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1.

Plane unsymmetric Minkowski geometry is given by a proper convex body
Z in the affine plane and a point O € int Z. Z is called the <ndica-
trix of the geometry; it defines a pseudonorm for any vector X: Write
x = 0X, then

x|l = inf A | X C AZ. M
Then x| = 0, Ixf = 0 only if x=20,
laxll = allxl if o =0,

fIx + x| < x| + fx"l

The pseudonorm is a norm, [ax|l = Ja] lIxll for all x and all a € R, if and
only if Z is symmetric of center O, Z = -Z. (All operations of vector
algebra will be taken for the origin at 0). The elementary geometry of
the symmetric Minkowski plane was studied in detail by C.M.Petty [9],
we are interested in the unsymmetric case. Although we are going to
use trigonometry and analytic geometry, no smoothness conditions will
be imposed on Z.

We shall parametrize the convex curve 3Z by t, two times its polar
area function in the sense of polar coordinates, relative to a fixed
polar axis. (For an arbitrary monotone and continuous parameter T on

T ~
9Z, t is a Stieltjes integral t = J det(z(0),dz(o)) ). Let Y be, the
T
: (e}
dual of Z [7). The curve 5Y will be referred to s, two times the area

function in the sense of polar coordinates computed from the polar axis.

In a homothety of ratio c, the area of Z is multiplied by c? and that

of Y by c'z. Since (1) is affine and the dual is an affine covariant
of Z, we may normalize the geometry by requiring

Area (Z) = Area (?)

We shall assume from now on that we work with a normalized geometry
(or, that we have defined the unit area so as to make the original bo-
dy Z of area equal to that of its dual). One can show that W3/2<O<n
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in general, where Il denotes the area common to Z and Y [5] . For sym-
metric geometries, 2/2 < II < 7. ‘

To any vector z(t) from O to 3Z there correspond all vectors y(s) from
0 to 3Y for which z(t).y(s) = 1. Therefore, if Y is the image of Y in

the rotation of angle —% and center O, the relation between the isope

rimetriz Y [2] and the indicatrix is given by
det(y(s),z(t)) =1 . ' (2)

Since Y also is a proper convex body, it defines a norm |xJ. The rela
tion (2) defines a map ¢ of the circle S = R/2II onto arcs of S:

o(t) = {a(t) <s <b(t)}

by: -ylp(t)] is the oriented direction of a support line of Z at z(t),

y v (t))

37
z(t)

[
Fig. 1

where we denote by ¢(t) any s € #(t). The map ¢ satisfies
a) a(t) = b(t) if Z has a unique line of support at z(t)
b) inte(t;) n ine(t,) # @ implies e(t;) = o(t,)
c) U e(t) = S.
tes
Since the dual of the dual is the original convex body, (2) defines
in the same way a map ¥(s) = {A(s) <t < B(s)}, with properties a)-c)
for s. Clearly, s € ¢ o¥(s), t € ¥ o 4(t). For the endpoints of the

intervals we shall write a(t) = ¢_(t), b(t) = ¢+(t). Similarly, the
interval ¥(s) is written ¥_(s) < ¥(s) < v,(s).

We shall pair vectors in a frame

[Y(S)} [-ZCt)]
or
z(t) y(s)
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only if s = ¢(t), t = ¥(s). Since the frames are unimodular, so is

the matrix in

y(s)| [ emy(s,s.) st(t ,s)| [v(s))| - ()
z(t) -sm(so,t) cmt(to,t) z(to)

whose elements are the trigonometric functions of the geometry. It
follows that the "cosine'" function cm is "even",

cms(s,so) = cmt(t,to)

and the "sine" functions sm and st are odd:

sm(so,t) -sm(s,to)

st(to,s) -st(t,so)

As a consequence, we drop the indices of the cm-functions since the
arguments alone identify the functions. These functions have been studied.
in detail in [5] for smooth indicatrices; here we note only that

$,S, € ¢(t) implies cm(s,so) =1, sm(so,t) = sm(s,t) =0

t,t, € ¥(s) implies cm(to,t) 1, st(t,s) = st(to,s) =0 .

Let t*,s* be the values of t and s, respectively, for which z(t*) has
the direction of -z(t), y(s*) the direction of -y(s). Then

o v(t) or S

¥(s) or t

v (t*)

Y(s*)

sm(so,t) 0 implies s

st(to,s) = 0 implies t

o o

2,

A1l triangles will be oriented. For a triangle ABC, the leg a is the
vector a = BC. All notations allow for cyclic permutations. We write
a = HaHZ(ta) = laIY(sa); this defines the angle variables. We have to

distinguish several notions of orthogonality (really, transversa-
lity in the sense of the Calculus of Variations).

A vector Vv .is orthogonal to a vector x = [IxIZ(t) if v = IviY(s),
s = ¢(t). The orthogonal direction is unique only if (t) is a single
point. A vector v is orthogonal from x = kxQY(s) if v = livllZ(t),

t = ¥(s). An altitude ha is a vector orthogonal from A to a. The

height is lhal' The area A of the triangle is

b= § det(n,,a) = 7 llalllh ) det(Y(sy ),2(¢,)) = 7 lalthy . (4

This is the Minkowski form of the area formula; it allows for cyclic
permutation. Without the norm defined by Y, llalllh I = Iblilihyll =
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= |lclith I holds only if Z and Y are homothetic, i.e., if they are
c
Radon curves; this is a theorem of Tamdssy [10].

From a+b+c = 0 we get the cosine theorem

lall + ibllem(t _,t,) + Hchm(ta,tc) =0 (5)

for the components in the direction of Z(t,) and the sine theorem

Il bl _ llcll B Il all
sm(p(t),t,))  sm(e(t),t))  sm(e(t,),t)

(6)

for the transversal components. The sm-function was first defined by
Busemann [2] who also found the sine theorem (for symmetric metric)
from the area formula

A= det(a,b)

7 lallibll det(z(t,),z(t,)) =

Nf= N|=—

lFalllibll sm(¢(ta),tb)
In the norm of Y, the formula A = % lallbg st(W(sa),sb) which yields

1al - 1bl - Icl 7
st(W(sb),sc) st(W(sc),sa) st(W(sa),sb)

We say that ABC is a right triangle if b = h, . Thén

-c = ”aHZ(ta) + IbIY(w(ta))
= ll-clilem(t,,t¥)Z(t,) - sm(p(t),t¥)Y(e(t,))]
or fall = ll-cliem(t_,t%) = Ncchm(tc,t:)lcm(ta,t:)
Il = H-cH!sm(w(ta),tg)I = Hc”lcm(tc,tg) sm(e(s,),t?)] .

Since the determinant of the matrix in (3) is 1,

2
I-cll® = Il-cllcm(ta,t:)ll-cIIcm(t’c*,ta) + -cll sm(¢(ta),tg)ll-cllst(t:,w(ta)) ;

we obtain the generalization of the theorem of Pythagoras

cm(t*,t.) st(t_,v(t*))
l-ch? = jan? —e2a” , gpp2 222" e’ (8)
cm(t,,t*) smp(t,),t*)

This leads to a characterization of euclidean geometry. We start with

LEMMA 1. If cm(to,t) = cm(t,to) for all t,t, then the geometry is
euclidean.

Denote the matrix in (3) by M(t,to;s,so). From the composition formu-
la M(tl,t;sl,s)M(t,to;s,so) = M(tl,to;sl,so) and the fact that the diago

nal elements in M are equal it follows that M is of the form

a b
M=
qb a
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1
A coordinate transformation of matrix diag(1,|q|2) then transforms

all M into the form [¢§ b]. Since Z is convex, Z is in the halfpla-
a

ne of the line of direction y(so) through z(to) that contains O, the-
refore
cm(to,t) <1 for all to,t . 9)

(The inequality in absolute value holds only in symmetric geometries).
"For t sufficiently close to t_, the diagonal elements in M are posi-

2

tive and < 1 in absolute value. Since detM= 1 = a2 b? and a? < 1,

it follows that q is negative and M is a rotation matrix. Since q is
the same for all M, all M are rotation matrices and both Z and Y are
the unit circle.

If cm(t:,ta) = Acm(ta,t:) for all directions a and c with X indepen-

dent of a and c, it follows by a change of names that A = 1 and the
geometry is euclidean by the lemma.

If st(ta,w(tz)) = psm(w(ta),tz) for all directions with constant pit
follows that the linear dependence of Y(w(to)) and Y(¢(t)) implies
the linear dependence of Z(to) and Z(t):.to = Yo ¢(to), t = Yoou(t).

Therefore ¢ (and ¥) are point-valued functions, Z and Y are rotund
ovals. Also, the map by oppositely oriented parallel lines of support
is the map which commutes with ¢ (and Y¥). Hence, both Z and Y are sym
metric ovals. From the composition formula of the matrices M we get
the addition formulas

sm(so,tz) = sm(sl,tz)cm(sl,so)+cm(t1,tz)sm(so,tl)

(10)
st(to,sz) = cm(sz,sl)st(to,sl)+st(t1;sz)cm(to,tl).

Under our hypothesis, we either have p = 0 which is impossible or si-
multaneously

st(to,sz) = st(tl,sz)cm(tl,t°)+cm(t1,t2)st(to,sl)

st(to,sz) = st(tl,sz)cm(to,t1)+cm(t2,tl)st(to,sl)
i.e., st(tl,tz)[qm(tl,t°)4cm(t0,tl)] = st(to,sl)[cm(tz,tl)—cm(tytzﬂ.
Since the directions t,»ty,t, are arbitrary, they can be chosen so
that st(to,sl) =0, st(tl,sz) # 0. Therefore, the cm-function is sym-

metric and the geometry is euclidean by Lemma 1. We have proved:

PROPOSITION 1. If there exists a constant A or a constant W such that
Aall? + £(a,b)ibl?
g(a,b)llal? + wibh?

either lIh-ch

2
or II-cli

holds for all right triangles, then the geometry is euclidean.
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3.

One of the definitions of an angle bisector in euclidean geometry is
the set of centers of the circles that touch bothvlegs of an angle.
For the isoperimetric inequality, the Minkowski analog of a euclidean
circle is the isoperimetrix [3,5] and its homothetic images. The cen-
ter of the circle is the image of O in the homothety. The radius of
the circle. is the ratio of homothety, or the I l-norm of any vector from
the center to the circumference.

DEFINITION. A Y-bisector of ABC is the set of centers of the circles
that touch two of the lines that carry the legs of the triangle in one
fixed angle domain. An interior bisector is a bisector that contains
interior points of the triangle and a vertex as endpoint. A bisector
that is not interior is exterior. All bisectors are continua that
have a vertex as only relative boundary point.

Since all circles that touch two concurrent rays are homothetic ima-
ges of one another in homotheties centered at the vertex, each bisec-
tor is a straight ray through that vertex. Two concurrent straight 1i
nes define four concurrent-bisectors, they form two straight lines on
ly in symmetric geometry. By construction, the intersection of two Y-
bisectors of a triangle is the center of a tritangent circle

PROPOSITION 2. The interior Y-bisectors of a triangle are concurrent.
There are three triples consisting of two exterior and one interior
T-bisector each.

The existence of the points of intersection is an easy consequence of
Pasch's axiom.

The point of concurrence of the three interior bisectors is the center
I of the incirele, the homothetic image of Y tangent to the three si-
des of the triangle. The contact is oriented if both ABC and 3Y are

positively oriented. Let Ia be a point of contact of the incircle and

a. Then a is orthogonal o IIa and the area of IEC is %1‘Ha“. There-
fore, for p = % [hall + bl + liclll, we have

A = pr (1
just as in euclidean geometry.
Another definition of the bisector of an angle is as axis of symmetry

or as line making equal but opposite angles with the legs:

DEFINITION. An sm-bisector of a and b at C is a line of direction pa-
rameter t directed towards C for which sm(w(ta),t) = sm(w(tb),t).

PROPOSITION 3. The sm-bisectors are the Y-bisectors.
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If 3Y is not strictly convex then the incircle and a will have a seg-
ment in common and for some w(ta) and some w(tb) the condition is sa-

tisfied. Let Ia be the point on 3YNa for which s(IIa) = w(ta). Then

IIIIa det(IIa,Z(ta)) = det(IC,Z(ta)) = "ICHdet(Z(t),Z(ta)) =

-l ICHsm(e(t,),1)
Therefofe, there exists Ib such that IIa = IIb and I is the center of
a circle of radius IIa which touches both legs (and this holds for

every point on the bisector, not just the incenter).

A similar theory holds for Z - and st-bisectors.

L

DEFINITION. The perpendicular L-bigector of a segment AB is the set
of all points P for which [IPAll = IIPBIl. The perpendicular Y-bisector
is defined by IPAR = IPBl. A Z-(Y-) midpoint of AB is a point of the
intersection of AB and its Z-(Y-) perpendicular bisector.

The Z-bisector of a segment may have nonzero twodimensional measure.
For example, in the normalized geometry for which Z is the square of

23/4

side length parallel the axes with center at O, let AB be a seg-

ment parallel the y-axis of length 2a < 23/4. From the endpoints A,B
we draw the lines parallel the diagonals of Z and get the diamond
ACBD. Then for any P in one of the exterior vertical angles at C and

D (the shaded domains in fig.2), [IPAll "= ||PBIl. A1l bisectors are zero-
dimensional if Z and Y are rotund.

T T T T T
| .
|

Fig.2
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PROPOSITION 4. The Z-(or Y-) midpoint of any segment is unique.

For P € AB, the ratio of division A = [|PAll /IPBll is strictly monotone
increasing and continuous, by the first and third properties of the
pseudonorm. It increases from 0 to = , therefore it is = 1 at exactly
oné point.

In unsymmetric geometry there is no direct connection between the bi-

-sector sets in the two halfplanes defined by the line AB. For example,
in the geometry defined by a triangle Z and a point O € int Z, the Z-bi
sectors p,p' of the segment PB, P = BONb, are the rays complementary
to the segments OC,0A. For any other segment PlQl’ P, € b, Q1 € a,

0 e P1Q1’ the bisector P, in the halfplane opposite C is p but the
bisector pi in the halfplane of C is the union of a segment 0S on OC

and a ray parallel p'.

P=P;

Fig. 3

A point R on that ray can be found as follows: Since HRQIH = MRPIM

b

Rlel is homothetic to a triangle OQ*P*; there is a one-to-one corres

pondence between Q* € BA and R. The cente} X of the homothety is
bn QlQ*; R is the intersection of XO and the line through Q1 parallel

Q*0. The locus of R is a conic as intersection of two projectively re
lated pencils of lines (through O and Ql). The line OQ1 corresponds

to itself in the projectivity. Hence, the projectivity is a perspecti-
vity and the conic is a double line. Since Q* - A implies X + A, AO is
an asymptote, i.e. SR AO. S is found by Q;S Il BO.

Busemann [3] has shown that in any symmetric G-space the perpendicular
bisectors are flat only if the geometry is Klein. The bisector of a
symmetric Minkowski geometry are flat only if the geometry is euclidean.
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The theorem can be extended to unsymmetric Minkowski geometry using
an argument of Blaschke.

PROPOSITION 5. 4 geometry in which all L-(or Y-) perpendicular bisec
tors are straight lines is euclidean. The same conclusion holds if

every I- (or Y-) perpendicular bisector is the union of two straight
rays and if,‘in addition, the I- (Y-) perpendicular bisectors of two
‘segments AB, CD intersecting at their common midpoint have only that

midpoint in common.

Let M be the midpoint of AB. (We use only Z, the argument for Y is
identical). We prove first that the bisectors are straight lines if
for any other segment CD with midpoint M the bisectors of AB and CD
have only M in common. We may assume without loss of generality that
M=0, IOAl = [IOBI = 1. Let r,,r, be the two rays that form the bisector

For P € r;, let OA'B' be the homothetic image of PAB in the map that
brings P onto O and A',B' € 3Z. Clearly, A'B' || AB. IPOll . — « implies

IA'B'l —> 0. Therefore, the line T, defined by r, intersects 3Z at a

1 1
point P" where a support line is parallel AB. The other point'on 9z
with support line parallel AB is ?2 N 3Z by the same argument. By hy-

pothesis, the couples of points of parallel support are in 1-1 order
preserving correspondence with the directions through 0: no point of
3Z has more than one support line and no line more'than one support
point; 3Z is rotund (strictly convex and smooth). For AB fixed,

A' — B' defines an affine relation of axis r; in the terminology of

Veblen and Young [11] in one halfplane of AB. If ?2 # ?1 then at least

one of A or B would admit two distinct support lines, since the sup-
port line at A cannot be the image of the support line at B in two
elations with different axes. Hence, 1, and r, are collinear.

Now let Oup be the affine extension of the map A'— B'. The o genera-

AB
te a group of affine maps that admit O as fixed point and Z as inva-
riant convex body. Therefore, the group is linear and bounded, it is
conjugate to an orthogonal group ([7], prop.14-10), Z is an ellipse
and the geometry is euclidean.

The Z-midpoint Mé of a = BC is defined by HMaBH =IlMaCH. Since
%) = ] *
HMaBHZ(ta) HMaCHCm(ta,ta)Z(ta), we have
M, lem(t_,t*)| (12)
— =|cm , .
|MaC| a a

The Z-medians of ABC are the lines AMa,BMb,CMc. Then we have from
Ceva's theorem [6]: The Z-medians of a triangle are concurrent if and
only if

* * *
cm(ta,ta)cm(tb,tb)cm(tc,tc

) = -1. (13)
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The Z-medians are concurrent for all triangles if (13) holds for all
triples of directions. For a degenerate triangle we have, for example,
ty — t_, t, — t: and therefore cm(t:,ta) = -1 'for all directions

t,- That means for s* € o(t*), s € ¢(t) that

Y(s*) -1 st(t,s*)][Y(s)

Z(t*) -sm(s,t#) -1 Z(t)
Since the determinant is 1, either st(t,s*) = 0 or sm(s,t*) = 0. It
follows from the convexity of Z that st and sm are continuous func-
tions of s and t. Therefore, 0 < s,t < 2I1 is the union of a countable
set of intervals on which either Z(t*) = -Z(t) or Y(s*) = -Y(s). The
construction of the dual can be given a local version: If 3Z is
r = r(8) in euclidean polar coordinates’ and n(@) = cos®i + sino i
then the local dual is the envelope of .the lines n(6).y = 1/r, [7].

Therefore, the local symmetry of 9Z implies that of 3Y, sm(s,t*) =
= st(t,s*) = 0:

PROPOSITION 6. The L-medians of a geometry are concurrent for all
triangles if and only <f the geometry is symmetric. In that case, the
Z-medians are the affine medians and the Y-medians.

5.

In euclidean geometry, the altitudes are concurrent at the orthocen-
ter. A definition of the orthocenter derived from the euclidean theo-
ry of circles was studied by Asplund and Grunbaum [1], their results
are valid for unsymmetric metrics and lead to a characterization of
the geometries defined by strictly convex, symmetric ovals. Golab and
Tamdssy [4] proved that the altitudes are concurrent in Radon geome-
tries. The only symmetric Radon curve is the circle, this is a charac
terization of euclidean geometry.

A triangle is Zsosceles in the Z-norm if llall = [Ibl, it is equilateral
if llall = bl = licl. By the sine theorem, a triangle is isosteles if
and only if sm(¢(tc),ta) = sm(¢(tb),tc). It is not obvious that equi-

lateral triangles exist for all directions of the legs. Without 1loss
of generality, we assume llall = bl = llcll = 1. For a = OA, an equila-
teral exists if A € 2Z* = -2Z. For a symmetric metric, Z = -Z and the
condition is always satisfied:

PROPOSITION 7. In symmetric metric, equilateral triangles exist for
every direction of the leg a.

The proposition does not hold for all unsymmetric metrics. Since
Z N -7 #@®, we can only say that equilateral triangles exist for a
set of directions with positive linear measure. An example is the geo
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metry given by Z the triangle (0,1) , (%1,-3), O at the 6rigin. The
'admissible directions OA are those for which the y-coordinate of A

. 1
15}‘-2—.

Fig.4

The theory of equilateral triangles can be expected to be simple only
for symmetric metrics. A few sample theorems:

PROPOSITION 8. In symmetric metric, an exterior Y-bisector of the
equal legs of a L-isosceles triangle is parallel to the basts.
fall = lI-bll implies sm(w(ta),tc) = sm(w(t;),tc); the direction of the

bisector is that of c. By a similar argument, we get:

PROPOSITION 9. In symmetric metric, an interior L-bisector of the

equal legs of a Y-isosceles triangle is the altitude from base to
vertex.

The interior Z-bisector is the st-bisector and satisfies st(w(sa),s)=
= st(W(sg),s). For an isosceles triangle,

st(¥(sy),s. ) = st(¥(s ),s,) = -st(¥(s,),s ) = -st(¥(s{),s.)

Hence, s, =S and W(s;) is the direction of the normal from the basis.

In this way; many theorems of elementary geometry become valid in an
appropriate interplay of the two norms; for theorems of differential



and integral geometry see [8].
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