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ABSTRACT. Let G be a connected, semisimple, rank-1 Lie group with fi

Rite center. Let K be a maximal compact sub-group of G. 

Using a generalization of S. Helgason's technique for the spherical 
case, we prove Paley-Wiener theorems for the space of left and right 

K-finite, compactly-supported, infinitely differentiable functions on 

G. 

INTRODUCTION. Let G be a connected, semisimple, rank-1 Lie group with 

finite center. Let K be a maximal compact subgroup of G. 

The purpose of this exposition is to give a (preliminary) description 

of the image, under the complex Fourier transform, of the space of 
left and right K-'finite, compactly-supported, infinitely differentia

ble functions on G (the Paley-Wiener problem) . 
Historically, L. Ehrenpreis and F. Mautner [Z] ,[3] and [4] were the 

first to prove Paley-Wiener theorems for G = S1(Z,R). 
S.Helgason [8] proved a Paley-Wiener theorem for K-biinvariant func

tions on a rank-1 semisimple Lie' group, later on 'extended by R. Gan

golli [5] to K-biinvariant functions on a general-rank semisimple Lie 
group. Using Helgasons's technique, K. Johnson [9] proved a Paley

Wiener-type theorem for general K-types on a rank-l group, although 
his conditions were difficult to check in practice. 
Helgasons's technique was also used by Gupta (Thesis, Ufiiversity of 
Washington) to prove a Paley-Wiener theorem for one-dimensional K-ty

pes of SU(Z,1) where the only conditions were, as expected, symmetry 
and growth conditions. His result was extended in Wallach [14] to the 
case of one dimensional K-types of SU(n,l) and its finite coverings, 

again with the same conditions of growth and symmetry. K. Johnson's 

work· consists, essentially, in reducing the Paley-Wiener problem to 

the analysis of a certain combination of residues at the singular 
'points in the. asymptotic expansion of generalized spherical functions 

* This is essentially our Ph. D. Dissertation ,at Rutger's Uni.versity, 
in 1976 and.we express our gratitude to professor Nolan R. Wallach, 
our advisor. 
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(see theorem 2.2.2). Our work carries on the study of that combination 
of residues. 

In chapter 1 we introduce some needed notation and results on the asy!!!. 
ptotic expansion of generalized ,spherical functions '. 

The first section of chapter 2 is devoted to the introduction of vari
ous Paley-Wiener space. and in section 2 we give a proof of the alrea
dy men tionedtheorem 2.2.2. 

In the last section of chapter 2 we state and prove the main theorem 
(theorem 2.3.1.) which gives a necessary and sufficient condition for 

a function to be the (vectorial) complex Fourier transform of an ele-

ment of Coo(G;T) (see 2.1.5. for notation). Also in the last section of 
c 

chapter 2,we prove theorem 2.3.3. which gives a family of functions 

(namely, <P(x~ (Zl)"" ,x~ (Z)). E~ where <p is an entire function, 
s,v. ~,v n L 

x~ is the infinitesimal character of the principal series and 
... v 

Zl" .. ,Zn are elements of the center of universal enveloping algebra) 

for which the combination of residues in theorem 2.2.2. is a finite Ii 
near combination of matrix entries of the discrete series for G and 

hence it has zero Fourier transform (Harish-Chandra [6]). 

In chapter 3 we restrict our attention to the case of M-multiplicity 

1 K-types. We begin by introducing the spherical trace functions asso
ciated with the principal series r~presentations and the various 
Paley-Wiener spaces associated with the complex (scalar) Fourier trans 

form. 

The main results of section 2 are theorem 3.2.1., which is the analo

gue of theorem 2.3.1. in the scalar case, and theorem 3.2.3. which co!. 
,responds to 2.3.3. Theorem 2.3.3. can be applied, assuming suitable 

growth conditions, to prove that certain functions' are Fourier trans
form of elements of certain corresponding LP-spaces of G (for one such 

application, see R. Miatello, Thesis, Rutgers University). 

In section 3 we prove a Paley-Wiener theorem in the case of an M-irre
ducible K-type which generalizes the results of Helgason and Wallach 

with the same type of conditions, i.e., symmetry and growth. 

In the last section of chapter 3 we give an example of a Pal.ey-Wiener 

theorem for a two-dimensional K-type of SU(2,1) where, besides the 
growth and symmetry conditions, there is anoth-er extra condition, rel.i!. 
ted to the existence of partially-defined intertwining operators betw~ 
en the principal series representations. AlsoiI). the last section of 
chapter 3 we give an example of a four-dimensional K-type of SU(2,1) 
which shows that'in our proof of theorem 3.2.1. the derivatives in de 

finition 3:1.5. ar~ necessary. 

The basic references throughout are Wallach [12] and Warner [15] and 
[ 16] • 

We should emphasize the fact that the nature of the results is preli-
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minary since it is not clear the group theoretic significance of con
dition ii) of 2;1.5. and 3.1.5. 

NOTE. Recently -P. C. Trombi has apparently worked out the details of 

the application of theorem 2.3.3. mentioned above in "LP-Harmonic Ana 
lysis on Real semisimple Lie Groups: The Split rank one case" (pre
print). 

1. THE ASYMPTOTIC EXPANSION .OF GENERALIZED SPHE~ICAL FUNCTIONS. 

1.1. NOTATION. Let G be a connected semisimple Lie group with finite 
center. Let G = KAN be an Iwasawa decomposition with dim A = 1 (i.e., 
G has split-rank 1). Let e be the Cartan involution on G such that 
elK = identity. 

We denote by M the centralizer of A in K. g, k, a, n, m will denote 
. - -- - - . 

the respective Lie algebras of G, K, A, Nand M. We will denote by K 
a set of representatives of equivalence classes of (finite dimensio
nal, unitary) irreducible representations of K. 

If (T,Y ) is a finite dimensional (not necessarily irreducible) repr~ 
T 

sentation of K, we set yM = HODL(Y ,Y ) = space of endomorphisms A of T M T T 
YT such that A 0 T(m) = T(m) 0 A, for every mOin M. If (~,H~) is a 

representation of M, we write [TI M:~l = dim(Ho~(YT,H~». 

Let a = R.H where H is such that ad(H)I~ has eigenvalues 1 and pos
sibly 2. If P is the dimension of the eigenspace of eigenvalue 1, q 

1 the dimension of the eigenspace of eigenvalue 2, set p = I(p+2q). 

If g E G, g = k(g)a(g)n(g) with keg) E K, neg) E N, a(g) E A, 

a{g) exp(H(g).H) = aH(g)' H(g) E R; and the measure dg on G is nor 

mali zed so that dg = e2tp dk dt dn. 

Also,-for v e C, (~,H~) EM, let H~ denote the Hilbert space comple

tion of the space of continuous functions f:K --+ H~ such that f(km)= 

= f;(m)-l(f(k», k E K, mE M, with respect to IIfll2 = IK lIf(k)1I 2 dk. 

If f E Hf; let 

r"'r -1 1 -1·) (lI'f;,v(~) (f» (k) = exp[ (-v- Iv-p)H(g k) .f(k(g .k) 

for all g e G, k E K (note that 1I'f;,v1K is in'dependent of v). 

Then ("(,'\I.ut ) is a repre~entatioll of G and if v E R, it is unitary. 

These are the. so called, principal series representations of G. 
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1.2. GENERALizED SPHERICAL FUNCTIONS. Let (~~H,/E if, v E C; and let 

(T,VT) be, a finite dilliensional representation of K. Suppose (T1,VT1 )" .. 
-'" ,,(Tn;VT ) in: K are its i rredu,cib Ie constituents, 

n 

n 
Set XT (k) = r dim(V ) tr{T: (k)) , all k E K. 

T" l' , 
i=l 1 

We denoteb~ H! the ~pace of functjons f in H~ such that 

f, =-- E (f) '!' J X (~)'I(",' (kHf) dk 
T ~K T ~,v 

Note that, by Froheni1:ls ReCiproCity (c.f. Warner [ 15]), dim(H~) 
,T 

= [TI,M:~]. ' 

Let us denote by (y,Vy ) the representation (w;,vIK,H!). 

We are going to use the following 

for aLl. +,1/1 ,in H; and set 
, T 

f 1 ' 
E-r7l';,v(x)ET = y(k(xk))T y(k)- exp[-(l='ly+p)H{xk)1dk. 

K 

Pl',oof. Let +,1/1 be in H~. Using"that k(xk)m ~ k(xkm), H(xk) 
T 

for m 'E M and the invafiance of the integral we see that 

<h. y(k(xk))T y(k)-lexp[ - (r-Tv+p)H(Xk)] dk(+) ,1/1> 

<fK y(k(xk))To y(k)-lexp[ -'Cr-Tv+p)H(xk)] dk(4)) ,1/1> 

-1 e.xp[- (r-Tv+p)H(xk)] < (Toy(k)-lH, y(k(xk))-11/l> dk 
K 

fK exp[-(r-Tv+p)H(xk)] «y(k)-1+)(e),(y(k(xk))-11/l)(e» dk 

f <+(k), (w ~ ,_v(x- 1)(1jI))(k» dk <4>,11' t ._v(X-1)(ljo)> 
K 

H(xkm) 
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In Warner [16] it is shown that there exist HomcCCHI;)M,(Ht;)M)-valued 
T T 

meromorphic functions,cl,c_ l and a function ~(v: at) for v E C, t> 0 

in R, with values in Homc((Ht;)M,(Ht;)M), meromorphic in v, real ana-
T T ' 

lytic in t, continu9us in both variables simultaneously as a map into 
the extended plane, such that 

(1.2.2.) 

(the functions ~ and c±l depend on I; and T). 

Furthermore, if N = e (N), also from Warner [ 16] , we know that 

(1.2.3.) c l (v) (T) T 0 (IN" y(k(il))-lexp[ - (i='Tv+p)H(il)] dil) 

for Im(v) < O. 

1.2.4. NOTE. It is not difficult to check that the integral on the 

right-hand side of 1.2.3. defines an element of (Ht;)M when it is abso 
't 

lutely convergent and this is true for Im(v) <0. 

Combining 1.2.1. and 1.2.2. we obtain 

(1.2.5.) ePtE 1T~ (at)E =~(v:a )(cl(v)(T))+~(-v:a)(c l(v)(T)) 
't .. ,v 't t, t -

The functions g --+ E 1T~ (g)E are generalized spherical functions. 
T ~,v T 

In Wallach [13] (see also Schiffmann [ 10]) there is a proof of the 

fact that the matrix entries of cl(v) are expressible as linear combi
nations of functions of the form 

B(m,(/~v/r) + 2s-2n-m) B(n,(/~v/r) + s-n) 

where m,n,s are nonnegative integers or half integers, r=l or 2 and B 

denotes the classical beta function (c.L Whittaker and Watson [17]). 

Elementary properties of the beta function and a minoT modification of 

the argument used in Warner [16] to prove lemma 9.1.7.4. shows that we 
can find COnstants C,N,R > 0 such that for Im(v) < -R, the matrix en-

tries of cl(v)-l are bounded, in absolute value, by C(i+lvl)N. 

1.2.6. NOTE. From the expression of the matrix entries of cl(v) in 



202 

terms of beta functions we obta~n that det(c1 (v» is holomorphic for 
Im(v) < 0 and the poles form a discrete subset of the imaginary axis. 

On the other hand (Harish-Chandra (71) 

_11 I - :110 
JI~(v) I = cl'{v)c (v) 

and the poles of Jlt(v) form a discrete subset of the imaginary axis 

(c.f. Warner [161). Therefore, a zero of det(cI(v» which is not a po
l - :It 

Ie of JI~(v) must be a pole of det(c (v) ) and hence must also be on 

the imaginary axis. 

From the preceding discussion we obtain a number R > 0 such that all 

the zeros of det(c1(v») are on Im(v) ;> -R. We thus conclude that for 

any real number a, ;there are finitely many singularities of c1(v)-1 

on Im(v) ..;; a , a fa'ct that we are going to need. 

Finally, itis nQt difficult to see (c.f. Wallach [121) that if M* de
notes the normal/izer of A in K and m* E M*-M, then for Im(v) > 0 

(1.2.7.) 

1.2.8. NOTE. Both sides of 1.2.3. and 1.2.7. are meromorphic functions 
and hence the equalities hold for the meromorphic extensions. 

1.3. THE RATIONAL FUNCTIONS rk(v). Let !c denote the complexification 

of g, ~ the set of roots of !c with respect to a Cartan subalgebra cog 

taining ~ and contained in ~ IS !!!c ' ~+ a set of positive roots in ~, 

~ the root subspace of !c corresponding to each a E ~ , B( , ) the 

Killing form of !c and for each a E ~+ let us choose elements 

Xa E !~ , X_a E !-ca such that B(Xa,X_a) 1. If R is the subspace of ~ 

of elements X such that O(X) = -X, write 

X ±a = Y ±a + Z ± a 

where Y±II E .!c • Z±II E £.c • for all II E ~+ 

Finally. let X1 ••••• Xm be a basis of ~ ,(g) the inverse 
~ i,j l.:i,j.:m 

of the matrix (B(Xi ,Xj »lci
t
jSm and set 

w = o L 
i,j 

g .. X~ X. 
~ ,J ~ J 

:rhen in Warner (16] it is'shown that (for a given finite dimensional 

representation (-ttV ) of K) if (y,V ) denotes (1r~ IK,H~) then 
T· Y ~,v T 
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(1.3.1.) 

where the functions rk(v) are defined by the following relations: 

(1.3.2.~ rk(v) - 0 for k a negative integer 

and for k > 0 it satisfies 

B(H,H)-lk(2v-k+2p) r k(v) (T) -[ y (wo) or k (v) (T) -rk (v) (ToY (wo))1 

2p B(H,H)-l L (v-k+2n) r k_2n (v)(T) + 
n~ 1 

+ 4q B(H,H)-l L (v-k+4n) r k_4n (v)(T) + 
n~l 

+ 8 L L (2n - 1 ) y(Ya)ork+1_2n(v) (T)oY(Y_a ) 
n~l ae:ll+ 

a(H)=l 

+ 8 L L (2n-1) y(Ya)ork+2_4n(v) (T)oY(Y_ a ) 
n~l ae:ll+ 

a(H)=2 

+ 

- 8 L L n[y(YaY_a)ork_2n(v) (T)+r k_2n (v) (T)oy(YaY_a)1 
n~l ae:ll+ 

a(H)=l 

- 8 L L + n[y(YaY_a)or k_4n (v) (T)+r k_4n (v) (T)oy(YaY_a)1 
n;;,l ae:ll 

a(H)=2 

for all T E VM. 
Y 

Furthermore, (see Helgason [81 or Johnson (91) there exists a polyno

mial P(v) and constants A,B > 0 such that for Im(v) ~ 0 we have 

(1.3.3.) IIP(v) rk(!=Tv-p)1I .;; A exp(kB) , for all integers k. 

1.3.4. Note that 1.3.3. implies, in particular, that I(v; at) has fini

tely mariy singularities for Im(v) ~ O. 

Also, it is not difficult to see that they are all on the imaginary 
axis. 
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2. THE PALEY~WIENER PROBLEM FOR RANK-l GROUPS. 

2.1.·THE PALEY-WIENER SPACE. For eacn f E C"'(G) , <P E HI; , let 
c 

J 
KxN 

for m E M, t E R, k E K. 

Then we know (c.f. Wallach [12]) that 

(2.1.1.) 

If f E Coo(G), hE C"'(K), we write 

(h*Kf) (g) JK h(k)f(k- 1g) dk 

(f*Kh) (g) = JK f(gk)h(k) dk all g E G. 

Let T be a finite dimensional representation of K. 

2.1.2. NOTATION. If f E Coo(G) satisfies that f = X * f* X (see 1.2.), 
T K K T 

we write £ E Coo(G;T). Then for f E Coo(G;T) we have that 
c 

(2.1.3.) 

and the following 

2.1.4. THEOREM. Let £ E C-(G;T) and set F(I;,v) = 'lf r (f). Then for c . ~,v 

e·aah I; EM, F (I; , v) is an entire funation of v suah that 

i) F(I;,v) ~ 0 whenever [TIM: 1;] = o. 
ii) Let 1;1'" .,I;r be the M-types of T and for eaah i = 1 •••• ,r. let 

1;. 
{v .. }. be an orthonormal basis of HT

1 • Let \/1""'\/8 be in C. 
103 J 

If I· a~'~·k (ddmvmlv=vo) <Wr (x) (V .. ),v .. > = 0 for all x E G, with 
1,J, ... "i'\/ 1.3 1.3 

a t •m in C then i,j,k ' 
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iii) There e~ists a constant A > 0 so that for any integer N ~ 0 we 

can fi~d a constant C~. > 0 for which 

Pro~f~ i) Follows from 2.1.3. and Frobenius Reciprocity (c.f. Warner 
nSj) . 

ii) Is immediate from the definition of 7f t" (f)" .. ,v 

iii) Is a consequence of 2.1.1. and the classical Paley-Wiener theorem 

noting that Ff is a C:-fun~tion on A •. 

The Paley-Wiener problem consists in finding a converse for this theo

rem. 

2.1.S. DEFINITION. A function F defined on M x C such that for every 
A 

~ EM, is an entire function satisfying 

i), ii) and iii) of theore'm 2.1.4. is said to be in the T-Paley-Wiener 
space for G and we write FE P-W(T). 

2.2 .. THE tECHNIQUE OF S.HELGASON. Let f E C'"'(G). Then the Plancherel 
c 

theorem says that, if f is K-finite, 

is a finite linear combination of matrix entries of the discrete series 
of G, where ~~(v)dv denotes the Pla~cherel measure on G and Lg(f)(x) = 
f(g.x}, a11 g,x in G. But 7ft" (L f) = 7ft" (g-I)7ft" (f). This suggests . ..,v g .. ,v .. ,v 

'that given F E P-W(T), we should study the expressidn 

(2.2.1.) f(g) treE 7ft" (g-I)F(~,v)E )~t"(v)dv. 
T .. ,v T .. 

In this direction we have the following 

2.2.2. THEOREM(JOHNSON~. Let f be defined as above. Then f E C"'(G;T) 

.and there exists A > 01 such that for t > A we have 

(-2.2.3.) 

~ * 1 -1 * -1-
L Res tr[t(~V:'t)(y(m )oc (v). oToy(m) F(~,v)l} 

Im(v)~O 

where m* E M*-M as bej'ore. and F(~.v) = y(m*)F(~,v)y(m*)-l. 
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Proof; We know that (c.f. Warner [161) ~s(v) is analytic on an open 

strip of C containing R and that there exist constants C, N, Rl > 0 

such that if v E R, I vi > R1 , then 

N Ips(v)1 ";C(1+lvl) 

Therefore, for each g E G, there exists C1 > 0 such that if v E R , 

I vi > Rl 

Since F E P-W(T) we see that f is well defined and differentiable on 

G. 

That f belongs in fact to C-(G;T) is a consequence of the transforma

tion rules of general~zed spherical functions and the orthogonality 

relations in K. 

Since Ps is analytic on an open strip of C containing R, using 1.2. 

and 1.3. we can find a number £ > 0 such that for 0 < IIm(v)1 ,,;: £ 

there are no singularities of the functions ~(v;a )(Tocl(v))~ (v) , 
t ~ 

* 1 - * (*)-1 () ~(-v:at) (y(m )c (v) Ty m )~s v , for [TIM:sI # O. Now 

lim 
8-+-+ 00 

tr(E T ~r (a-l)F(~,v)E )~r(v)dv. 
.",v t T ." 

Choose a 0 < a < £ and let cr denote the curve below. 
s 

Then by analyticity, 

tr(ET ~r (a- 1 )F(s,v)E )pr(v)dv 
,=-,'V t T ';. 

L tr(ET ~r (a- 1)F(s,v)E )Pr(v)dv . 
.",v t T .. 

s .. 
N E ~ (-I)E * * -1 y(m )E ~r (at)E y(m ) ow, T F;,v at T T ~,'V T 
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* . 1 * -1 y(m ).~(v:at)(Toc (v)).y(m) + 

* * 1 - * * -1 * -1 
+ Y (m ). ~ ( - v: a t )( y (m ) 0 c (v) 0 ToY (m) ) . y (m ) 

1 1 - * -1 and we know that (Harish-Chandra [71) ~~(v).I = (c (v)c (v)) where 

I is the identity of H~ thus 
T' 

tr(E~ w~ (a-l)F(~,v)E }p.(v) ~ 
• .., V t T .. 

* 1 ~1 *-1-
+ ~ ( - v : at) (y (m ) 0 c (v) . 0 ToY (m) ) 1 F (~ , v) } 

Hence 

(2.2.4.) f tr(E T w~,v(a~I)F(~,v)ET)ps(v)dv 
a 

s 

f 1 - *-1 -
tr[ ~(v:at) (Toc (v) )F(~,v)ldv + 

a s 

J * 1 -1 * -1 + tr[~(-v:at)(y(m )oc (v) oToy(m) )F(~,v)1dv 

a s 

By the results in 1.3., we can find A1 ,B 1 , C1 , N1 , Rl so that the 

series defining ~(v:at) is uniformly and absolutely convergent for 

t > AI' 1m (v) ;;;;. R 1 and 

From the discussion in 1.2., we can find C2 , N2 , R2 so that c 1 (v)*-1 

is analytic for Im(v) ;;;;. R2 and 

Let R max(R1 ,R2). Then f~r Im(v);;;;' R, we can find a C3 > 0 so 

that 

1 - *-1 -I trl t(v:a t ) (Toc (v) )F(~,v)ll..; 

Since FE P-W(v), we can find B2 , C4 > 0 so that 
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-N +N -2 B21 Im(v) I 
II F (I;; , v) 11 .;;; C 4 ( 1 + I vi) 2 1 e 

max(A1 ,B 1). Therefore, for Im(v) ~ R t > A2 , we have a 

Cs > 0 so that 

and hence if A = max(A2 ,B 2), we can find a C> 0 so that for t > A, 

Im(v) ~ R we have 

Then, for t > A, Im(v) ~ R, we have 

1 _ *-1 - . 
trl~(v:at)(Toc (v) )F(I;;,v)]dv 

±s 

Also, by analyticity, 

s+,/:1R 

J 
-s+,/:1R 

J *-1 
trl ~(v:at) (T o c 1 Cv'J )F(I;;,v)] dv and hence 

Iv-,/:1&I=s 
lDi(vhR 

s+,/:1R 

J 
1· ... -1 

tr[~(v:at)(Toc (v) )F(I;;,v)] dvl 

7r 

.;;; c J 5(1+[5 2 cos 2e+(R+s sine)2] 1/2)-2 de .;;; 
o 

C 7r 

5 

Similarly we can see that 

"-
+s-,/:1R 

8++ 00 
o 

lim - J 1 -1 -1 -tr[~(-v:at)(y(m*)oc (v) oToy(m*) )F({,v)] dv 
8-++ 00 

±s 
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s-r-TR 

lim 
s++co 

J ir[~C-v:at)CYCm*)oclCv)-loToYCm*)-1)~Ct,v)1dv o 

-s-r-TR 

Therefore, computing the first integral on the right-hand side of 
2.2.4 along the contour 

-s+r-TR s+r-TR 

-s -0 o o s 

the second along the contour 

-s s 

-0 o o 

-s- r-TR s~r-TR 

and taking limits for s ... + .. , the theorem follows-. 

2.2.5. We would have an answer to the Paley-Wiener problem if we were 
able to show that the residues in theorem 2.2.2. are a finite linear 

combination of matrix entries of the discrete series for G (Harish
Chandra [61). In what follows we are going to deal with this question. 

2.3. A PALEY-WIENER THEOREM FOR RANK-1 GROUPS. 

2.3.1. THEOREM. Let the natgtion be as before. Then F E P-WCT) if and 

only·if there exists f E C"CG;T) such that FCt,v) = r~ Cf). 
c ~,v 

Proofr From 2.1.4. and the definitions it is clear that if 

fEC"CG;T) then F(t,v)=rr Cf) isinP-WC1'). c ~,v 

For the converse, let t1, ... ,t r be the M-types of 1'. For each i = 1, 
ti 

... ,r, let {Yi,j}j be an orthonormal basis of HT ,vi,l, ... ,vi,s(i) 
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the poles of 
1 - *-1 t(v:at)(Toc (v) -) on Im(v) > 0 and vi. s ( i )+ 1 ••••• 

( ) ( ( *) 1 -1 * -1 the poles of t -v:at Y m oC (v) oToy(m) ) on Im(v) ~ o. 

Say N is the maximum among the orders of the poles. 

Set .p~.~ keg) 
~. J • d

m I (- ) < 1T I; V (g)( v. . ), v .. k> 
dvm v-v. i' ~.J~ • 

. ~. £. 

for all g E G. 

Let {.pl ••••• .pn} be a maximal linearly independent subset of 

{ £..m } 
.p •• k' .. k 0 N 1 1. ,J , 1., J, ,.(.., m~ -

Say 

n 

L 
41-1 

Let 1 ~ a ~ n be fixed. Then there exists h in C"'(G;T) such that 
a c 

Th~n F (I;,v) - w~ (h) is in P-W(T). Define f_ as in 2.2.1. using F_ 
a '=of''' a. ..... ..... 

and then, applying 2.2.2., we find an A > 0 such that for t > A 

1 -1 -1 - )1 L Res trl t(-v:at)(y(m*)oc (v) oToy(m*) )Fa(l;,v } 
Im(v)sO 

r 
21T r-T e - p t L 

i-I 

sCi) 
{ L 

£.=1 
Res 

v=v i ,£' 

Now, for ~ £. ~ sCi) 

.<F (I;:. ,v)(v ... ),v. k> 
41 ~ 1.] 1. 

Therefore, being Fa analytic in v, 
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f u~,m. (a )('dm , I ,) F ( ) I) where t. k t < ~.,,, ,,(v .. ,v. k>' . k 1,J, d mat ,1,J 1, 
J, ,m ~ "=,, i ,.t 

.t,m ( ) u .. k at 
1., J , is m! times the (-m-1) th-Laurent co'efficient of 

" ="; • .t. 
But, by 2,. 1 . 4. and the assumption on ha' 

Therefore 

Similarly, if sCi) + 1~'.t ~ n(i), 

f .t,m ( ) a.t,m,a 
t. Ui,j,k at i,j,k 

j ,k,m 

Thus, for t > A we have 

271'r-Te-Pt r 
i,j ,k,.t,m 

a.t,m,a 
i,j ,k 

f .t,m ( ) a.t,m 
t. Ui,j,k at i,j,k 

j ,k,m 

U£.,m (a ) a£.. ,m. ,a QT( ) 
k= aa,t i,j,k t 103, 

Applying the Plancherel theorem to ha ' we obtain by analyticity, 

that QT extends to a function QT in C~(G;T) which is a finite 
a a 

linear combination of matrix entries of the discrete series for G. 

Suppose now we are given an F in P-W (T) '. Define f as in 2.2.1., 

'apply 2.2.2. and find a C > 0 such that for t >C, 

n~i) 

.t"'sh)+l 

Now again 

Res tr[ t (" :a t ) (Toc l (vVt-l)F(~i''')] 
"="i,£. 
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L 
j, k,m 

U l.,m. (a )(dm.'1 ) F( )( ) k < I;; . , v v. . , v. k> 
1.,J, t dvID.v=v. 1. 1.,J 1., 

, 1. , l 

and since F E P-W(T), 

(dm I ) <F(I;;.,v)(v .. ),v., k> = r a~'I?,ak ca(F) 
dvm v-v 1. 1.,J 1., a=1 1.,J, 

- i,l 

for some ca(F) in C , a 1 , ••• ,n. HE1nce 

Doing a similar analysis with the rest of the terms we conclude that 

for t > C, 

n 
Therefore, f - L C (F)QT is in C~(G;T). 

a=1 a a c 

Finally, using that ~r (QT) 
'ot,V a 

[6)), it follows that F(I;;,v) 

o for every v in R (Harish-Chandra 

n 
• (f - L c (F)QT) for every v in 

t.'11 a=1 a a 

R. Being both sides of the equality analytic functions, the theorem 
is proved. 

2.3.2. OBSERVATION. From the proo.f of theorem 2.3.1. we see that con

dition ii) of the definition of P-W(T) (2.1.5.) is only needed on a 
finite number of poles in the asymptotic expansion of finitely many 
generalized spherical functions and that the number of derivatives to 
consider is bounded, for each T, by N-1, where N is the maximum of the 

orders of such poles. 

We conclude this section with a theorem about condition ii) of 2.1.5. 

itself, but first some notation. 

Let z be the cente'r of the universal enveloping algebra o·f ~ and let 

{ZI' •••• Z } C z. Let X" denote the infinitesimal character of 
D ""V 

(~I;;''II,Hl;) (c.f. Warner [15l). 

2.3.3. THEOREM. Assume +: CD ~ C is analytic and set F(t,v) = 

= ,(X" (ZI)"."X" (Z))E. Then F 8atisfieIJ ii) of 2.1.5. and the 
"',v "",v n l' 

rilJht-hand side of 2.2.3. extends to an eZement oj' c"(Gj·r) which is a. 

finite linear combination of. matr'ix entl'ies of the diserete series 

for G. 
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In partiauZar, if G has no disarete series, it is zero. 

given (as in 2.1.5. ii)) a relation of the form 

(2.3.4.) L b~'~ k(d
m , )<11".. (g) (v .. ) .v. k> 

1.J. dm _ " .• v 1.J 1. v v-v l 1 ' 

for all g E G. with bl •m 
i.j • k 

in C. 

o 

For each a= 1 •...• n. let 2a act on both sides of 2.3.4. as a left

invariant differential operator of the g-variable. 

,Since 

o 

x s (2) <11" s (g) (v. .). v. k> 
i'v a i'v 1,J 1, 

L b l •m 
i. j • k 

we see that 

for all g E G. Therefore. evaluating at g = e and summing on 

i1 •...• i n we obtain 

O=\'bl, .• m.k(dm , ) (X (2) (2)) L • s .• v 1" ••• X~ .• v n 
1.J. dvm v=Vl 1 '>1 

and hence F satisfies ii) of 2.1.5. 

Going through the argument in the proof of 2.3.1 .• we conclude that 

the sum of the residues on the right-hand side of 2.2.3. extends to 

an element of C"'{G;-r) which is a finite linear combination of matrix 
entries of the discrete series for G. 

Therefore, if G has no discrete series, the sum of the re~idues is 
zero. 

3. THE CASE OF M-MULTIPLICITV 1 K-TVPES. 

·3.1. THE PALEY-WIENER SPACE. In what follo,.s we assume (-r,V) E K -r 
A 

and it satisfies [-rIM: sl = 0 or 1 for every (s,Hs) EM (this is the 

case for every (-r.VT ) E K if G = SO(n,1) or SU(n,1), c.f. Warner 
[ 1 5 I ) . 
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For f E C:(G) set 

a.. (f) = tr(1f.. (f)) .. ,v ",V 

(i. e., a.. is the character of (1f.. ;Ht)) • 
~,,, ! ';10 ,v 

If .~,v(x) = tr(E~ 1ft,v(x)E~) for all x E G, then for every f in 

C:(G;~), 

(3.1.1.) a.. (f) .. ,v =. J f(x).; (x)dx .. ,v 

G 

(c.r. Wallach (121). 

3.1.2. NOTATION. If f E Coo(G;~) satisfies that f(g) 
c 

all g E G,k E K we write. f E I:(G;~). 

-1 f(kgk ) for 

Note that if f ECoo(G;~) and we set fK (g) J f(kgk- 1)dk, then c 

fK e: Ioo(G;~) and c al;;,v(fK) al;; (f) • ,v 

3.1.3. LEMMA. Let f E I~(G;~). Then 
c 

i) 

ii) 

d(~) 1f.. (f) = a.. (f)E 
":10," ,="V 'T 

~ -1 
d(~) at,v(Lgf) = al;,v(f) .t,v(g ) 

(here d(~) = dim V~). 

K 

Proof: It is easy to check that 1fo (f) is in HomK(HI;,HI;) and hence, 
'" v ~ -r 

by irreducibility of (1fl;;,vIK,H;) we conclude i). 

Now, d(-r) al;,v(Lgf) = d(-r) tr(1fI;,v(g-l)1f t ,v(f)) 

= d(~) treE 1f.. 19-1)E 1f.. (f)). Therefore, ii) follows from i). 
T ~,v T ",v 

As a direct consequence of 2.1.4. we have 

3.1.4. THEOREM. Let f E Ioo(G;-r) and set F(I;,v) = a .. (f). Then c ~,v 

A 

F: M x C ~ C is an entire func~'ion of v such that 

i) F(t ,v) == 0 whenever [-r 1M: 1;1 = 0 • 

ii) Let ·1;1' ... ,I;r be the M-types of -r and vI'· .. ,vs compl.ez 

numbers. 

dk 
If L a i . k ~~I ) ,J, dv v=v. 

J 

o for aZl. x in G. with ai,j,k 
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in C, then 

iii) The,r'e exists!£:! loonstant A > 0 so 'tJlap ,for any integer 

N ;;;. 0 we aan. find a oons~a~/t C~ > 0 for whilah 

,I F (E;; v) I .;;;; C~.(1 +1 v I) -N exp (A 1 1m (v) I.) . 

The preceding lemma and theorem motivate, in tliis case, the following 

A 

3.1.5. DEFINITION. Given F: M x C ~ C such that F is an entire fun~ 
tion of the second variable satisfying conditions i}, ii) and iii) of 
theorem 3.1.4., we say F is in the T-Paley-Wiener space of G and 
write FE P-W(T) (see 2.1.5.). 

3.2. A PALEY-WIENER THEOREM. Let the notation and assumptions be as 
in 3.1 .. We can now p.rove the following 

3.2; 1. THEOREM. GiVen F: M x C ~ C; F E P-W(T) if and only if there 

exists f E I~(G;T) suah that F(E;,v) = e~ (f). 
c ~,v 

Proof. One implication is clear. So, suppose F E P-W(T) is given. 
Define 

f' (g) I d(T)-1 J:_.~,v(g-1)F(E;'V)PE;(v)dV 
E;e:M -

[TIM:E;)=1 

An argument similar to the one in 2.2.2. shows that f' E I~ (G; T') and 

there exists A > 0 such that for t > A 

(3. 2. 2. ) 21Tr-T e -pt· 

I" {I Res 
E;e:M Im(v»O 

[TIM:E;)"O 

\ 1 -1 -1)))} t. Res (F(E;,v) tr[ ~(-v:at) (y(m*)oc (v) oToy(m*) . 
Im(v).:O 

Proceeding now as in the proof of 2.3.1., we can show that the right
hand side of 3.2.2. extends to an element of I~(G;T) which, is a finite 
linear combination of matrix entries of the discrete series for G and 

from there that 3 f E I~(G;T)/e~ (f) = F(E;,v). c ,=,,"V 

As in 2.3.3. with the same notation, ,we have now the following 
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3.2.3. THEOREM. Let +:. Cn ~ C be anaLytic and set F(~,v) 

= +ex.. (ZlJ .... ~X.. (Z)). Then F satisfies ii) of 3.1.5. and the ... ,v ",V; n 

right-hand side of 3.2.2. extends to an eLement of I-(G;~) which is a 

finite Linear combination of ma-prix entries of the discrete seri"es 

of G. 

Proof. Follows from 2.3.3. 

3.2.4. NOTE. This result can be used to prove that certain functions 
are Fourier transforms of elements in the Schwartz spaces. For one 
such appl~cation see R. Miatello, Thesis, Rutgers University. 

A 

3.3. ·THE CASE TIM IRREDUCIBLE. In what follows, assume (T,VT) E K is 

such that (TIM,V ) is irreducible. Set (TIM,V ) = (t,H .. ). 
T T .. 

We can now prove the following 

3.3.1. THEOREM. Let F: C ~ C be entire. Then there exists 

f E I-(G;T) such that e.. (f) = F(v) if and onLy if F satisfies c .. ,v 

i) F(v) = F(-v) 

ii) There exists a constant A > 0 so that for any integer 

N ~ 0 we can find a constant CN > 0 for which 

Proof. Assum~ f E I-(G;T) and F(v) = e .. (f). Then ii) is immediate c .. ,v 
from iii) of 3.1.4. Also, f~om 2.,1.1., it is not difficult to see that. 
e .. ," = e (c.f. Wallach (12]) and hence i) follows • 

.. v t,-v 

For the converse, let 0 denote the Casimir element of g. Then 

xt',v(O) = -v 2_At- p2 (c.f. Wallach (121 ,po 280). 

If F is given as above, then 

-Set +(z) = I (-1)nan(Z+A~+p2)n. 
ri;=O 

Therefore, + is an entire function and F(v) 

= + (x ~ , v (0)) • 

"Using 3.2.2. we see that F satisfies i), ii) and iii) of 3".1.5. and 
hence 3.,3.1. follows from 3.2.1. 
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3.3.Z. NOTE. This result was proved in .the case G - SU(Z,l), dim(T) -
- 1, by Gupta (Thesis, University of Washington). For a proof in the 

case G - SU(n, 1), dim(T) - 1 , see Wallach [ 141 . 

3.3.3. NOTE. In the case of G - Spin (4,1), we can take 

K - SU(Z)xSU(Z) and M =~{JA,A) IA E SUeZ)! C K. Then every T E K of the 
form T - Y IS> 1 or T = 1 IS> y, where y E SUeZ) and 1 is the trivial re

presentation of SU(Z), restricts to M irreducibly and hence 3.3.1. 
applies. 

Therefore, 3.3.1. includes resul ts in Shimuzu [ 111 . 

3.4. EXAMPLES IN THE CASE OF G - SU(2,1). Let us now consider 

G = SU(2,1) = group of 3x3 complex matrices A, with determinant 1, 

such that JA*J - A-I, where 

o 0 

J 0 1 0 

o 0 -1 

On G, we consider the Iwasawa decomposition given by 

K 

A = 1 a, = oxp e tH) I H 

o 0 

000 

o 0 

and N is the connected Lie subgroup of G with Lie algebra 

Then 

j -nu 
-z 
-nu 

o 
Z 

M = (me,) = 

r-Te e 

0 

0 

0 

- z,c1e 
e 

0 

and the Cartan involution is given by e(g) = (g*)-I, for every g E G. 

·Correspondingly, g - su(Z,l) - space of 3x3 complex matrices A such 
that the trace of A is zero' and JA*J = -A, 
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k 
{[ A--;-O I -----t;----(A)] I A E U(2)} 

and !c sl(3,C). 

I f we take Xo. 

o 
o 
o 

o 
-20 

o 

= 6 Re(tr(XY)), we have wo ·

We also note that p = 2. 

o ] , noting that B(X,Y) 

o 

2 (-1/36)X O' 

Let V 
u 

space of po~ynomials in two complex variables, homogeneous 

of degree u. For each integer 

K on Vu given by 
l, let '0 be the representation of 

-<-,u 

det (~) -1)) (f) (x) 

for every f E Vu ' x E C2 . 

l -1 det(A) .f(A .x) 

Then {(To ,V)} '0 0 z = K (c.f. Wallach [12]). -t..,u U U.c; ,.(...E 

such that if A E (V)M ,then A(v.) = a. vi' a. E C, 0 ..-;;; 
u 'l, u 1. 1. 1. 

if u 
= 0. is a basis of 

i 

Hence, P. (v.) 
1. J 1.,j v j , {Pi}i=O (V )M 

u 'l,u 

Let, = 'l,u . An easy computation shows that 

..-;;; u . 

= ((3i-l-u)/61 2 .v. , 0..-;;; i..-;;; u , and hence, from 1.3.2. we see that 
1. 

for each i = 0, ... ,u the singularities of ~(v:at)(Pi) are at the 
points 

for k 

v -r-T[~ (i-j)[ 3(i+j)-2(u+l)] 
2k 

1,2, ... , j 0, ... ,u. 

EXAMPLE 1. Let, = '1,1 ' i.e., , is the two-dimensional representa

tion of K such that 

Then the only singularity of ~(v:at)(PO) on Im(v) ;;. 0 is a simple po-
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Ie at v - 0 and l(v:ai){P I ) is analytic on Im(v) > o . 

. Using an argument as 'in Wallach [ 121, 9.11.9., (see also Cohn [1]) , 

we obtain 

c~(v).vo - c. r ((r-Tv+1)/2) . Vo 
r((r-Tv+4)/2) 

C(l-n v) r(r-Tv/2) . vI 
1 + n v r ( (n v+ 3) /2) 

where c is a real constant and r is the classical gamma function 

(c.£. Whittakler and Watson [171). 

1 - * 1- 1 -1 Therefore c (v) = c (-~), the only singularity of cI(v) on 
r:-;; 1-1 Im(v) .;;; 0 is a simple pole at v = ->,:-1 and co(v) is analytic on 

Im(v) .;;; o. 

3.4.1. NOTE. The singularity of l(v:at)(P O) at v 

have to' avoid 0 in the proof of 2.2.2. 

o shows why we 

In this example, since the singularities appearing on the right-hand 

side of 3.2.2. are simple poles (see 2.3.2.) and spherical trace fun£ 
tions are linearly independent or equal (c.f. Wallach [121), condition 

ii) of 3.1.5. reduces to 

ii') ~~,v = ~~,v, implies F(~,v) = F(~' ,v'). 

From the results in Wallach [141, we can see that 

if and only if ~ 

= (~I,n),. 

~' and v 

• ~ ~' , v' 

± v' or (~,v) 

Therefore, we have the following 

A 

3.4.2. THEOREM. Let F: M x C ~ C be an entire function of the second 

variable. Then there exists f E I-(G;.) with 0~ (f) = F(~,v) if and 
c ~,v 

only if 

i) F(~,v) - 0 for ~ ,; ~i' i 0,1. 

ii) FCt ,v) F(~,-v) 

iii) There exists a constant A > 0 so that for any N > 0 we can 

find CN> 0 for which 

IF(t,v) I .;;;, CN(l+ Ivll-N exp(AI Im(v) Il 
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EXAMPLE 2. Let T T 6,'3. In this case it can be seen that 

1( ) = 1() () = [ A (-9+2 j -r-Tv)] r(r-Tv/2)r((1+r-Tv)/2) c v <c v V ,v > •. . . 
o 0 0 j = 1 _ 9+ 2 j + r-T v r ( ( 11 + r-T v) / 2) t ( ( - 7 +.'-1 v) /2) 

Therefore, v = -.'-1 is a pole of c~ (v)-1 which is also a pole of 

This example shows that multiple poles do appear on the right-hand 

side of- 3.2.2. and hence the necessity of the" derivatives in condition 

ii) of 3.1.5. (and also in ii) of 2.1.5.) for our proof of theorem 

3.2.1. 
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