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0. INTRODUCTION.

Proximities in a probabilistic metric space have been studied pre-
viously by R. Fritsche [3], Gh. Constantin and V. Radu [2] and A.Leon
te [4]. In this paper we introduce, using some results concerning or
der and weak convergences [1], a family of semi-proximities

{6¢; v €AY} analyzing when they are Efremovi¥-proximities and rela-

ting the induced closure operators {Céw; ¢ € A*} to those of R. Tar-

diff [8] and B. Schweizer [7]. In the last section we exhibit a uni-
form topology where the neighborhood of a point p is precisely the
closure of {p} in the topology generated by C@w.

1. PRELIMINARIES.

Let A" be the set of all one-dimensional positive distribution func-
tions, i.e., let

AY = {F: R » [0,1]; F(0) = 0, F is non-decreasing and left-continuous}.
A* has a partial order, namely, F > G iff F(x) > G(x), for every x.
(A*,<)is a complete lattice with minimum element e, (x) = 0, for

every x, and maximum element the step function given by

0, for x <0,

go(x) = {
: 1, for x>0 . (1.1

It is well known that weak convergence (w-1lim Fn) -in A* is metriza-
n->o

ble by the modified Lévy metric £ introduced by Sibley [6].

(*) Presented at the INTERNATIONAL CONGRESS OF MATHEMATICIANS, Hel-
sinki, Finland 1978. ) )
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DEFINITION 1.1. A triangle function is a two-place function t from
A* x A* into A* such that, for all F, G and H in A%,

i) 1(F,eq) = F,

ii) t(F,G) > t(F,H) whenever G =>H,
iii) t(F,t(G,H)) = t(t(F,G),H),

iv) -T(F,G) = 1(G,F).

A triangle function T is continuous if it is a continuous function
from A* x A* into AY, where A* is indowed with the L-metric topology
and A* x A* with the product topology. For a complete study of the fun
damental topological semigroups (A*,t) see [6].

DEFINITION 1.2. A probabilistic metric space (briefly, a PM-space) is
an ordered pair (S,F), where S is a set, and F is a mapping from SxS
into A" such that for all p,q,r € S:

1) F(p,q)
I11) F(p,q) = F(q,p),
I11) t(F(p,a),F(q,r)) < F(p,r).

eqg 1iff p=q,

If F satisfies just (I) and (II) we say that (S,F) is a semi-PM space.
The function F(p,q) is denoted by qu, and qu(x), for x > 0, is in-

terpreted as the probability that the distance between p and q is less
than x.

We collect some definitions about proximities which will be used in the
sequel. For a complete survey of proximities see [5].

DEFINITION 1.3. Let X be a set and § a binary relation on P(X), the
power set of X. 8§ is a semi-proximity if satisfies, for A, B and C
subsets of X, the following conditions:

1) @ % A,

2) If ANB # @ then AGSB,

3) A6B implies BGSA,

4) A8 (BUC), if and only if A6B or ASC.
A semi-proximity & is called an Efremovid prozimityif verifies the ad
ditional axiom:

5) A4 B implies there exists E C X such that E ¢B and (X-E) §A.
A semi-proximity 8 is said to be separated if

6) adb implies a=b.

Any semi-proximity § induces a mapping Cg from P(X) into itself defi-
ned by Cs(A) = {x € X; x 6 A}. Cg satisfies the conditions
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a) C4(@) = 0,
b) CG(A) D A, for every A € P(X),
c) C5(AUB) = C4(A)UC,(B) for all A,B € P(X),

i.e., Cg is a Cech closure operator which is a Kuratowski closure
(Cs(Cs(A)) = C5(A) for every A € P(X)) whenever § is an Efremovid
proximity. So & provides a topology on X called the topology induced
by 8. The topological spaces whose tcpologies can be derived in this
way from proximities are called proximizable. ‘

Finally, we summarize sone definitions and theorems about order and
weak convergences (see [1]).

The supremums and infimums of two functions F,G € A*, in the lattice
(4*,<) will be denoted, respectively, by FvG and FaG.

DEFINITION 1.4. (a) A non-decreasing (resp., non-increasing) sequence

(Gy) in A% is order convergent to G € A*, if and only if
- ©
= - . + .
G = nxl G, (resp., G = nél Gn). (b) A sequence (F_) in A" is order

convergent to F € At (F = o-1im F_), if and only if there exist two
. n--o

sequences (Gn) and (Hn) such that (Gn) is non-decreasing with vV G =

n=1 @
-]

= F, (H)) is non-increasing with Al H = F, and for all n €N is
nB

Gn < Fn < Hn. The order limit is unique.

THEOREM 1.1. Let (F,) be a sequence in A* and F € A*. Then we have:
i) F = o-lim F_ iff lim F_ (x) = F(x), for all x € R* (pointwise con
nio 1 no -
vergence) ;
ii) If F = o-1im F, then F =w-1lim F, = £-1im F,, but the reciprocal
n->c n->o n->o
does not hold in general;
iii) If F =w-1im F_ and F is continuous or (F_) is non-decreasing
n+o 0 ’ n

then F = o-lim F .
n--c
THEOREM 1.2. (Weak version of Everett diagonal condition in A+). Let
(Fﬁ)(n,k) € NxN be a collection of sequences in A+, let (Fn) be a se-
quence in At and F € a*. If F has at most a finite set of disconti-

nuities, F = o-1im F_, and for each n € N, F_ = o-1im FE s then there
n->o n n k>

exists a strictly increasing sequence of integers

k) <k, < ... <k < ... Zn N, such that F = o-lim Fi .

n->e© n
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2. A FAMILY OF PROXIMITIES IN A PM-SPACE.

Let (S,F) be a semi-PM space. For each ¢ € A" we define a binary re-
lation 8y on P(S) in the following way, for A,B € P(S),

"A Gw B iff there exists a sequence ((an,bn))neN in A x B such that

P= 0-1im (¢ A Fa

).
n-+o nbn

When A 8, B we will say that A and B have a y-proximity.

THEOREM 2.1. 8y s a semi-proximity.

The Cech closure induced by 6¢ will be:

C6¢(A) = {x €5;3(a) CA: ¢= o-lim (¢4 ann)}.

n->0o

THEOREM 2.2. If T is continuous, T(¥,¥) ¢ and ¢ is continuous in R',

then C5¢ <8 a Kuratowski closure.

Proof. If x € C, (Cs (A)) there is (x_) C Cs (A) such that
8p "8y n S

o-1im (¢ AF ) = ¢. For each n € N, x € Cs (A), i.e., there exists
oo XX, . n )

a sequence (a C A such that o-1lim (¢ AFx an) = ¢. By Theorem 1.2
k f

)
k’ keN Koo n

there exists an increasing sequence of integers (kn)neN such that

o-1im (¢ AFxnaﬂ ) =¢. Let Hn = 1(paF n,wA Fxnaﬂ ), for every n € N.

->00 xx
n n n

Using the continuity of t and ¢, we have o-lim Hn = 1(p,p) = ¢ , and
n->o

by the triangle inequality Hn < ann and H < T(v,9) = ¢, we will ob
z .
n

tain H <e¢a ann < ¢ which in turn implies o-1lim (¢/\Fx n) =9,
k

a
n n->c kn

i.e., X € C6¢(A).

The following example shows that the strong hypothesis ¢ = 1(p,p) as-
sumed above, is really necessary.

EXAMPLE 2.1. Consider the PM-space (R+,e|x_y|,*) and ¢ = u, . The cdg
i

volution * is continuous [6] and has no idempotents different from gg

and €. It is easy to see that

Cs (0) =10,1/21 & C(SU (C(SU (0)) because [0,1] CCq (Cs 0)).

U
1 S 1
2! 71 3l 1 1
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In order to analyse the special case ¢ = £, we recall the following
lemma.

LEMMA 2.1. Let I be any set of indices and let {F;; i € I} be in NS

The following statements are equivalent:

R T

ii) For any € € (0,1) there exists i € I such that Fj(e) > 1-¢;
iii) For any € € (0,1) ‘there exists i € I such that £(Fi’€0) < €3

iv) There is a countable subset J of 1 such that igJ Fi = €4-

Then the Efremovi¥ proximity 680 can be presented in the following
ways:

"A 8§, B iff = g iff for every €,A > 0 there is
0 .

. ) F b
(a,b)eAxB 2
(a,b) € AxB such that Fab(e) > 1-\"

and

Cs (A) = {x€8; N(c,)) NA#8, €,A >0},
€o

where Nx(s,l) = {y € S; ny(e) > 1-1} are the neigborhood of the clas-

sical e€,\-topology for these spaces, i.e., the e€,A-topology is proxi-
mizable by §_. .
y €

THEOREM 2.3. Under the hypothesis of Theorem 2.2, the topological spa
ce (S,Cév) is completely regular.

In a PM-space (S5,F,t) and for a fixed ¢ € A+, Schweizer [7] has intro
duced the next relation in P(S):

"A I, B iff there exists (a,b) € A xB such that Fop =" and when
A 1, B, A and B are said to be <ndistinguishable (mod.¥).

We note that I, is a semi-proximity weaker than 8> in the sense that
A 1, B implies A &, B, i.e., indistinguishability (mod.y) yields
¢-proximity. The reciprocal does not hold, in general.

EXAMPLE 2.2. Consider the PM-space (R+,£,*), where apq = for

®lp-ql

all p,q e R*. Let k >0 and ¢ = Take A = [0,1) and B = (1+k,+w)..

€y .

k

Taking for each n € N, a = 1-1/n € A and bn = 1+k+1/n € B, we have
e

o-1lim (e ) = o-1lim €

AE -
n->o k !an bn| n->e k+% k?
i.e., A Gek B but A zgk B because for all (a,b) € A xB we have

€la-b| < -

Recently, Tardiff has introduced [8] for v € A* a closure operator de
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fined by
C,(A) = {x €8; (¥he (0,11)(3a=a(h) €A) such that B>},
being
o, if t<o0,
FR_(t) = { min(F__(t+*h)+h,1), if t € (0,1/h],
1 , if t>1/h.

The semi-proximity T, defined by
"A T, B iff C,(A) N C,(B) # 0",

is stronger than I, because if A I, B then there is (a,b) € AxB such

that F_ > ¢ and for all h >0, F® >F_ >¢ ,i.e., AT, B. The re-

ab ab
ciprocal does not hold, in general.

b

EXAMPLE 2.3. Consider the PM-space of example 2.1, and the same ¢ =g,
k >0. Let A =[0,1). Then C (A) = [0,1+k) c C_ (A). But 1+k€C. (A)
IEk €y 3

eh
k+h

>

because, for any h € (0,1], taking 1-h € A we have €?+k—1+h =

> gy, so {1+k} TEk A but {1+k} lek A

=3

Finally we remark that for ¢ = g, T80 is the e¢,A-proximity and

€o

for any ¢ and p € S: Cj ({ph) = Ccy ({p}) = Cw({p}) ="{q € S; qu2>¢},
14 ¥

and this set is exactly the class of p in the partition of S induced
by the equivalence relation of indistinguishability (mod.y) introdu-
ced in [7].

3. A PROXIMITY INDUCED BY AN UNIFORMITY.

DEFINITION 3.1. A triangular function T is said to be radical if for
any F € A+-{€0} there exists G € A+¥{eo} such that F < 1(G,G) < gg.

THEOREM 3.1. If T = * then T is radical.

Proof. We need to show that for any F < € there is G < €9 such that

G*G > F. In effect, if F = ¢, for some k > 0 then taking G = we

Ex/s

have G*G = > €. If F < €y for some k > 0 then the same G yields

€x/2
the same conclusion. So we can suppose that there is an interval (0,k)
such that F(x) > 0 for x € (0,k). Let

0 , if x <0,
H(x) =
+/F(2x), if 0 < x.
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Obviously F(x) < +/F(x) < +/F(2x) for x > 0, and consequently F < H.
If F(x) = H(x) for all x > 0 then F(x) = YF(x) and F(x)(F(x) 1) =0,
i.e., there would exist k' > 0 such that F(x) = €1, Which is a con-
tradiction. So F < H and there is a t > 0 such that 0 <F(t) <H(t) <
< 1. Let

H(x) , if x<t,
G(x) =
, if x> t.

G > H and a straightforward computation shows that F H*H. By the
strict isotony of *, F < H*H < G*G < €q-

Let (S,F,7) be a PM-space. For any F € A 4{50}, let
U(F) = {(p,q) € SxS; qu > F}.

THEOREM 3.2. If 1 is radical then the collection {U(F); F € A+-{€0}}

is a basis for a diagonal separated uniformity U on S.

Proof. Obviously Ag = {(p,p); p € S} C U(F) and U(F) = U(F)"l, for

any F < ej,. If F,G < €g and being T radical there is G < €y such that
F <1(G6,6) < €g. Then U(G) o U(G) C U(F) because if (p,r) € U(G) 0 U(G),
there is q € S such that (p,q) €'U(G) and (g,r) € U(G). By the trian-

gle inequality Fpr > T(qu,qu) > 1(G,6) > F, so (p,q) € U(F). Finally

note that U is separated because N ) U(F) =
F€A+*{€o}

COROLLARY 3.1. The topology generated by U Zs metrizable.

Proof. Consider the countable family {a t,t' € (0,1) N Q} cC a*,

where

t,t'}

0o , if x<o0,
o, t,(x) = t', if 0<x<t,
1, if x> t.

If U € U, there is F < €og such that U(F) C U. Being F < €g there exists

t € (0,1) N Q such that F(t) < 1. Let t' € (F(t),1). Then F < Op et

and U(F) D U(ott t.), i.e., {U(ozt t,); t,t' € (0,1) N Q} is a.countable
’ E]

basis for U. We apply then Weyl theorem.

The topology generated by U can be described by the family N(U)
= {NP(F); F € A*-{eg}, p € S}, where each neighborhood Np(F) is given

by

N,(F) = {q € s; Foq >F} = c,f({p}),

i.e., NP(F) is precisely the closure of {p} by CIF, Cs_ or Cp» in

F
other words, if q € Np(F) then q is indistinguishable (mod.F) of p.
The uniformity U induces a proximity §; defined on P(S) by:

"A g, B iff for some F < €g» Np(F) NB=4g, for all p € A",
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Applying a well known result of proximity theory we obtain that the
topology induced by & is the uniform topology. We remark that this
topology is exactly the topology Ty obtained when considering the PM-
space as generalized metric space [9].
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