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THE NUMBER OF DIAMETERS THROUGH A POINT INSIDE AN OVAL
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1. INTRODUCTION.

In [6], Professor Santald raised the question of determining bounds
on the expected number of normals that can be drawn from a random
point inside a convex body to its boundary. If the body has constant
width this is equivalent to determining bounds on the expected number
of diameters passing through a random point inside the body, since in
this case the expected number of normals is just twice the.expected
number of diameters.

Let K be a plane convex body. Then a diameter is a chord of K whose
endpoints lie on parallel supporting lines of K. For each (x,y) € K,
let n(x,y) be the number of diameters of K passing through (x,y) (no-
te that n(x,y) might take the value +«). We are interested in the func
tional I(X) given by

10 = [ nexy axay
K
1f we denote by n(K) the expected number of diameters passing through
a random point of K, then we have
n(K) = I(K)/A(K) ,

where A(K) is the area of K.

Let DK = K + (-K) be the difference body of K. In case the bounda-
ry of K is sufficiently regular, we shall prove that

1.1 % ADK) < 1(K) < 3 A(DK)

For any plane convex body K, the difference body satisfies the inequa-
lities (see Bonnesen and Fenchel [11)
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(1.2) 4A(K) < A(DK) < 6A(K)

Combining this with (1.1) gives

A(K) < I(K) < 3A(K)

As a consequence we have

(1.3) 1<n(K) <3.

The lower bound is not surprising, since a theorem of Hammer [3] gua-
rantees that n(x,y) > 1 for all (x,y) € K.

In Section 3 we shall prove (1.1), which leads to (1.3). We shall

also show that the given bounds are sharp, in that n(K) = 1 iff K is
centrally symmetric, and there exist K satisfying the regularity con
ditions we shall impose for which n(K) is as close to 3 as we please.

Our proofs will depend on transforming I(K) to an integral involving
the length of a variable diameter and the instantaneous radius of ro
tation of that diameter. Indeed, let D(6) be the length of a diameter
making angle 6 with the horizontal and p(6) the distance from the ins

tantaneous center of rotation to one endpoint. Then we shall show in
Section 2 that

27
(1.4) 1K) = & Jo [02(8)-p(6)D(0) + & DZ(8)1ds . ~
If will follow from this that
27
(1.5) 1K) = & jo 02 (6)de .

The latter expression is geometrically plausible when we think of K as
covered by the infinitesimal sectors of area swept out by diameters

rotating through an angle d6 about their instantaneous centers of ro
tation (see Fig. 2).

Let R(v) be the radius of curvature at a boundary point of XK where
the supporting line makes angle v with the horizontal, and let w(y)
be the width of K in direction ¢, that is, the distance between the
parallel supporting lines making angle ¢ with the horizontal. In sec
tion 4 we shall derive from (1.5) the expression

€1.6) 1(K) = 2 Izn __ R )ule) d
Z o R(¥) + R(p+m)

In case K has constant width w(¢) = b we have in addition
R(¥) + R(p+w) = b, so (1.6) gives

. 27
(1.7) 1K) = 3 JO R? (0)de



284

This latter expression also follows from (1.5), since for sets of

constant width we have p(8) = R(¢) and d6 = dy (where 6 and ¢ are as
*in Fig. 1).

Since K has constant width b iff DK is a circular disk of radius b,

we obtain from (1.1)

2

(1.8) TH <1 <Fb°

The area of a plane set K of constant width b satisfies

(1.9) ";Z@b2<A(K)<%b2 ,
with equality on the lefthand side for a Reuleaux triangle and on the

righthand side for a circular disk. Using this in (1.8) yields

m

T-v3

(1.10) 1 <n(K) <

for plane sets of constant width. The upper bound corresponds to that
given in [6] for the expected number of normals that can be drawn to
the boundary from a random point inside a set of constant width. The
lower bound is achieved precisely when K is a circular disk, and the
upper bound when K is a Reuleaux triangle. Our methods give (1.10)
only for sets of constant width satisfying our regularity assumptions,
and among such K there are those (approximating Reuleaux triangles)
for which n(K) is arbitrarily close to the upper bound in (1.10).

Section 5 contains a discussion of how (1.6) may be viewed as the ana
logue of (1.7) for a plane convex set K of constant relative width 1
in the relative geometry whose unit disk is DK.

We introduce in Section 2 the background necessary for our development
and proceed to the proofs of the formulas (1.4) and (1.5).

2. PROOFS OF (1.4) AND (1.5).

We shall restrict our considerations to plane convex bodies having a
certain degree of regularity. In the following, K will be a plane con-
vex body whose boundary, to be denoted C, is a convex curve of class

C3 with nowhere vanishing curvature. We shall refer to such a K as an

oval. In this case C admits the parametric representation

(2.1) x=x() , y=yl® , 0<¢<2m,

where ¢ is the angle the tangent line at P(¢) = (x(¢),y(v)) makes with
the x-axis (Fig.1).
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Figure 1

The chord P(¢)P(¢+m) is a diameter of K making angle 6 = 6(p) with
the x-axis (as indicated in Fig. 1). Since K is an oval, it is easy
to see that 6 is a strictly monotonic function of ¢; so it is also in
fact possible to express ¢ = ¢(8) as a smooth function of 6.

Let D(¢) denote the length of the diameter P(wiPi¢+n). Then any point
(x,y) on this diameter has coordinates of the form

[}

x = x(p) + A cos 06(y) _
(2.2) 0<A<D(v).

y = y(e) + A sin 06(y)

n

If S is the region in the (v,A)-plane defined by S = {(e,)\):

0 <A<D(p), 0<y¢ < 2}, then the equations (2.2) define a smooth
mapping of S into K. The theorem of Hammer [3] mentioned in the intro
duction tells us-that.in fact this mapping sends S onto K. Since
(¢,1) and (p+w,D(¢)-1A) always have the same image under this mapping,
we see that each (x,y) € K is the image of 2n(x,y) points of S, where
n(x,y) is the number of diameters through (x,y). Thus, if J = J(y,A)
is the Jacobian determinant of the mapping, we have (see Federer 2,
p. 243}) ’ '

(2.3) 2I(K) = ZJJK n(x,y)dxdy = JISIJ(w,A)[dwdA .

Direct calculation from (2.2) gives
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(2.4) Jlp,A) = x'{¢)sin 8 - y'(p)cos 6 - r0' ,

where 6 = e(¢), and the prime represents differentiation with respect
to ¢. But

(2.5) x'(p) = R(p)cos ¢ , y'(¢) =R(e)sine , 0<y¢ <21,

where R(¢) is the radius of curvature of C at P(y). Dénoting by
Y = P(p) the angle between the tangent line ard the diameter, as in
Fig. 1, we obtain by substitution of (2.5) into (2.4),

(2.6) J = R sin(8-¢) - A8' = R sin ¢ - A@'

Let p(¢) be the instantaneous radius of rotation of the diameter
P(p)P(p+m), that is, the distance from the instantaneous center of ro
tation to the point P(¢). Let ds be the element of arclength of C at
P(¢). Then we have (see Fig. 2)

(2.7) p(p)de = sin ¢y ds = R(p)Ysin y de .

Y

Figure 2

These relations can be derived from the results given in Hammer and

Smith [4]. We have from (2.7) that R(¢)sin ¢ = p(¢)0'. Substitution
aof this into (2.6) gives

(2.8) J(p,A) = (p(p)-2)e' (v)

Iteration of the rightmost integral in (2.3) then gives
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1 (27 (D) _
(2.9) I(K) = 5 jo {Io [p(e)-A|dr}e’ (p)dy .

We let p(8) = p(v(8)) and D(8) = D(v(0)). Changing variables from v
to 6 in (2.9) leads to

1 (27 (D(®)
(2.10) I(K) = 5 JO {Jo |o(8)-A]dr}de .

Since any two diameters of an oval K intersect inside K, the centers
of rotation all belong to K. Consequently p(6) < D(6), and the inner
integral in (2.10) takes the form

D(6) p(0) D(6)
@1 [ le@ealar = [T ee-nar s [ aeetenar
0 0 p(6)

Evaluation of these integrals then gives, with (2.10), the required
formula (1.4). :

To obtain (1.5), we rewrite (1.4) in the form

2m
(2.12) 10 = [ 1070 ¢ 00 -pe) a0

Since p(8) + p(6+w) = D(6), this becomes

27
(2.13) GRS HORFICUIEE

from which (1.5) follows by the periodicity of p.

3. THE BOUNDS ON I(K).
Write equation (1.4) in the form

1 27 2 1 2m
. =7 - o -p
(3.1) 1(K) = 4 jo p2(e)de - & jo (8) (D(8)-p(6))do

Applying to (3.1) the fact that 0 < p(D-p) < D2/4, we obtain

2 2
(3.2) 1 Joﬂnz(e)de <1 <t Joﬂnz(e)de )

The boundary of the difference body DK has the polar coordinate repre
sentation r = D(8), 0 < 6 < 2m, so

1

27 2
(3.3) A(DK) = 7 Jo D”(e)de .

The required bounds in (1.1) now follow from (3.2) and (3.3).
Equality holds on the lefthand side of (3.2), and so of (1f1); iff
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o(8) (D(B)-p(B)) = DZ(O)/4, which happens precisely when p(8) = D(8)/2.
In this case each diameter of K is an. area bisector, and it follows
that K is centrally symmetric (see Hammer and Smith [4]). As a fur-
ther consequence, since A(DK) = 4A(K) iff K is centrally symmetric,
we see that n(K) = 1 iff K is centrally symmetric.

The theorems of Hammer and Sobczyk [5] imply that when K is not cen-
trally symmetric there exist three diameters surrounding a triangle A
such that n(x,y) = 3 for (x,y) € A. In this case, since n(x,y) =1
for all (x,y) € K, one must have that n(K) > 1. This shows in another
way that n(X) = 1 only if K is centrally symmetric.

Equality can hold on the righthand side of (3.2) and (1.1) iff

p(8) (D(8)-p(08)) = 0. This is not possible for our class of ovals; ho-
wever we can find ovals K for which I(K) is arbitrary close to
A(DK)/2. For example, appropriate approximations of triangles will
have this property, and we can find such K with n(K) as close to 3 as
we please. In that sense the bounds in (1.3) are sharp.

L. PROOF OF (1.6).

If w(¢) is the width of K, then we have w(¢) = D(8)sin ¥ (see Fig.1).
Thus from (2.7) we obtain

4.1 0(8)de = sin ¢ ds = Y(2) R(p)dy .
D(6)

Since w(¢+m) = w(y) and D(6+m) = D(0), we also have

(4.2) o(e+m)de = W) Ripe+m)de .
D(6)

Comparison of (4.1) and (4.2) yields

p(6+m) _ R(p+m)
p(6) R(¥)

from which it follows that

D(8) _ p(8)*+p(0+m) _ R(p)+R(p*m)

p(8) p(8) R(v)
Thus we have
(4.3) o(8) = —R(OIR(P)
R(¢)+R(v+m)

Then (4.1) and (4.3) yield

2
(4.4) 02(8)d0 = p(8)p(0)de = R (LIW(P) gy
R(¢)+R(p+m)

which on integration gives the required formula (1.6).
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5. INTERPRETATION OF (1.6) IN RELATIVE GEOMETRY.

In relative differential geometry in the plane (see, for example,
Bonnesen and Fenchel [1]), one replaces the ordinary Euclidean unit
disk by an arbitrary centrally symmetric convex body E centered at
the origin. The relative width of a convex set K is the Euclidean
width divided by half the width of E in the same direction. Then K
has constant relative width b iff DK = K + (-K) = bE.

Given an oval K, we take E = DK as our unit disk for a relative geo-
metry. Then K has contant relative width 1, relative to E. Let ds(y)
be the Euclidean element of arclength of K at P(¢), and dS(¢) the
Euclidean element of arclength of E at the boundary point with out-
ward normal parallel to the outward normal of K at P(¢). The relative
radius of curvature of K at P(y), denoted by ﬁ(w), is

R(e) = ds (¢)
dS(y)

But we have ds(¢) = R(¢)dy and, since E = DK, dS(¢) = (R(p)+R(p+m))de.
Hence

(5.1) Ro) = —RL__.
R(p)+R(p+m)

The relative arclength element of E, at a boundary point where the
supporting line makes angle ¢ with the horizontal, is

dg(w) = h(E,p)dS(¢), where h(E,y) is the supporting function of E.
Since E = DK we have h(E,¢) = w(v) = the width of K. This gives

(5.2) dS(e) = w(®)dS(e) = w() (R(#)+R(p+1))dy .

From (5.1) and (5.2) we obtain then for (1.6) the form,

(5.3) 1(K) =%jiz &

where the integration is over the boundary of E = DK with respect to

the relative arclength induced by E. Thus (1.6j may be viewed as the
generalization of (1.7) to sets of constant relative width.
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