SOME PROXIMITY RELATIONS IN A PROBABILISTIC METRIC SPACE (*)

C. Alsina and E. Trillas

Dedicated to Professor Luis A. Santalo

0. INTRODUCTION.

Proximities in a probabilistic metric space have been studied previously by R. Fritsche [3], Gh. Constantin and V. Radu [2] and A.Leon te [4]. In this paper we introduce, using some results concerning or der and weak convergences [1], a family of semi-proximities $\{\delta_{\varphi}; \varphi \in \Delta^+\}$ analyzing when they are Efremovič-proximities and relating the induced closure operators $\{C_{\delta_{\varphi}}; \varphi \in \Delta^+\}$ to those of R. Tardiff [8] and B. Schweizer [7]. In the last section we exhibit a uniform topology where the neighborhood of a point p is precisely the closure of $\{p\}$ in the topology generated by $C_{\delta_{\varphi}}$.

1. PRELIMINARIES.

Let Δ^+ be the set of all one-dimensional positive distribution functions, i.e., let

 $\Delta^+ = \{F: R \rightarrow [0,1]; F(0) = 0, F \text{ is non-decreasing and left-continuous}\}.$ Δ^+ has a partial order, namely, $F \ge G$ iff $F(x) \ge G(x)$, for every x. (Δ^+, \le) is a complete lattice with minimum element $\varepsilon_{\infty}(x) = 0$, for every x, and maximum element the step function given by

$$e_0(x) = \begin{cases} 0 , \text{ for } x \le 0 , \\ 1 , \text{ for } x > 0 . \end{cases}$$
(1.1)

It is well known that weak convergence $(w-\lim_{n\to\infty} F_n)$ in Δ^+ is metrizable by the modified Lévy metric \mathcal{L} introduced by Sibley [6].

(*) Presented at the INTERNATIONAL CONGRESS OF MATHEMATICIANS, Helsinki, Finland 1978. DEFINITION 1.1. A triangle function is a two-place function τ from $\Delta^+ \times \Delta^+$ into Δ^+ such that, for all F, G and H in Δ^+ ,

i) $\tau(F,\varepsilon_0) = F$, ii) $\tau(F,G) \ge \tau(F,H)$ whenever $G \ge H$, iii) $\tau(F,\tau(G,H)) = \tau(\tau(F,G),H)$, iv) $\tau(F,G) = \tau(G,F)$.

A triangle function τ is *continuous* if it is a continuous function from $\Delta^+ \times \Delta^+$ into Δ^+ , where Δ^+ is indowed with the *L*-metric topology and $\Delta^+ \times \Delta^+$ with the product topology. For a complete study of the fun damental topological semigroups (Δ^+, τ) see [6].

DEFINITION 1.2. A probabilistic metric space (briefly, a PM-space) is an ordered pair (S,F), where S is a set, and F is a mapping from $S \times S$ into Δ^+ such that for all p,q,r $\in S$:

> I) $F(p,q) = \varepsilon_0$ iff p=q, II) F(p,q) = F(q,p), III) $\tau(F(p,q),F(q,r)) \le F(p,r)$.

If F satisfies just (I) and (II) we say that (S,F) is a *semi-PM space*. The function F(p,q) is denoted by F_{pq} , and $F_{pq}(x)$, for x > 0, is interpreted as the probability that the distance between p and q is less than x.

We collect some definitions about proximities which will be used in the sequel. For a complete survey of proximities see [5].

DEFINITION 1.3. Let X be a set and δ a binary relation on P(X), the power set of X. δ is a *semi-proximity* if satisfies, for A, B and C subsets of X, the following conditions:

- 1) Ø ǿ A,
- 2) If $A \cap B \neq \emptyset$ then $A \delta B$,
- 3) AδB implies BδA,
- 4) A δ (B U C), if and only if A δ B or A δ C.

A semi-proximity δ is called an *Efremovič* proximity if verifies the a<u>d</u> ditional axiom:

5) A β B implies there exists E \subset X such that E β B and (X-E) β A. A semi-proximity δ is said to be *separated* if

6) aδb implies a=b.

Any semi-proximity δ induces a mapping C_{δ} from P(X) into itself defined by $C_{\delta}(A) = \{x \in X; x \delta A\}$. C_{δ} satisfies the conditions

a) $C_{\delta}(\emptyset) = \emptyset$,

b) $C_{\delta}(A) \supset A$, for every $A \in P(X)$,

c) $C_{\delta}(A \cup B) = C_{\delta}(A) \cup C_{\delta}(B)$ for all $A, B \in P(X)$,

i.e., C_{δ} is a Cech closure operator which is a Kuratowski closure $(C_{\delta}(C_{\delta}(A)) = C_{\delta}(A)$ for every $A \in P(X)$) whenever δ is an Efremovič proximity. So δ provides a topology on X called the *topology induced* by δ . The topological spaces whose topologies can be derived in this way from proximities are called *proximisable*.

Finally, we summarize some definitions and theorems about order and weak convergences (see [1]).

The supremums and infimums of two functions $F,G \in \Delta^+$, in the lattice (Δ^+, \leq) will be denoted, respectively, by $F \vee G$ and $F \wedge G$.

DEFINITION 1.4. (a) A non-decreasing (resp., non-increasing) sequence (G_n) in Δ^+ is order convergent to $G \in \Delta^+$, if and only if $G = \bigvee_{n=1}^{\infty} G_n$ (resp., $G = \bigwedge_{n=1}^{\infty} G_n$). (b) A sequence (F_n) in Δ^+ is order convergent to $F \in \Delta^+$ ($F = o-\lim_{n \to \infty} F_n$), if and only if there exist two sequences (G_n) and (H_n) such that (G_n) is non-decreasing with $\bigvee_{n=1}^{\infty} G_n =$ = F, (H_n) is non-increasing with $\bigwedge_{n=1}^{\infty} H_n = F$, and for all $n \in N$ is $G_n \leq F_n \leq H_n$. The order limit is unique.

THEOREM 1.1. Let (F_n) be a sequence in Δ^+ and $F \in \Delta^+$. Then we have:

- i) $F = o-\lim_{n \to \infty} F_n$ iff $\lim_{n \to \infty} F_n(x) = F(x)$, for all $x \in \mathbb{R}^+$ (pointwise convergence);
- ii) If $F = o-\lim_{n\to\infty} F_n$ then $F = w-\lim_{n\to\infty} F_n = \mathcal{L}-\lim_{n\to\infty} F_n$, but the reciprocal does not hold in general;
- iii) If $F = w \lim_{n \to \infty} F_n$ and F is continuous or (F_n) is non-decreasing then $F = o - \lim_{n \to \infty} F_n$.

THEOREM 1.2. (Weak version of Everett diagonal condition in Δ^+). Let $(F_k^n)_{(n,k) \in N \times N}$ be a collection of sequences in Δ^+ , let (F_n) be a sequence in Δ^+ and $F \in \Delta^+$. If F has at most a finite set of discontinuities, $F = 0-\lim_{n \to \infty} F_n$, and for each $n \in N$, $F_n = 0-\lim_{k \to \infty} F_k^n$, then there exists a strictly increasing sequence of integers $k_1 \leq k_2 \leq \dots \leq k \leq \dots \leq n$ in N such that $F_n = 0$

 $k_1 < k_2 < \ldots < k_n < \ldots$ in N, such that $F = o-\lim_{n \to \infty} F_{k_n}^n$.

2. A FAMILY OF PROXIMITIES IN A PM-SPACE.

Let (S,F) be a semi-PM space. For each $\varphi \in \Delta^+$ we define a binary relation δ_{φ} on P(S) in the following way, for A,B \in P(S), "A δ_{φ} B iff there exists a sequence $((a_n,b_n))_{n\in\mathbb{N}}$ in A \times B such that $\varphi = o-\lim_{n \to \infty} (\varphi \wedge F_{a_nb_n})$ ".

When A δ_{φ} B we will say that A and B have a φ -proximity.

THEOREM 2.1. δ_{ω} is a semi-proximity.

The Čech closure induced by δ_{o} will be:

 $C_{\delta_{\varphi}}(A) = \{ x \in S; \exists (a_n) \subset A: \varphi = o-\lim_{n \to \infty} (\varphi \land F_{xa_n}) \}.$

THEOREM 2.2. If τ is continuous, $\tau(\varphi,\varphi) = \varphi$ and φ is continuous in \mathbb{R}^+ , then $C_{\delta_{\alpha}}$ is a Kuratowski closure.

Proof. If $x \in C_{\delta\varphi}(C_{\delta\varphi}(A))$ there is $(x_n) \in C_{\delta\varphi}(A)$ such that $o-\lim_{n \to \infty} (\varphi \wedge F_{xx_n}) = \varphi$. For each $n \in N$, $x_n \in C_{\delta\varphi}(A)$, i.e., there exists a sequence $(a_k^n)_{k \in \mathbb{N}} \subset A$ such that $o-\lim_{k \to \infty} (\varphi \wedge F_{x_n a_k^n}) = \varphi$. By Theorem 1.2 there exists an increasing sequence of integers $(k_n)_{n \in \mathbb{N}}$ such that $o-\lim_{n \to \infty} (\varphi \wedge F_{x_n a_k^n}) = \varphi$. Let $H_n = \tau(\varphi \wedge F_{xx_n}, \varphi \wedge F_{x_n a_k^n})$, for every $n \in \mathbb{N}$. Using the continuity of τ and φ , we have $o-\lim_{n \to \infty} H_n = \tau(\varphi, \varphi) = \varphi$, and by the triangle inequality $H_n \leq F_{xa_k^n}$ and $H_n \leq \tau(\varphi, \varphi) = \varphi$, we will ob tain $H_n \leq \varphi \wedge F_{xa_k^n} \leq \varphi$ which in turn implies $o-\lim_{n \to \infty} (\varphi \wedge F_{xa_k^n}) = \varphi$, i.e., $x \in C_{\delta_n}(A)$.

The following example shows that the strong hypothesis $\varphi = \tau(\varphi, \varphi)$ assumed above, is really necessary.

EXAMPLE 2.1. Consider the PM-space $(R^+, \epsilon_{|x-y|}, *)$ and $\varphi = U_1$. The convolution * is continuous [6] and has no idempotents different from ϵ_0 and ϵ_{∞} . It is easy to see that

$$C_{\delta_{U_{\frac{1}{2},1}}}(0) = [0,1/2] \notin C_{\delta_{U_{\frac{1}{2},1}}}(C_{\delta_{U_{\frac{1}{2},1}}}(0)) \text{ because } [0,1] \subset C_{\delta_{U_{\frac{1}{2},1}}}(C_{\delta_{U_{\frac{1}{2},1}}}(0)).$$

In order to analyse the special case $\varphi = \varepsilon_0$ we recall the following lemma.

LEMMA 2.1. Let I be any set of indices and let $\{F_i; i \in I\}$ be in Δ^+ . The following statements are equivalent:

i) $\bigvee_{i \in I} F_i = \varepsilon_0;$

ii) For any $\varepsilon \in (0,1)$ there exists $i \in I$ such that $F_i(\varepsilon) > 1-\varepsilon$; iii) For any $\varepsilon \in (0,1)$ there exists $i \in I$ such that $\mathcal{L}(F_i,\varepsilon_0) < \varepsilon$; iv) There is a countable subset J of I such that $\bigvee_{i \in I} F_i = \varepsilon_0$.

Then the Efremovič proximity $\boldsymbol{\delta}_{\epsilon_0}$ can be presented in the following ways:

"A
$$\delta_{\varepsilon_0}$$
 B iff V F = ε_0 iff for every $\varepsilon, \lambda > 0$ there is
(a,b) $\varepsilon_{A \times B}$ there is

(a,b) \in AxB such that $F_{ab}(\varepsilon) > 1-\lambda''$

and

$$C_{\delta_{\varepsilon_0}}(A) = \{ x \in S; N_x(\varepsilon, \lambda) \cap A \neq \emptyset, \varepsilon, \lambda > 0 \}$$

where $N_{\mathbf{x}}(\varepsilon,\lambda) = \{ \mathbf{y} \in S; F_{\mathbf{xy}}(\varepsilon) > 1-\lambda \}$ are the neighborhood of the classical ε,λ -topology for these spaces, i.e., the ε,λ -topology is proximizable by δ_{ε_0} .

THEOREM 2.3. Under the hypothesis of Theorem 2.2, the topological space (S,C $_{\delta \omega}$) is completely regular.

In a PM-space (S,F,τ) and for a fixed $\varphi \in \Delta^+$, Schweizer [7] has introduced the next relation in P(S):

"A I_{φ} B iff there exists (a,b) $\in A \times B$ such that $F_{ab} \ge \varphi$ ", and when A I_{φ} B, A and B are said to be *indistinguishable* (mod. φ).

We note that I_{φ} is a semi-proximity weaker than δ_{φ} , in the sense that A I_{φ} B implies A δ_{φ} B, i.e., indistinguishability (mod. φ) yields φ -proximity. The reciprocal does not hold, in general.

EXAMPLE 2.2. Consider the PM-space $(R^+, \varepsilon, *)$, where $\varepsilon_{pq} = \varepsilon_{|p-q|}$ for all $p,q \in R^+$. Let k > 0 and $\varphi = \varepsilon_k$. Take A = [0,1) and $B = (1+k, +\infty)$. Taking for each $n \in N$, $a_n = 1-1/n \in A$ and $b_n = 1+k+1/n \in B$, we have

 $\begin{array}{c} \operatorname{o-lim}_{n \to \infty} \left(\varepsilon_{k} \wedge \varepsilon \middle|_{a_{n} - b_{n}} \right| \right) = \operatorname{o-lim}_{n \to \infty} \varepsilon_{k + \frac{2}{n}} = \varepsilon_{k}, \end{array}$

i.e., A δ_{ε_k} B but A $\mathscr{X}_{\varepsilon_k}$ B because for all $(a,b) \in A \times B$ we have $\varepsilon_{|a-b|} < \varepsilon_k$.

Recently, Tardiff has introduced [8] for $\varphi \in \Delta^+$ a closure operator de

245

fined by

 $C_{\varphi}(A) = \{x \in S; (\forall h \in (0,1]) (\exists a = a(h) \in A) \text{ such that } F_{xa}^{h} \ge \varphi\},\$ being

$$F_{xa}^{h}(t) = \begin{cases} 0 , & \text{if } t \leq 0, \\ \min(F_{xa}(t+h)+h,1), & \text{if } t \in (0,1/h], \\ 1 , & \text{if } t > 1/h. \end{cases}$$

The semi-proximity T_{φ} defined by

"A T_{ω} B iff C_{ω}(A) \cap C_{ω}(B) $\neq \emptyset$ ",

is stronger than I_{φ} because if A I_{φ} B then there is (a,b) $\in A \times B$ such that $F_{ab} \ge \varphi$ and for all h > 0, $F_{ab}^{h} \ge F_{ab} \ge \varphi$, i.e., A T_{φ} B. The reciprocal does not hold, in general.

EXAMPLE 2.3. Consider the PM-space of example 2.1, and the same $\varphi = \varepsilon_k$, k > 0. Let A = [0,1). Then $C_{I_{\varepsilon_k}}(A) = [0,1+k) \subset C_{\varepsilon_k}(A)$. But $1+k \in C_{\varepsilon_k}(A)$ because, for any $h \in (0,1]$, taking $1-h \in A$ we have $\varepsilon_{1+k-1+h}^h = \varepsilon_{k+h}^h \ge \varepsilon_k$, so $\{1+k\} T_{\varepsilon_k}$ A but $\{1+k\} \not{\epsilon_k} A$.

Finally we remark that for $\varphi = \varepsilon_0$, $T_{\varepsilon_0} = \delta_{\varepsilon_0}$ is the ε,λ -proximity and for any φ and $p \in S$: $C_{\delta_{\varphi}}(\{p\}) = C_{I_{\varphi}}(\{p\}) = C_{\varphi}(\{p\}) = \{q \in S; F_{pq} \ge \varphi\}$, and this set is exactly the class of p in the partition of S induced by the equivalence relation of indistinguishability (mod. φ) introduced in [7].

3. A PROXIMITY INDUCED BY AN UNIFORMITY.

DEFINITION 3.1. A triangular function τ is said to be *radical* if for any $F \in \Delta^+ - \{\varepsilon_0\}$ there exists $G \in \Delta^+ - \{\varepsilon_0\}$ such that $F < \tau(G,G) < \varepsilon_0$.

THEOREM 3.1. If $\tau \ge *$ then τ is radical.

Proof. We need to show that for any $F < \varepsilon_0$ there is $G < \varepsilon_0$ such that $G^*G > F$. In effect, if $F = \varepsilon_k$ for some k > 0 then taking $G = \varepsilon_{k/4}$ we have $G^*G = \varepsilon_{k/2} > \varepsilon_k$. If $F < \varepsilon_k$ for some k > 0 then the same G yields the same conclusion. So we can suppose that there is an interval (0,k) such that F(x) > 0 for $x \in (0,k)$. Let

$$H(x) = \begin{cases} 0 , & \text{if } x \leq 0, \\ +\sqrt{F(2x)}, & \text{if } 0 < x. \end{cases}$$

Obviously $F(x) \leq +\sqrt{F(x)} \leq +\sqrt{F(2x)}$ for x > 0, and consequently $F \leq H$. If F(x) = H(x) for all x > 0 then $F(x) = \sqrt{F(x)}$ and F(x)(F(x)-1) = 0, i.e., there would exist k' > 0 such that $F(x) = \varepsilon_{k'}$, which is a contradiction. So F < H and there is a t > 0 such that 0 < F(t) < H(t) < < 1. Let

 $G(x) = \begin{cases} H(x) , & \text{if } x \leq t, \\ 1 , & \text{if } x > t. \end{cases}$

G>H and a straightforward computation shows that $F\leqslant H^*H.$ By the strict isotony of *, $F\leqslant H^*H< G^*G<\varepsilon_0.$

Let (S,F,τ) be a PM-space. For any $F \in \Delta^+ - \{\epsilon_0\}$, let $U(F) = \{(p,q) \in S \times S; F_{pq} > F\}.$

THEOREM 3.2. If τ is radical then the collection {U(F); $F \in \Delta^+ - \{\varepsilon_0\}$ } is a basis for a diagonal separated uniformity U on S.

Proof. Obviously $\Delta_{S} = \{(p,p); p \in S\} \subset U(F) \text{ and } U(F) = U(F)^{-1}, \text{ for}$ any $F < \varepsilon_{0}$. If $F, G < \varepsilon_{0}$ and being τ radical there is $G < \varepsilon_{0}$ such that $F < \tau(G,G) < \varepsilon_{0}$. Then $U(G) \circ U(G) \subset U(F)$ because if $(p,r) \in U(G) \circ U(G)$, there is $q \in S$ such that $(p,q) \in U(G)$ and $(q,r) \in U(G)$. By the triangle inequality $F_{pr} \ge \tau(F_{pq}, F_{qr}) \ge \tau(G,G) > F$, so $(p,q) \in U(F)$. Finally note that U is separated because $\bigcap_{F \in \Delta^{+} - \{\varepsilon_{0}\}} U(F) = \Delta_{S}$.

COROLLARY 3.1. The topology generated by U is metrizable.

Proof. Consider the countable family $\{\alpha_{t,t'}; t,t' \in (0,1) \cap Q\} \subset \Delta^+$, where

 $\alpha_{t,t'}(x) = \begin{cases} 0 , & \text{if } x \leq 0, \\ t' , & \text{if } 0 < x \leq t, \\ 1 , & \text{if } x > t. \end{cases}$

If $U \in U$, there is $F < \varepsilon_0$ such that $U(F) \subset U$. Being $F < \varepsilon_0$ there exists $t \in (0,1) \cap Q$ such that F(t) < 1. Let $t' \in (F(t),1)$. Then $F < \alpha_{t,t'}$ and $U(F) \supset U(\alpha_{t,t'})$, i.e., $\{U(\alpha_{t,t'}); t,t' \in (0,1) \cap Q\}$ is a countable basis for U. We apply then Weyl theorem.

The topology generated by U can be described by the family $N(U) = \{N_p(F); F \in \Delta^+ - \{\varepsilon_0\}, p \in S\}$, where each neighborhood $N_p(F)$ is given by

$$N_{p}(F) = \{q \in S; F_{pq} > F\} = C_{I_{F}}(\{p\}),$$

i.e., $N_p(F)$ is precisely the closure of $\{p\}$ by C_{I_F} , C_{δ_F} or C_F , in other words, if $q \in N_p(F)$ then q is indistinguishable (mod.F) of p. The uniformity u induces a proximity δ_u defined on P(S) by:

"A $\delta_{\mathcal{U}}$ B iff for some F < ϵ_0 , N_p(F) \cap B = \emptyset , for all p \in A".

Applying a well known result of proximity theory we obtain that the topology induced by δ_{ij} is the uniform topology. We remark that this topology is exactly the topology T_F obtained when considering the PM-space as generalized metric space [9].

REFERENCES

- C.ALSINA and E.TRILLAS, Order and weak convergences of distribution functions, (to appear).
- [2] Gh.CONSTANTIN and V.RADU, Random-proximal spaces, Pub. Univer. Din Timişoara (1974).
- [3] R.FRITSCHE, Proximities in a probabilistic metric space, (unpub.).
- [4] A.LEONTE, Proximitate stochastica, Stud. Cerc. Mat., 26 (1974) 1095-1100.
- [5] S.A.NAIMPALLY and B.D.WARRAK, Proximity spaces, Cambridge Univ. Press (1970).
- [6] B.SCHWEIZER, Multiplications on the space of probability distribution functions, Aeq. Math., 12 (1975), 151-183.
- [7] B.SCHWEIZER, Sur la possibilité de distinguer les points dans un espace métrique aléatoire, C.R. Acad. Sc. Paris, 280 (1975) 459-461.
- [8] R.TARDIFF, Topologies for probabilistic metric spaces, Pacific Jour. of Math., 65 (1976), 233-251.
- [9] E.TRILLAS and C.ALSINA, Introducción a los espacios métricos generalizados, Serie Univ., n°49 (Fundación Juan March). Madrid 1978.

Department of Mathematics and Statistics E.T.S. Arquitectura. Universitat Politécnica de Barcelona. Avenida Diagonal 649 Barcelona, Spain.

Recibido en diciembre de1979.