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1. INTRODUCTION.

Let M be a (connected) surface in a Euclidean m-space E®. For any
point p in M and any unit vector t at p tangent to M, the vector t
and and the normal space TiM of M at p determine an (m-1)-dimensio-
nal vector subspace E(p,t) of E™ through p. The intersection of M and
E(p,t) gives rise a curve y in a neighborhood of p which is called
the normal section of M at p in the direction t. The surface M is
said to have planar normal sections if normal sections of M are pla-
nar curves. In this case, for any normal section y, we have
Y'Ay"ay™ =0 identically. A surface M is said to have pointwise
planar normal sections if, for each point p in M, normal sections at
p satisfy y'AY"Ay™ =0 at p (i.e., normal sections at p have 'zerc
torsion” at p ). It is clear that if a surface M lies in a linear 3-sut

space E3 of E®, then M has planar normal sections and has pointwise

planar normal sections.

We shall now define the Veronese surface. Let (x,y,z) be the natural
coordinate system in E3 and (ul,uz,us,ul’,u5 ) the natural coordinate

system in Es. We consider the mapping defined by

1 1 2 1 3 1
ut = — yz u® = — zx u’ = — xy |,
/3 ’ /3 ’ /3
4 1 2 2 5 1 2 2 2
u = — (x° - y9) u” = = (x° + y° - 2z9).
3 ’ 6

This defines an isometric immersion of 52(/§) into the unit hyper-
sphere 84(1) of E5. Two points (x,y,z) and (-x,-y,-z) of 52(?33 are

mapped into the same point of 54(1), and this mapping defines an im-
bedding of the real projective plane into 54(1). This real projective

plane imbedded in ES is called the Veronese surface (see, for instan-
ce, [4]1.)

In [2], we have proved the following.
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THEOREM A. Let M be a surface in E®. If M has pointwise planar normal
sections, then, locally, M lies in a Zinearls-subspaae E5 of E".

The classification of surfaces in E™ with planar normal sections was
obtained in [3].

THEOREM B. Let M be a surface in E™. If M has planar normal sections,
then, either, locally, M lies in a linear 3-subspace E3 or, up to si-
milarity transformations of E®, M is an open portion of the Veronese
surface in a ES.

In view of Theorems A and B, it is an interesting problem to classify
surfaces in E5 with pointwise planar normal sections. As we already
mentioned, every surface in E3 has pointwise planar normal sections.
A surface M in E® is said to lie essentially inm E™ if, locally, M
does not lie in any hyperplane "l of ET. According to Theorem A,

the classification problem of surfaces in E™ with pointwise planar

normal sections remains open only for surfaces which lie essentially
either in E5 or in E4.

In this paper, we will solve this problem completely for surfaces
which lie essentially in E°. Furthermore, we will obtain three clas-

sification theorems for surfaces in EA. As biproducts some new geome-
tric characterizations of the Veronese surface and standard flat tori
are then obtained.

2. PRELIMINARIES.

Let M be a surface in E™. We choose a local field of orthonormal fra-
me {el,...,em} in E™ such that, restricted to M, the vectors €,y
are tangent to M and e,,...,e_ are normal to M. We denote by

3 m

{ml,...,mm} the field of dual frames. The structure equations of E5
are given by

A A

z.1) dw =-2mBAmB , m‘;+w§=0,
A A C

(2.2) de = -3 weAWL

A,B,C,... = 1,2,...,m.

Restricting these forms on M, we have wf =0, r,s,ty... = 3,...,m.
Since

(2.3) 0 = do® = -J mriAmi , diyi,ke.. = 1,2,
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Cartan's Lemma implies
ro_ r j r’ .
(2.4) wg ) hij w , h; h,.

From these formulas we obtain

(2.5) dol = -3 “’;A ol
(2.6) w; + mg =0,

i ik i i1 i k
(2.7) dwj = -3 Wy A wj + Qj , nj =3 ) Rjkz WAL,

r.r r.r
(2.8) Rikg = I(h3ph3y - hERTL)
r _ r t r L _ 1 r 3j
(2.9) do = -] we AW+ QL R =51 Rsij w Al
= _ s
(.10 513 z (hkl kj hkghkl)

The Riemannian connection of M is defined by (w?). The form (w:) defi
r i j
) hjjutele

1
Ftr h the

nes a connection D in the normal bundle of M. We call h .

the second fundamental form of the surface M. We call H

mean curvature vector of M. We take exterior differentiation of (2.4)

. r
and define hijk by

r k _ r s
(2.11) 2 hijkm = dhij Z L J Z th i z hlJ s

Then we have the following equation of Codazzi,
r _ ..r
(2.12) hijk = hikj

If we denote by V and vV the covariant derivatives of M and E", respec
tively, then, for any two vector fields X, Y tangent to M and any vec
tor field £ normal to M, we have

(2.13) v, Y

VXY + h(X,Y) ,

(2.14) VyE

-AX + DiE

where Ag denotes the Weingarten map with respect to g&. If <, > deno-
tes the inner product of E®, then

(2.15) <AEX,Y> = <h(X,Y),&>

If we define ¥h by

(2.16)  (Fgh) (Y,2) = Dy (h(Y,2)) - h(VyY,2) - h(Y,V,2) ,
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then equation (2.12) of Codazzi becomes
(2.17) (V4h) (Y, 2) = (V4h) (X,2Z)

It is well-known that Vh is a normal-bundle-valued tensor of type
(0,3).

We need the following theorems for the proof of Theorem 1.

THEOREM C. (Chen [11). 4 surface M of E™ has pointwise planar normal
sections <if and only if (Vth)(t,t)A h(t,t) = 0 for any t € TM.

THEOREM D. (Chen [2]). Let M be a surface in E® with pointwise planar

normal sections. Then Imh Zs parallel.

3. CLASSIFICATION OF SURFACES IN ES.

In this section we shall prove the following.

THEOREM 1. Let M be a surface which lies essentially in E°. Then, up
to similarities of ES, M is an open portion of the Veronese surface

in B2 if and only if M has pointwise planar normal sections.

Proof. Let M be a surface in E> with pointwise planar normal sections.
We choose a local field of orthonormal frame {el,ez,e3,e4,e5} such
that, restricted to M, e, is in the direction of the mean curvature
vector H, e, e, are the principal directions of Ay = A_ . Then e4

3
is perpendicular to h(el,ez). We further choose eg SO that ey is in

the direction of h(el,ez). Then, with respect to {el,ez,e3,e4,e5} ,
we have

Thus, we have

(3.1) h(el,el) = aey * ye, + neg , h(el,ez) = Ges ,
h(ez,ez) = Be3 - ye, - neg .

It is easy to see that dim Imh = 3 if and only if

h(el,el)A h(el,ez)A h(ez,ez) # 0. Therefore, dim Imh = 3 if and on-

ly if (o+B)y6é # 0. We put
(3.2) M, = {p €M | dimInh = 3}

Then M3 is an open subset of M. If M3 is empty, then Theorem D implies



that M does not lie essentially in ES. From now on, we assume that M
lies essentially in ES. Then M3 is not empty. We denote by N a compo-
nent of M3. On N, we have

(S.Sj (a+B)YS # 0 .

From (2.16) and (3.1) we find

(3.4) (T, W(epre)) = [e)(@) + yojle)) + nude ey +
+ [awg(el) +te (y) + nw‘s‘(el)]e4 +
+ [am';(el) + ymZ(el) +e () - Ztﬁmi(el)]e5 ,
(3.5) (@, W (ep,ep) = Leyla) + yujley) + nu3lep)le; +

+ [ouug(ez) + e, (v) . nmg(ez)le4 +

+ Lawy(e,) + vuy(e,) + ey(n) - 28wl(e,)le, ,
(3.6) (T, W(eyrey) - [sul(e)) + (a-Blul(e,)le, +

+ [ng(el) + 2wa(e1)]e4 +

+ e (8) + 2nwi(e))le, ,
(3.7) (T, b (egrey) = Loy (8) - vug(e;) - nul(e;)le, +

+ [ng(el) - e (v) - nw;’(el)lel, +

+ [Bu3(e)) - yui(e)) - e (n) - 28uj(e;)les ,
(3:8) (7, Wep,ep) = [8u3(e)) + (a-B)uf(ey)e, .

+ lémg(ez) + Zymi(ez)]e4 +

+ [e,(8) + 2n0}(e,)le; ,
(3.9) (T, W(ey,ep) = Ley(8) - vu, (e,) - nwl(ey)le, +

+ [803(ey) - e,(1) - mwg(e,)le, +

+ [Bw3(e;) - vuy(e)) - ey(n) - 28uj(e,)les -
Because M has pointwise planar normal sections, Theorem C implies

(3:10) (T, h)(ejrep) = Aphleyre) o (T, h)(eg,e,) = Aphleyre,)

for some 1oca1.functions AysA,. Combining (3.1), (3.4), (3.9) with
(3.10) we obtain
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(3.11) e, (@) = ar; + ng(el) + nmg(el) ,

(3.12) e (¥) = YA, - awjle)) + nuy(e))

(3.13) e () = mk, - awyle;) - yui(e) + 28wi(e))
(3.14) e, (8) = BX, - yui(e,) - nujle,)

(3.15) ep(y) = YAy + Bud(e,) + nuj(e,)

(3.16) e,(n) = mh, + Bu3(e,) - yw,(e,) + 2807 (e,)

Moreover, from (3.5), (3.6), (3.7), (3.8) and equation (2.17) of Coda-
zzi, we also have )

(3.17) e, (@) = yul(e,) - dulle)) * nudle,) + (a-Blul(e)
(3.18) e (B) = -yuie)) - swlle,) - nui(e;) + (a-Bluile,) ,
(3.19) e (8) = mr, + (a+Blaj(e,) - 2nwi(e))

(3.20) e,(8) = -nx, + (a+s)m§(e1) - anf(ez) ,

(3.21) AIY - (a+8)mg(e1) - 6m2(e2) + Zme(ez) =0 ,

(3.22) At * (a+Blud(e,) + swp(e)) - 2yoi(e)) = 0 .

Let t = e, + ke2. Then, from Theorem C, we have

(3.23) (V;1+ke2h)(e1+ke2,e1+kei)Ah(e1+ke2,e1+ke2) =0

for any k. Because eyne, , €3A€g and e, g are linearly independent,

(3.1), (3.3), (3.4) - (3.10), and (3.23) imply

(3.24) -yawg(el) + aGmZ(el) - (a+8)yw§(el) =0 ,

(3.25) (a+8)YA, + 3y8u](e,) - 3adw;(e,) + 3(a+B)ywi(e,) = 0 ,
(3.26) (a+B)yA, *+ 3ydm§(e1) + SBSwZ(el) - 3(a+8)Ym§(el) =0 ,
(3.27) yowl(e,) + BSu,(e,) - (a+B)ywi(e,) = 0

(3.28) 2y8A; - 3yni, - 3(a+8)vw§(e2) - 36nw,5,(e1) +6Ynmi(e1) =0,
(3.29) -3ynA, - 2y8X, + 3(a+B)ywl(e;) + 38nw, (e,) - 6ynwi(e,) = 0 .

From (3.25) and (3.27) we find
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5 2 _
(3.30) Ykl - 36w4(e2) + 6yw1(e2) =0 .
From (3.24) and (3.26) we find
(3.31) YA, + 38w (e,) - 6ywZ(e,) = 0

: 2 41 1'°1 :

Similarly, from (3.21), (3.22), (3.28) and (3.29), we also have

(3.32), . 2y8x, + 3(a+B)nw§(e2) - 3(G+B)ng(ez) =0 ,

i
o

(3.33) -2v6x, - 3(a*BInwd(e;) + 3(a+B)ywi(e,) =

From (3.22) and (3.24) we find

(3.34) ~ayd, - a(a*Blut(e,) - y8wl(e;) + (a-B)ywi(e)) = 0
Similarly, from (3.21) and (3.27) we get
(3.35) Byxl - B(a+g)wg(el) + Ysmg(ez) - (a—B)ywi(ez) =0 .

From (3.21), (3.30) and (3.22) and (3.31), we obtain, respectively,

(3.36) (a+Blud(e,) - 26ud(e,) + dyul(e,) =

]
o

(3.37) (a*Bwi(e,) - 260;(e;) + dyul(e)) =
From (3.21) and (3.36), we obtain

(3.38) -2yA; + 3(a+Blujle)) = 0
Similarly, from (3.22) and (3.37), we obtain

(3.39) | 2vd, + 3(a*Bluile,) = 0 .

Combining (3.21) and (3.38) we have

(3.40) YA, - 38w, (e,) * 6ywi(e,) = 0
Equations (3.22) and (3.39) imply

' 5 e 2 -
(3.41) YA, * 38w, (e;) - 6ywj(e;) =0 .
From (3.34) and (3.39) we find
(3.42) ar, + 3sw3(e;) - 3(a-Bloi(e;) =0 .

Similarly, we have
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(3.43) BA, *+ Sﬁmg(ez) - S(a—B)wi(ez) =0 .

From (3.32) and (3.39) we find

5 =
(3.44) 28%, - 2ni, - 3(a+6)m3(e2) =0
Similarly, we also have

5 -
(3.45) anl + ZGAZ - 3(a+6)w3(e1) =0

Now, we want to claim that N is pseudo-umbilical in ES, i.e., a =8 on
N. Assume that o # B at a point p € N. Then there is an open neigh-
borhood U of p in N such that o # B everywhere on U. From (3.38) -
(3.45), we obtain the following expression of mf and m: on U,

.
28nA, + [oa(a+B) + 2671
(3.46) w? = { L 2} wh o+
3(a“-8%)
{[B(a+8) + 28%1 - 2snx2} )
+ 7 .2 wo
3(a“-B°)
2YX 2yA
(3.47) wg = —1 wl S —2 mz ,
3(a+B) 3(a+B)
2nA, + 28 28\, - 2nA
(3.48) mg = {___j______&} wl + ———l———fz—z mz .
3(a*B) 3(a+B)

38 (a?-8%)

(3.49) ®

vlerd)? + 48%1a, - 4yemry)
+ w
38 (a2-82)

Now, we shall make a careful study of the integrébility condition to
obtain a contradiction. In order to do so, we need to compute the ex-

terior derivatives of (m:).

From (3.47) we have

4 _ 2y 1 2 2 1 2
(3.50) dm3 = d(gTEIET)A (A7 - ™) + (3 a+B Ja(he” - A7)

Thus, by applying (3.11) - (3.18), (3.46) and a direct long computa-

tion, we may find
A A

4 2 4
(3.51) duy = -3raley {ez(xl) + e (A,) - 132 +
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2 2
+ ﬂ_[_g"_‘"'_sl_z_"ﬁg_] (Af.’.xg)} mlsz .
38(a”-B")

Similarly, we may also obtain

(3.52) dwd = ——1 _  (6®-8H)s%le, (A,)-e, (A,)] -
> 96(0+8) % (a-8) b e

- 6(a?-8%)8nle, (A)ve; (A,)]

- 20(s2-yD) [(a+B) 2ras?1v26%n2 (a20ad) 4
+ 262 [8(a+8) +262 1224267 [ (a+B) +26712, +
+ 28(a?-8Hma 2, whaw?

(3.53)  du = ;E——%——i—?.{S(uz-Bz)Y[(a+B)2+462][el(xl)-ez(Xz)] -
(a”-8%)

- 1276n(a2-82)[ez(xl)+el(xz)] -
- [ (a+B) 2 (a®+ap+B?)y +

+ 2y8% (Sa?+5%eanras?)1 (A3nd) 4
+ Y[(a+8)2+462](BZA§+a2A§) +

+ aysn(a?-8H)A2,} 0l aw?

On the other hand, by using (2.10) and (3.1), we have

4
(3.54) Rypp =0
5 _
(3.55) R3;, = (B-a)8
. s
(3.56) Ry, = -2v8

Therefore, by equation (2.9) of Ricci, equations (3.47) - (3.49) and
(3.54) - (3.56), we also have

(3.57) dw 2

_ 2yYn 2.2 1
3 = “(gga-pgy) (A1*Ag) wiaw

(3.58) dw] —-——7—-%—————— {2771 (ar8) 244621 (A2n2) -
98 (a“-87) (a+B)
- 962(u2-82)2} m1A w2

’

(3.59) dw, = -iﬁlﬁ—f 12002022)+9(0+8) %} w'a0® .
9 (a+B)

Comparing (3.51) with (3.57), we find
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. 1 2né 2.2
(3.60) e. (A, )+e, (A.) = = A, A, - —° — (A%+2%)
AUSERASRUY] 3 Mt T f g7y T2

Comparing " (3.52) with (3.58), we find

(3.61) Sle; (A)-e, (X)) -nle, (A )+e; (A,)] =

= ———{la(a+p)+26%+2n? 123+ (g (arp)+26%+ 20210} -
)

2_,2
at-

MoA, - S(a2-8)s .

1re - 3¢
Combining (3.53) with (3.59), we get

(3.62) [ (a+8)2+48%1e; (1) e, (1)1 -48nle, (A )+e (A,)] =

= ———71—5— {(a+8)2 (a2+aB+p?) +
3(a"-8°)

+ 262(3a2+4a8+382+4n2+462)](Ai+l§) -
1

- —— o (L(a+B) 24871 (8%224a?22)}
3(a”-

4 2,2 ,2
-3 Gnkll2—66 (a®-87)

Substituting (3.60) into (3.61), we obtain

: _ 1 . 2,.2
(3.63) el(Al)-e2(A2) = gz;itgi; {[a(a+B)+28 ]Al +

+ [8(a+8)+26%122)-3(a®-8%)

Substituting (3.60) and (3.63) into (3.62), we may obtain
(3.64) a® - B =0 .

This contradicts to (3.3) because we assume that a # B.
Therefore, we have proved that o« = B identically on N, i.e., N is

pseudo-umbilical in ES. Because o = B, (3.42), (3.43), (3.44) and
(3.45) reduce to

5 -
(3.65) ak, + 38uy(e;) =0,

(3.66) BA, + 36m§(e2) 0,

(3.67) (a+B)BA, = -26%A, + 26mA

2 ’

2
(3.68) (a+B)ar, = -26mA; - 26°%, .
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From (3.67) and (3.68) we obtain

(3.69) A, =2, =0.

Thus, from (3.30) and (3.31), we have

(3.70) sw; = 2w’

From (3.38), (3.39), (3.42) and (3.43), we find

(3.71) wi=w)=0.

Substituting (3.69) and (3.71) into (3.11), (3.14), (3.17) and (3.18),
we find

(3.72) v o = B = constant on N .
From (3.12), (3.15), (3.69) and (3.71), we obtain
(3.73) dy = nuj .
From (2.9), (2.10), (3.1) and (3.71), we find
(3.74) do; = -2y6 wlaw? .

4

Using (3.13), (3.16), (3.69), (3.70) and (3.71), we have

2 2
(3.75) dn = (Q—-g;i—) w;

Taking exterior differentiation of (3.73) and applying (2.9), (2.10),
and (3.74), we obtain

(3.76) 0 = dzy = -2y8n wla w2 .
From (3.76) we get
(3.77) n=20.

Since (3.74) shows that w) # 0, (3.75) and (3.77) give &% = y2.

Without loss of generality, we may assume that
(3.78) . § = -y .
From (3.70) and (3.78), we find

(3.79) w = -2w§ )
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From (3.73) and (3.77), we see that § = -y is a nonzero constant on N.
Thus, by the definition of N and continuity, we conclude that N is the
whole surface M.

From (2.7), (2.9), (3.1), (3.74), (3.78) and (3.79) we find

(3.80) a2 = 3y2

Consequently, we may assume that a = -v3 y. Therefore, by combining
(3.71), (3.77), (3.79) and (3.80), we conclude that the connection

form (“2)’ restricted to N, is given by

(0 mi V3 le —yml sz
m; 0 V3 sz sz le

-3 ywl -3 yw? 0 0 0
le -Yw2 0 0 | Zmi

— —yol 0 20) 0

This shows that, up to similarity transformations of ES, M coincides
locally with the Veronese surface [4].

Conversely, if, up to similarity transformations of ES, M is an open
portion of the Veronese surface, then M has parallel second fundamen-
tal form, i.e., Vh = 0. Thus, by Theorem C of Chen [1]1, we conclude
that M has pointwise planar normal sections. This completes the proof
of Theorem 1.

4. SURFACES IN El' WITH CONSTANT MEAN CURVATURE.

In this and the next two sections, we will study surfaces in E*. Assu
me that M is a surface in E* with pointwise planar normal sectionms.

We choose a local field of orthonormal frame {el,e e3,e4} so that,

2?2

restricted to M, e, is in the direction of H, e,, e, are the princi-

3
pal directions of A3. Then e

2

3 is perpendicular to h(el,ez). With res-

pect to {91’62:35’84}: we have

A, = , A, =
3o 8 4 s -

Thus we have

(4.1) h(el,el) = aeg*tne, , h(el,ez) = <Se4 , h(ez,ez) ='Be3—ne4.
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It is easy to find that the mean curvature, the normal curvaturé and
the Gauss curvature of M in E* are given respectively by

H| = Tla*8] , K¥ = 2(a-8)%6% and X = ap - n? - 8.

Since M has pointwise planar normal sections, Theorem C implies

(4.2) (Velh)(el,el) = A h(e;,e,) ,

(Vezh)(ez,ez)i Azh(ez,ez)

for some local functions Al, Az. Using the same method as before, we
have the following

(4.3) el(a) =.ukl + nwg(el) ,

- 4 4 2
(4-4) el(B) = -nm3(e1) - 60«‘3(32) + (G'B)ml(ez) >
(4.5) vel(n) =ni; - amg(el) + Zsmf(el) ,
(4.6) e, (8) = ny, + (a+B)w§(e2) - anf(el) ,

- b 4 2
4.7) ez(a) = ‘6‘”3("31) + n‘”3(e2) + (a-s)wl(el) ’
(4.8) e,(8) = BA, - nujle,)
(4.9) e,(n) = mh, + Bui(e,) + 280i(e,)
(4.10) e,(8) = -nk; + (a+Blui(e;) - 2nwi(e,)
(4.11) 2081, - 3and, - 3ndui(e;) - 3a(a+Blui(e,) +

+ 3(a-B)nwi(e;) = 0

(4.12) (2a-8)mA, - 3(a2+a8+262)w§(e1) - 3n5mg(e2) +
+ 6(a-B)8wl(e;) *+ 3(a-B)nui(e,) = 0
(4.13) (a-28)nA, + 3néw:(e,) - 3(aB+B2+286%)0t(e.) -
° 2 371 3'¥2
- 3(a-B)nwy(e;) + 6(a-B)Suile,) = 0
(4.14) 380A, + 288%, - 3(a+B)Buj(e,) + 3néwi(e,) -

- 3(a-B)nui(e,) = 0 .

THEOREM 2. Let M be a surface which lies essentially in EA. Then M Zs
an open portion of the product surface of two planar circles <if and
only 2f M has pointwise planar normal sections and constant mean cur-
vature.



304

Proof. If M is an open portion of the product surface of two planar
ciréles, then it is easy to check that M has constant mean curvature
and pointwise planar normal sections.

Now, let M be a surface which lies essentially in E4. Assume that M
has constant mean curvature and pointwise planar normal sections.
Then, by using Theorem 4 of [2], we see that o+B # 0. We want to claim
that (a-B)6 = 0. Assume that (a-B)8 # 0. If n # 0, then by elimina-

ting mf(el) , wf(ez) from (4.12) and (4.13) with the help of (4.11),
(4.14), we have

(4.15) 2[(a+8)n® - 206712, + 2(3a+BInsh, -

- 3(a+B)2nwj(e;) + 6a(a+B)éuy(e,) = 0

(4.16) -2(a+38)n8A, + 2[(a+B)n’ - 286714, +

+ 6(a+B)BSwA(e,) + 3(a+B)nuj(e,) = 0 .
Combining (4.15) and (4.16), we have
(4.17) [ (a+8)2n? + 4aBs?][2nh, + 261, - 3(a+Blwi(e;)] = 0 .
If (a+8)2n? + 4ags? #.0. We have from (4.11) - (4.17)

2n8r, + (a’+agr26?)a,

2 1
(4.18) wy = W+
1 3(02'32)
X (ag+8%+26%)r, - 2nér, ,
7 2 — @
3(a”-8")
2(nA,+6X,) 2(8X,-nA,)
(4.19) mg = 1 2 ml + — 1 2 wz .
3(a+B) 3(a+B)

If (a+8)2n2 + 4a862 = 0, differentiating this relation, we have, with
the help of (4.3) - (4.10),

(4.20) [a(a+B)n? ~‘2a862]ll + daBnsh, -
- [a(a+B)? + 2(a-B)8%Inui(e) +
+ [4aB(a*B) - (a+BIn” - 2a8%]8uf(e,)+2(a-g) nduj(e)) +
+ (a-8)[ (a+B)n? + 2a8%Twl(e,) = 0 .

(4.21) -4agnér, + [8(a+B)n? - 2086712, +

+ [4aB(a+B) - (a+B)n’ - 288%16us(e)) +
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+ [B(a+B)? - 2(a-8)6%In0l(e,) +
+ (a-B)l (a+B)n® + 286%wi(e)) +

+ Z(a-B)znwa(ez) =0 .

From (4.11) - (4.14) and (4.20), (4.21), we still have (4.18),. (4.19).
Because |H| is constant, differentiating the relation a+B = constant,
we have

[
o

(4.22) oA - Swile,) + (a-Blul(e,) =

(4.23) BA, - Sujle)) + (a-B)uwl(e,)

n
o

Substituting (4.18), (4.19) into (4.22), (4.23), we get

(4.24) (3a+B)A; = 0 .

(4.25) (38+a)X; = 0 .

Thus we have (i) Al = A2'= 0, or (ii) 3a+p = 0, 3B+a = 0, or (iii)
3a+B = 0, Az = 0, or (iv) 38+a = 0, Al = 0. If case (i) occurs, (4.18)
and (4.19) imply wi = mg = 0. In particular, we have KN = 0. Thus, by

applying Theorem 5 of Chen [2], we see that M is an open portion of
the product surface of two planar circles. In particular, we have

§ =.0. This is a contradiction. If case (ii) occurs, we have o = B =
= 0. This contradicts to a+B # 0. For case (iii), differentiating
3a+B = 0, we have

.

(4.26) 3e2(a) + ez(B) =0 .
Since 12 =0, (4.7), (4.8), (4.18), (4.19), and (4.26) imply
(4.27) néx, = 0 .

From this we may again obtain a contradiction. The last case is simi-
lar to case (iii). Consequently, we have n = 0.

1f (a-B)G # 0 and aB # 0, then from (4.3) - (4.14) we have &B+62 =0
and

4.28) 2 _ %y 4 By,
. l.l)l '3‘(—-”4'8 w 7——3-3 a+B w ’
s 28r, 28

_ 2
w3 T 3R ¢ * 3@y ¢

(4.29)

Differentiating o+B = constant, we have (4.22) and (4.23). By subs-
tituting (4.28) and (4.29) into (4.22) and (4.23), we obtain
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(4.30) (3a? + 208 + %~ 26%)a; = 0,
(4.31) (a® + 208 + 3% - 26%)r, = 0 .
. N .. 2 2 2 _
Thus, (i) Al =X, = 0, or (ii) 3a” + 2aB + B” - 28° = 0 and
o + 208 + 382 - 2862 = 0, or (iii) 3a® + 2aB + B2 - 262 = 0 and
A, = 0, or (iv) A, = 0 and a2 + 208 + 382 - 2862 = 0.

Case (i) contradicts the assumption. Case (ii) implies az = 62 which
contradicts the assumption too. For case (iii), since aB + §2 =0 ,

we obtain

2

(4.32) 302 + 408 + B = 0

This implies 3a+B = 0. We know that this is impossible. The last case
is similar to case (iii).

If (a-B)§ f 0 and aB = 0, then without loss of generality, we may
assume B = 0. From (4.3) - (4.14), we have

(4.33) e; (B) = —6m§(e2) + awf(ez) =0,
(4.34) e,(n) = ZGmi(ez) =0 ,
(4.35) 261, = 3awj(e,) = 0

These imply A; = 0 and since B = n = 0, we have h(ez,ez) = 0. Thus,

by (4.2), we may choose A, = 0. From these we obtain a contradiction.

Consequently, we obtain (a-B)8 = 0. Thus, KN = 0, from which we ob-

tain Theorem 2 by applying Theorem 5 of Chen [2]. (Q.E.D.)

5. SURFACES .IN Eh WITH CONSTANT NORMAL CURVATURE.

In this section, we give the following classification result.

THEOREM 3. Let M be a surface which lies essentially in Ea. Then M
i8 an open portion of the product surface of two planar circles if
and only if M has pointwise planar normal sections and constant nor-

mal curvature.

Proof. Let M be a surface which lies essentially in E*. Assume M has
constant normal curvature and pointwise planar normal sections. As
mentioned in the proof of Theorem 2 we may assume that a+B # 0. We
want to claim that (a-8)& = 0. Assume that (a-8)8 # 0. Because,
(a-B)8 = constant, we have
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(5.1) Sleg(@) - e (B)] + (a-B)e (8) = 0, 1=1,2

Assume that n # 0. Using (4.3) - (4.10) and (4.18), (4.19), we obtain
from (5.1),

(5.2) 6(5&-36)%1 - n(a+8)k2 =0,

(5.3) -n(a+B)r; + §(3a-58)r, = 0 .

From these, we know that either Al = AZ = 0 or Af + }g = 0 and
(5.4) 2 (150% + 1582 - 34a8) = n%(a+p)>

The first case implies that wg = 0 which gives (@-8)8 = 0. In the se-

cond case, we differentiate (5.4) to obtain

(5.5) §A, = nA

1 nA; = -8,

2 ’ 1

where we have used (4.3) - (4.10) and (4.18), (4.19). From (5.5) we

find n2+62 = 0 which contradicts to the assumption. Consequently, we
have n = 0.

If aB # 0 and (a-B)S #0, then, from (4.3)-(4.14), we have (4.28) and (4.29°

and a8+62 = 0. Differentiating KN, we. find
(5.6) (Su-S)Bei(u) + (a-3B)ae,(B) =0 , i=1,2.

Using (4.3), (4.4), (4.7), (4.8), (4.28) and (4.29), we have from
(5.6),

(5.7) (5a-38)A, = (30-58)2, = 0

Since a8+62 = 0, 50-38 and 3a-58 are nonzero. Thus, A; = A, = 0. This
will give a contradiction. If (a-B)8 # 0 and aB = 0, then, by the sa-
me argument as given in section 4, we also have a contradiction. Thus,
we have (a-8)8 = 0, i.e., k¥ = 0. Therefore, by Theorem 5 of Chen [2],
M is an open portion of the product surface of two planar circles.

The converse of this is clear. (Q.E.D.)

6. SURFACES IN Eh WITH CONSTANT GAUSS CURVATURE.

THEOREM 4. Let M be a surface which lies essentially in Eéu If M has
pointwise planar normal sections and constant Gauss curvature, then

M has vanishing Gauss curvature.

Proof. Let M be a surface which lies essentially in EA‘ Assume that M
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has constant Gauss curvature K and pointwise planar normal sections.
We may assume that o+B # 0 by Theorem 4 of [2]. If (a-B)nd # 0, then,
by differentiating K, we have

(6.1) Bei(a) + aei(B) - Znei(n) - Zéei(s) =0, 1i=1,2.

Using (4.3) - (4.10), (4.18), (4.19) and (6.1) we find

2 2

(6.2) (@B - % - 69A, = (@B - n® - 6%, = 0 .

From this, we may conclude that K = aB - n2 - 8% = 0.

If (a-B)8 # 0, aB # 0, but n = 0, then we have (4.28), (4.29) and

aB+62 = 0. Differentiating K = a8—62 = constant, we have

(6.3) Bei(a) + aei(B) - ZGei(G) =0, i=1,2.

From (4.3), (4.4), (4.6), (4.7), (4.8), (4.10), (4.28) and (4.29), we have
(6.4) (@B-82)A, = (aB-8P)2r, = 0 .

Thus, we have aB-62 = 0 which contradicts d8+62 = 0. If (a-B)S # 0

but n = aB = 0, then by a similar argument as given in section 4, we
have a contradiction too.

When (a-B8)8 = 0, kY = 0. In this case, Theorem 5 of [2] implies that
M is an open portion of a flat torus. Thus, XK = 0. (Q.E.DJ)
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