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THE NUMBER OF DIAMETERS THROUGH A POINT INSIDE AN OVAL 
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1. I NTRODUCT I ON. 
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In [6], Professor Santa16 raised the question of determining bounds 
on the expected number of normals that can be drawn from a random 
point inside a convex body to its boundary. If the body has constant 
width this is equivalent to determining bounds on the expected number 
of diameters passing through a random point inside the body, since in 
this case the expected number of normals is just twice th.e expected 
number of diameters. 

Let K bea plane convex body. Then a diameter is a chord of K whose 
endpoints lie o~ parallel supporting lines of K. For each (x,y) E K, 
~et n(x,y) be the number of diameters 6f K passing through (x,y) (no­
te that n(x,y) might take the value +~). We are interested in the func 
tional I(K) given by 

I(K) ~ fIK n(x,y) dx dy • 

If we denote by n(K) the expected number of diameters passing through 
a random point of K, then we have 

n(K) = I(K)/A(K) , 

where A(K) is the area of K. 

Let DK = K + (-K) be the differenae body of K. In case the bounda­
ry of K is sufficiently regular, we shall prove that 

(1. 1) ~ A(DK) ~ I(K) ~} A(DK) . 

For any plane convex body K, the difference body satisfies the inequa­
lities (see Bonnesen and Fenchel [11) 
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(1 .2) 4A(K) < A(DK) < 6A(K) . 

Combining this with (1.1) gives 

A(K) < I(K) < 3A(K) 

As a consequence we have 

(1. 3) 1 < n(K) < 3 • 

The lower bound is not surprising, since a theorem of Hammer [3] gua­

rantees that n(x,y) ~ 1 for all (x,y) E K. 

In Section 3 we shall prove (1.1), which leads to (1.3). We shall 
also show that the given bounds are sharp, in that n(K) = 1 iff K is 
centrally symmetric, and there exist K satisfying the regularity co~ 
ditions we shall impose for which n(K) is as close to 3 as we please. 

Our proofs will depend on transforming I(K) to an integral involving 
the length of a variable diameter and the instantaneous radius of r~ 
tation of that diameter. Indeed, let D(a) be the length of a diameter 
making angle a with the horizontal and pea) the distance from the in~ 
tantaneous center of rotation to one endpoint. Then we shall show in 
Section 2 that 

(1. 4) 1 J2~ 2 1 2 I(K) = 2 0 [p (a)-p(a)D(a) + ~ D (e)]dO . 

It wi~l follow from this that 

(1 .5) I(K) = ! J2~ p2(e)da • 
2 0 

The latter expression is geometrically plausible when we think of K as 
covered by the infinitesimal sectors of area swept out by diameters 
rotating through an angle de about their instantaneous centers of ro 
tation (see Fig. 2). 

Let R(~) be the radius of curvature at a boundary point of K where 
the supporting line makes angle ~ with the horizontal, and let w(~) 
be the width of K in direction ~, that is, the distance between the 
parallel supporting lines making angle ~ with the horizontal. In sec 
tion 4 we shall derive from (1.5) the expression 

.( 1 .6) I(K) - 1 J2~ R2(~)w(~) d~ 
- 2 0 R(~) + R(~+~) . 

In case K has constant width w(~) - b we have in addition 
R(~) + R(~+~) == b, so (1.6) gives 

(1. 7) . 1 J2~ 2 I(K) = - R (~)d~ . 
2 0 
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This latter expression also follows from (1.5), since for sets of 
constant width we have p(a} = R(c,o} and da = dc,o (where a and c,o are as 

in Fig. 1). 

Since K has constant width b iff DK is a circular disk of radius b, 

we obtain from (1.1) 

(1. 8) 

The area of a plane set K of constant width b satisfies 

(1 .9) 

with equality' on the lefthand side for a Reuleaux triangle and on the 
righthand side for a circular disk. Using thl~ in (1.8) yields 

(1 .1 O) 1 ..; n (K) ..; _7f_ 
7f-/3 

for plane sets of constant width. The upper bound corresponds to that 

given in [6) for the expected number of normals that can be drawn to 
the boundary from a random point inside a set of constant width. The 
lower bound is achieved precisely when K is a circular disk, and the 
upper bound when K is a Reuleaux triangle. Our methods give (1.10) 

only for sets of constant width satisfying our regularity assumptions, 
and among such K there are those (approximating Reuleaux triangles) 
for which n(K} is arbitrarily close to the upper bound in (1.10). 

Section 5 contains a discussion of how (1.6) may be viewed as the ana 
logue of (1.7) for a plane convex set K of constant relative width 1 
in the relative geometry whose unit disk is DK. 

We introduce in Section 2 the background necessary for our development 
and proceed to the proofs of the formulas (1.4) and (1.5). 

2. PROOFS OF (1.4) AND (1.5). 

We shall restrict our considerations to plane convex bodies baving a 

certain degree of regularit~ In the following, K will be a plane con­
vex body whose boundary, to be denoted C, is a convex curve of class 

C3 with nowhere vanishing curvature. We shall refer to such a K as an 
oval. In this case C admits the parametric representation 

(2. 1 ) x = x(c,o} y = y(c,o} o ..; c,o ..; 27f , 

where c,o is the angle the tangent line at P(c,o} = (xCc,o) ,yCc,o)) makes with 

the x-axis (Fig.1). 
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Figure 1 

The chord P(~)P(~+w) is a diameter of K making angle e = e(~) with 
the x-axis (as indicated in Fig. 1). Since K is an oval, it is easy 
to see that e is a strictly monotonic function of ~, so it is also in 
fact possible to express", = .~ (e) as a smooth function of e. 

Let D(",) denote the length of the diameter P(~)P(",+w). Then any point 

(x, y) on this diameter has coordinates of the form 

x = x (~) + A cos e (~) 
(2.2) 0 .;;; A .;;; D(~) . 

y y(~) + A sin e (~) 

If S is the region in the (~,A)-plane defined by S = {(~,A): 

o .;;; 1 .;;; D(~) , 0 .;;; ~ .;;; 2w}, then the equations (2.2) define a smooth 
mapping of S into K. The theorem of Hammer [3] mentioned in the intr~ 
duction tells us-that in fact this mapping sends S onto K. Since 
(~,A) and (~+w,D(~)-A) always have the same image under this mapping, 
we see that each (x,y) E K is the image of 2n(x,y) points of S, where 
n(x,y) is the number of diameters through (x,y). Thus, if J = J(~,A) 

is the Jacobian determinant of the mapping, we have (see Federer 12, 
p. 243J) 

(2.3) 2I(K) = 2fIK n(x,y)dxdy 

Direct calculation from (2.2) gives 
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(2.4) J(op,A) = x' (op)sin B - y' (op)cos B - AB' , 

where B = Btop), and the prime represents differentiation with respect 
to op. But 

(2.5) x' (op) = R(op)cos op y' (op) = R(op)sin op 

where R(op) is the radius of curvature of C at P(op). Denoting by 
lj/ = lj/(op) the angle between the tangent line ard the diameter, as in 
Fig. 1, we obtain by substitution of (2.5) into (2.4), 

(2.6) J = R sin(B-op) - AB' = R sin lj/ - AB' . 

Let p(op) be the instantaneous radius of rotation of the diameter 
P(op)p(op+n), that is, the distance from the instantaneous center of ro 
tation to the point P(op). Let ds be the element of arclength of C at 
P(op). Then we have (see Fig. 2) 

(2.7) p(op)dB = sin lj/ ds R(op}sin lj/ dop • 

Figure 2 

These relations can be derived from the results given in Hammer and 
Smith [41. We have from (2.7) that R(op)sin lj/ = p(op)B'. Substitution 
of this into (2.6) gives 

(2.8) J(op,A) = (p(op)-A)B'(op) • 

Iteration of the rightmost integral in (2.3) then gives 
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(2.9) J
21f JD(!p) 

I(K) =! 0 {O Ip(!p)-AldA}e' (!p)d.p 

We let pee) = p(!p(e)) and D(e) = D(!p(e)). Changing variables from'll 
to e in (2.9) leads to 

(2.10) J
21f JD(e) 

I(K) =! o'{ 0 Ip(e)-AldA}de. 

Since any two diameters of an oval K intersect insideK, the centers 
of rotation all belong to K. Consequently p (e) < D(e) '. and the inner 
integral in (2.10) takes the form 

J
D(e) . JP(e) JD(e) 
O Ip(e)-AldA = 0 (p(e)-A)dA + (A-p(e))dA • 

pee) 
(2.11) 

Evaluation of thes"e integrals then gives, with (2.10), the required 
formula (1.4). 

To obtain (1.5), we rewrite (1.4) in the form 

(2.12) I(K) = } J21f [p2(e) + (D(e)-p(e))2]de 
. 0 

Since pee) + p(e+1f) = D(e), this becomes 

(2.13) 

from which (1.5) follows by the periodicity of p. 

3. THE BOUNDS ON I(K). 

Write equation (1.4) in the form 

Applying to (3.1) the fact that 0< p(D-p) < D2/4, we obtain 

(3.2) 

The boundary of the difference body DK has the polar .coordina te repr!:. 
sentation r = D(e), 0 < e < 21f, so 

(3.3) J
21f 

A(DK) =! 0 D2(e)de 

The required bounds in (1. 1) now follow from ("3.2) and (3.3). 

Equality holds on the lefthandside of (3.2), and so of (1:1); iff 
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pee) (D(e)-pee)): D2(e)/4, which happens precisely when pee) : D(e)/2. 
In this case each diameter of K is an, area bisector, and it follows 
that K is centrally symmetric (see Hammer and Smith [4]). As a fur­
ther consequence, since A(DK) = 4A(K) iff K is centrally symmetric, 
we see that n(K) = 1 iff K is centrally symmetric. 

The theorems of Hammer and Sobczyk [5] imply that when K is not cen­

trallysymmetric there exist three diameters surrounding a triangle ~ 
such that n(x,y) ~ 3 for (x,y) E ~. In this case, since n(x,y) ~ 1 . 

for all (x,y) E K, one must have that n(K) > 1. This shows in another 
way that n(K) = 1 only if K is centrally symmetric. 

Equality can hOld on the righthand side of (3.2) and (1.1) iff 
p(e)(D(e)-p(e)) : O. This is not possible for our class of ovals; ho­
wever we can find ovals K for which I(K) is arbitrary close to 
A(DK)/2. For example, appropriate approximations of triangles will 

have this property, and we can find such K with n(K) as close to 3 as 
we please. In that sense the bounds in (1.3) are sharp. 

4. PROOF OF (1.6). 

If w(~) is the width of K, then we have w(~) 
Thus from (2.7) we obtain 

D(e)sin W (see Fig.1). 

( 4. 1 ) 

Since W(~+1T) 

(4.2) 

p(e)de = sin W ds w(~) R(~)d~ 
D(e) 

w(~) and D(e+1T) 

p(e+1T)de 

D(e), we also have 

w(~) R(~+1T)d~ 
D(e) 

Comparison of (4.1) and (4.2) yields 

p(e+1T) 

p (e) 

R(<'o+1T) 

R(<'o) 

from which it follows that 

Thus we have 

(4.3) 

Q1tl 
p (e) 

p(e)+p(e+1T) 

pee) 

R(~)+R(<,O+1T) 

R(~) 

pee) D(e)R(<'oL 
R(<,O)+R(<'o+1T) 

Then (4.1) and (4.3) yield 

(4.4) 2 R2 (<,0) w (<,0) p (e)de = p(e)p(e)de ~ - - d~ 

which on integration gives the required formula (1.6). 
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5. INTERPRETATION OF (1.6) IN RELATIVE GEOMETRY. 

In relative differential geometry in the plane (see, for example, 
Bonnesen and Fenchel [1]), one replaces the ordinary Euclidean unit 
disk by an arbitrary centrally symmetric convex body E centered at 
the origin. The reZative width of a convex set K is the Euclidean 
width divided by half the width of E in the same direction. Then K 

. has constant reZative width b iff DK = K + (-K) = bE. 

Given an oval K, we take E = DK as our unit disk for a relative geo­
metry. Then K has contant relative width 1, relative to E .. Let ds (op) 

be th~ Euclidean element of arclength of K at P(op), and dS(op) the 
Euclidean element of arclength of E at the boundary point with out­
ward normal parallel to the outward normal of ·K at P(op). The l'eZative 

radius Df curvature of K at P(op), denoted by i(op), is 

But we have ds(op) 
Hence 

(5.1) 

i(op) = ~ 
dS(op) 

R(op)dop and, since E = DK, dS(op) 

i(op) R(ep) 
R(op) +R(op+u) 

(R(op)+R(op+u))dop. 

The reZative arcZength eZement of E, at a boundary point where the 
supporting line makes angle op with the horizontal, is 
dS(ep) h(E,op)dS(op), where h(E,op) is the supporting function of E. 
Since E = DK we have h(E,op) = w(op) = the width of K. This gives 

(5.2) w(op)dS(ep) =; weep) (R(ip)+R(op+u) )dop 

From (5.1) and (5.2) we obtain then for (1.6) the form, 

(5.3) I (K) = t J ir dS 

where the integration is over the boundary of E = DK with respect to 
the relative arclength induced by E. Thus (1.6) may be viewed as the 
generalization of (1.7) to sets of constant relative width. 
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