(A|Im(v)|)



220

EXAMPLE 2. Let 1 = In this case it can be seen that

T6,3"

3 .
1 _ 1 _ I -9+2§-v-1v . F(/TTv/Z)r((1+/TTv)/2)A
Co(v) = <cm (M vo),vy> [J-=1(-g+zj+mv) T ((11+/=Tv)/ 2)T((-7+7/-Tv)/2)

Therefore, v = -/-1 is a pole of cé (\))_1 which is also a pole of
e(-v:a ) (Py).

This example shows that multiple poles do appear on the right-hand
side of 3.2.2. and hence the necessity of the derivatives in condition
ii) of 3.1.5. (and also in ii) of 2.1.5.) for our proof of theorem
3.2.1.
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