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SECTIONAL VORONOI TESSELLATIONS

R.E. Miles

Dedicated to L.A. Santalé, by way of whose delightful 'In-
troduction to Integral Geometry' [16] 1 was §inst exposed in
1959 to the beauties of geometry and randomness combined.

ABSTRACT. Formulae for the expected mean s-content of s-facet per po-

lytope in the Voronoi random polytopal tessellation V of Rd, with res
pect to a homogeneous Poisson point procéss basis, are derived.
s-flat sectionsof V yield a new class of random s-dimensional polyto-
pal tessellations, whose properties are explored for s = 1,2,3.

1. INTRODUCTION & SUMMARY.

The area of random tessellations is an important one in stochastic
geometry, and some of the earliest work is due to L.A. Santald [12,
14,151 . An s-flat section of an ergodic homogeneous and isotropic ran

d . P . .
dom polytopal tessellation of R is a similar such tessellation in
the s-flat as containing space (1 < s < d-1). The main interest in
this paper is in exploring properties,of such sectional tessellatioms.

In section 2, Santald's basic formula for the expected mean projec-
tions of the isotropic uniform random section of a domain, in terms of the
" mean projections of the domain itself, finds useful application; in
particular to sectional tessellations. The most rewarding specific
random tessellations as regards sectioning are the Voronoi tessella-
tions V considered in Section 3. An explicit formula for the mean s-
content E{Ls} of s-facet per polytope of V is derived; - the case s=0

gives the mean number of vertices. Sectional Voronoi tessellations
arée examined in Section 4, with exact mean sectional values being ob-
tained for s = 1,2 and asymptotic ones as d » « for s=3. In fact, an
s-section of homogeneous V is stochastically equivalent to an s-sec-
tion of a corresponding inhomogeneous (s+1)-dimensional structure. In
Section 5, this aspect is explored in some detail in the line section
case s=1, with an integral expression being given for the interval
length distribution. Finally, in Section 6, generalized Voronoi tesse
llations Vn, involving the nearest n particles to a point, rather

than the nearest single particle, are introduced (n = 2,3,...). An
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analogous formula for E{Ls} to that obtained for V in Section 3, and

an integral expression for the volume moments in s-sections, are de-
rived.

Some of the results have been stated elsewhere [8,9], but without
proofs.
PRELIMINARIES. Qd(x,r) represents the closed ball with centre x, ra-
dius r, in euclidean d-space Rd, with boundary sphere an(x,r).
!...lm is used for appropriate measure, of dimension m, e.g.

d/2 )
10,1 |4 = vr? where v, = 7%/2/1(¢ +1) , and |aQ (x,1)],_, =

d-1
T

=0 where o, = 2nd/2/r(%).

d d

2. FLAT SECTIONS OF RANDOM TESSELLATIONS.

The following result is essentially due to Santald [17; Section 5],
but the form we present here is that given in [4; Relation (2.31T)].

Suppose X is a compact subset of Rd,and that Mi{X} denotes its mean i-
projection, i.e. the mean i-dimensional Lebesgue measure of its or-

thogonal projection onto an isotropic i-subspace in R¢ (i =0,...,d;
with M =1, M; = |X[d). For smooth convex bodies, the mean projec-

tions equal, apart from constant factors, the quermassintegrals of
integral geometry [4; Relation (2.27T)]. Let . F_ be an isotropic uni-

form random (IUR) s-flat hitting X, i.e. governed by restricted and
normalized invariant s-flat measure in R®. Then X n‘Fs is a random
s-dimensional compact subset, which has its own set of (random) mean
projections M;S) with respect to Fs as containing space, and we have

the striking result

2.1) EMXnF}o=M__, {XIM,_ X} = (0<rt<s<d

d-s+r
This extends to a corresponding result relating to a finite aggregate
of compact subsets {ix} (i=1,...,n) each CX, as follows. If the

scalar or vector Z is some domain characteristic, then the aggregate

mean value of Z is defined as

BE{z} =} § .z.
. 1
i=1
The (random) sectional mean E{MES)} for m independent IUR s-flat sec-
tions of X is also defined in the obvious way as the sum of the Mis)

values for each flat/subset intersection, divided by the total number
of such intersections; then, as m + », almost surely
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(s)
(2.2) BE{M_®'} — E{M,__, }/E(M,__}

[7; Sections 5,6].

Although this result holds for rather general X, in this paper we

i
shall only be concerned with the specific case where they form a (po-
lytopal) tessellation, i.e. each point of X .(apart from boundaries

aix) lies in one and only one iX and, apart from edge effects on 93X,
the ;X are d-dimensional convex polytopes.

Since X is arbitrary, (2.2) may be extended as an almost sure identity

(s)y _
(2.3) E{Mrs } o= BIM,__, }/E(M, )

for an ergodic homogeneous and isotropic random polytopal tessellation
in RY [9; Section 3.4.6], where E{Mi} are ergodic mean polytope values
and E{Més)} is the corresponding mean value for an arbitrary s-flat

section of the tessellation.

CONSISTENCY OF (2.3). These formulae are consistent in the following
sense. Write Td for the random tessellation in Rd, Ts for the sectio-
nal random tessellation Td n Fs and Tt for Ts n Ft, where t < s and
F CF_. Then the values E{Mit)} for T, may be obtained either by dou-

ble application of (2.3), or alternatively by a single application of
(2.3) with s=t. Equating these, there results a set of consistency re-

lations between the E{Mit)}.

As an example, consider the random polytopal tessellation Pd(p) deter-
mined by isotropic Poisson hyperplanes of intensity p in Rd, Pp(dJ,d)
(I9; Section 3.4.6]; see also [3; Chapter 6]). Pp(d—1,d) is characte-
rized by the property that the number of hyperplanes hitting any com-
pact X C RY has a Poisson (le{X}) distribution [9; Théorem 1]. For
Pylpg)

r+n [rédt

(2.4) E{M_} = 2¥ -
i r&E o 1o,

[9; Relation (62) with t=d, s=r]. Now
Pilpg) NE =P (p)
for which, by (2.3), (2.4) holds with d replaced by s, and

o, = r&hr e rihie,

Thus we obtain as a'byproduct the intensities of sections of Pd(p).
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MEAN CROSS-SECTION OF HIT AGGREGATE. Besides the sectional tessella-
tion TS = Td N Fs, another quantity of interest is the union U of po-

lytopes of T4 hit by F . We now derive a formula for the mean (d-s)-
content, E{Vd—s}’ of the intersection of U with orthogonal (d-s)-
flats Fd-s' Suppose the generic 'f' denotes ergodic densities of poly
topes of Td’ in.which each polytope has equal weight. Now the 'chance'
Fs hits any specific polytope T of T=th_s{T}, so that the aggregate
of cells hit by Fs has ergodic densities « Md_sf(Md_s,.). Hence the

mean d-volume Vd of each is

(2.5) E'{V,} = E{M,__ V,}/E(M;__}

For T_ , by (2.3) ,

}

d-s” ° .

(2.6) E{Vs} = E{Vd}/E{M

It follows from (2.5), (2.6) that

-
]

E{d-content of U per unit s-content of Fs} =

EF{V,}/E(V_} = EIM,__V, }/E{V,},

which is the expectation of Mg for a Vd-weighted random member of
Td'
THE POLYTOPAL CHARACTERISTICS Y;k). Actually, (2.3) applies to random

aggregates of quite general random ‘subsets of R%. When specializing
to tessellations, the facet structure of the polytope boundaries per-
mits (2.3) to be replaced by a larger system of such basic relatiomns.
Writing Tt,i (i-= 1,...,Nt) for the N, t-facets of a convex polytope
T, we define
Ny
Y;k){T} = 1 m¥ar

i=1

k,i}

Defining Lr to be the sum of the r-contents of the Nr r-facets of T,
we have the special cases

Y& o, vy oy y(®) oy 0 <r<d)
r r r r o r

s

(2.1) is replaced by the larger system

2.7) EYCPDarar ) = o (s,w () mim{OiT), (0<r<stu-d<s<d),

where

kg (s,u) = T /rEdtyr sl

[7; Section 10]1. As (2.1) becomes (2.3) for a random tessellation, so
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(2.7) must be replaced by the same relation having two expectations
on the right side. An important formula for convex polytopes is
1 N

st1e . d-s+1y, T d+1 8
2 )r(—f_)/" T(T)}lzl Ls,iws,i 4

(2.8) M_{T} = {I(

where ws i is the normalized (so that the total angle at an s-facet,
. .

in the orthogonal (d-s)-subspace, is 1) exterior angle at the s-facet
Ts i [4; Relation (2.18T)].
’

3. VORONOI TESSELLATIONS.

In geometrical statistical applications, it is desirable to have a va-
riety of specific random tessellations, for modelling purposes. A na-
tural source of such models are three dimensional flat sections of
higher dimensional tessellations. As we have just seen, sectioning P
tessellations leads to nothing new. However, this is not the case for
the other basic class of specific tessellations, the Voronoi (someti-
mes Thiessen, or Dirichlet) tessellations. We now determine basic pro-
perties of Voronoi tessellations, before considering their flat sec-
tions in Section 4.

The basic building block for a Voronoi tessellation is an underlying
stochastic point process. For simplicity, we shall simply take the lat
ter as the homogeneous Poisson point process Pp(O,d) of intensity o

in Rd, for which the number of point particles falling in any measura
ble set X has a Poisson (DIXId) distribution, and realizations in dis

joint sets are mutually independent. Each point x € Rd has an (almost
surely well-defined) nearest particle of Pp(O,d). The set of all x

with the same nearest particle is (almost surely) the intersection of
a finite number of (open) halfspaces in mutual general position, and
so is a (simple convex) polytope Tx [1;p.58]; x € TX and may be regar

ded as its nucleus (particle). Being simple, every s-facet of Tx lies
in the boundaries of (g:i) t-facets of T_ (0<s <t<d).

The aggregate of such polytopal cells constitutes a random tessella-
tion V = V(d) of Rd, which is ergodic, homogeneous and isotropic.‘U(1)

is a sequence of random intervals in Rl. It is easily analysed, with
the interval distribution being I'(2,2p), i.e. the distribution of the
sum of two independent exponential (2p) random variables. For discus-
sions of V(2) and V(3), the reader may consult [2] and [8], respecti-
vely.

BASIC (ALMOST SURE) PROPERTIES OF V. As with all polytopal tessella-
tions, each (d-1)-facet bounds two cells,/but in this case it is a por
‘tion of the perpendicular hyperplane bisector of the segment joining
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the two associated nuclei. More generally, each s-facet lies in the
boundaries of d-s+1 cells (s = 0,...,d-1): tessellations having this
property we call normal, because real-life tessellations for d =1,2,3
commonly possess this property. Moreover, for V, each s-facet is a
portion of the s-flat all of whose points are equidistant from the as-
sociated d-s+1 nuclei. In particular, each vertex (0-facet) is a ver-
tex of d+1 cells and is the circumcentre of the circumsphere through
the associated d+1 nuclei.

Now for some notation. For particles XysewesX in general position

in Rd,

d-s

Foo= {y:lyx |y = lyxglp = oo = Iyxd_sll}

is the equidistant s-flat (s = 0,...d-1). y € Fs lies in the common

s-facet of the cells with nuclei x iff the unique d-sphere

0t Xg_g

centre y through X seeesX contains no other particles of Pp(O,d).

d-s

THE VALUE OF E{Ls} FOR V(d). If obvious interest are the ergodic dis-
tributions and momentsof characteristics of the members of V(d). Wri-

ting Vd = Léd), one obvious one is

3.1) E(V,} = o7,

true whatever the underlying (ergodic) stochastic point process. We
shall now derive the values of the other E{Lg}, and apply them in in-
vestigating sectional Voronoi tessellations (Section 4).

The method relies heavily on a re-parametrization of XoseoesXg_o

- supposed to have general position in rY - which lie in a unique
(d-s)-flat Fd—s' Write Vd_s for (d-s)! times the (d-s)-content of the
(d-s)-simplex with vertices X peee Xy oo and suppose Qd_s(z,R) is the
unique (d-s)-sphere through XgreeosXg_ oo Then we have, in polar coor-
dinates within Fd ,
-s

R uld-s)

>
X, =
i i

éd'S); write doéd‘S) for the volume element of a

for unit vectors u
unit sphere in Fd—s corresponding to u§d‘5) (i=20,...,d-s). Finally,
write Fs(o) for the s-subspace orthogonal to Fd—s’ and parallel teo

Fs = {z} + Fs(o).

Now the (d-s+1)-set Xy reeesX is alternatively parametrized by

d-s

(d-s)
N oo

u(d—S)

z, R, Fs(o)’ u <sUT g g

and we have the corresponding integral geometric density relationship
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_ s+l pd(d-s)-1 (d-s)
(3.2) dxo...dxd_s = Vi-s R dz dR dFs(O) dOo
(d-s)
. do d-s ,

due to Blaschke § Petkantschin [9; Relation [74)]. Next, we express
points y in F_ in terms of polar coordinates (S,v(s)) within FS with
respect to z as origin, so that

2)1/2

ly x;1, = ®* + s =T (i=0,...d-s)

say, and

(3.3) Pr{y € associated s-facet of V|particles at X peeesX

Pr{int Qy(y,T) contains no particles}

exp(-p ude)

The probability element for particles of Pp(O,d) in dxo,...,dxd_S is

pd—s+1 d-s

Hiﬂl

dxi, so that the probability element for a (d-s+1)-set of

. cers I . (d-s) (d-s) .
particles within limitations dz, dR, dFs(O),dOO yoesd0 P is

pd—s+1 Vs+1 Rd(d-s)—? dz dR dFs

s aod-s)  4old-s)
-s o

(0) d-s

Now consider the contribution Zs from given particles at XoseeoXg_g

to the total s-facet content. We may write

S

L = JJ 1(s,v#))s%"! as ao0®)

where I(S,v(s)) indicates that (S,V(s)) lies in an s-facet of V.
Hence, by the complete independence of Poisson point processes,

(3.4) E{Z_|particles at x_,... }

X
’Td-s

II B{1(s,v ) y1s5 ! as ao(s)

o J exp(-pude) s°1 gs .
It follows from (3.3) and (3.4) that

(3.5) E{Ks from particle (d-s+1)-sets with circumcentre in dz} =

d-s+1 © poo
_p dz d(d-s)-1 os-1 _ d
R ~N— L j dFs(O) IOJ R S exp( pudT )dR dS

(d-s+1)! 0 .
I ' Iz
s+1 (d-s) (d-s)
I...J viTe do; e. d0g07
J

3
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= Xs dz ,

say. The (d-s+1)! factor arises because with total integration every
particle (d-s+1)-set is counted this many times. By [6; Relation (12)]

(3.6) J1 = od_s+i eee crd/o1 cee Oy,
while
d(d-s s
I(d-s+3) r( )T ()
(3.7) J, = d z

d(pud)d's+(3/d) 2 r(d!d-;]+s)

d-s+1

As for J2, this is Od-s times the mean value of Vs+1

for d-s+1

particles chosen independently and uniformly on the unit sphere in
d-s

R Its value,
2. - d-s
I.(d s%+s+1) I.(d s s+2) .r(%) d 1
G- Tt g d+1 1 ds-1, ds 7
- + -G -
> |r&H r(z)...r(&5

is derived in [6; Theorem 2], essentially by manipulation of the ba-
sic Blaschke-Petkantschin formula (3.2). Now Xs in (3.5) is the ave- .

rage s-content of s-facet per unit'd-content of rY. Hence, since each
s-facet is an s-facet of d-s+1 distinct cells of V, we have

(3.9) E{Ls} = (d-s+1) Xs E(Vd)
which, by (3.1) and (3.5) - (3.8) ,
’ 2
gd-s+1 (d-s)/Zr(d '5d+5+1)r(%-+])d'$+(5/d)r(d-s+%)

= ’. (0<S<d)-
(d-s)! dr(——iéﬁii) rdghds regh oo/

Special cases are, for s=d, (3.1) and, for s=0, the mean number of
vertices

d+1 a%+1 a ., ..)d
2 m r( ) Tz + 1)
E(N_} = . 2 2 @a=1,2,...) .
STy gy,

No other ergodic distributions or moments of 'V are known. Obvious tar
gets are formulae for E{Ms} and E{N;}.

Each vertex of V is the circumcentre of a set of d+1 particles of
Pp(O,d), the convex hull of which is a simplex. It turns out that the

aggregate of such simplices is a random tessellation - the Delaunay

tessellation [11]. Its ergodic distribution and the valuesof E{Vg}
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are derived in [9; Relations (76),(77)].

4. SECTIONAL VORONOI TESSELLATIONS.

Our main concern in this paper is with the sectional Voron01 tessel-
lations .

V(s,d) = V(d) nF,

for an arbitrary s-flat F,. Note that, in this notation, V = V(d)

= V(d,yd). Providing the intersections are nonvoid, F, intersectscells
of V in simple s-polytopes and t-facets in (s+t-d)-facets. As expec-

ted, each such (s+t-d)-facet lies in the boundaries of s-(s+t-d)+1 =

= d-t+1 cells of V(s,d). Thus, topologically, V(s,d) has the same

properties relative to Fs as V has relative to Rd, and is a normal te
ssellation.

We now investigate the application of (2.3) to V(s,d).
s =1: Hence F1 intersects the polytope boundaries of V in an ergodic

stationary (= homogeneous) stochastic point process. V(1,d) comprises
the intervals so formed, and the obvious goal here is to determine
the (ergodic) interval length (L) distribution. (2.3) reduces to one
relation, viz.

(4.1) E{L} = E{V,}/E{M, ,}

d-1

which, by [4; Relation (2.21)] ,

=

(2n r(d+‘)/r(—)} E(V,) /E(L

d- 1)

which, by (3.9) ,

r-b ordgh’

@ nirrgen’ /.5,

Note that, as d — « ,
' 1
E{L} — (2e) 2 = 0.4289 .

This 1limiting process is examined in closer detail, and an integral
expression for the distribution of L is given, in the next section.

s =2: Here V(2,d) is a planar tessellation, and (2.3) yields the two
relations

E{V,}/E{M

(4.2) E{A} a2}

(4.3) 7~ LE{(B}

E(M,_ }/E{M,_,}
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(A = area, B = perimeter). Simple geometric considerations in a 2-
flat orthogonal to any (d-2)-facet show that the sum of the three ex
terior angles there is 1/2. It follows from (2.8) that, for V

b

E{M,_,} = E{L,_,}/6(d-1)

d-2
and so (4.2) , (4.3) become

3d d+1,3
3adarcE2-1) r&h
(4.4) E{A} 2 Z ,

Sl r@ )32/ 152 2/

]

2

d+1. . 3d 1
6d-1! r&hHr3d. 1y rez- 4
(4.5) E{(B} FZr5 ¢-q

ra-3 ren’ (D 381y 152 1/

0f course, because each vertex in V(2,d) is vertex of three polygons,
the mean number of vertices
E{N} = 6 .
As d — = 1
E{A} — 3%/me = 0.2028
and 1
E{B} — (6/e)% = 1.486 .

The reader may check the consistency of (4.1) and (4.4), (4.5), by
considering a line section of V(2,d).

The dimensionless aggregate polygon rotundness measure
6 = 4r E{A}/E{B}? ,

as a function of d, is of interest. As d increases from 2 to =, it
increases from 0.785 to 1.155, suggesting that the polygons become
more rotund on average as d increases (cf. [5; p.119]).

s = 3: Here application of (2.3) (and (2.7)) yields

(4.6) E(V} = E{V,}/EM{4)}

4.7 E{S} = {Zr(%J/n%r(é%l)}E{Léfi}/E{MéE;}

(4.8) By = {8 y/em{d)y

(4.9) B{L{P) = {2/¢a-13 B {1y

(4.10) BN} = {r(égi)/w%rci§l)}E{Lgfg}/ﬁ{mgfg} ,

where S = surface area. Note that, by Euler's formula and the fact
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that each vertex lies in three faces, Nfs) = (3/2)N§3) and N§3) =
= (N§3)) + 2. Unfortunately, there appears to be no geometrical iden-
tity governing the exterior angles at (d-3)-facets, allowing E{Méfg}

to be determined by means of (2.8). However, we know from (3.3) with
s-= d-3 that the conditional orientation density of the four parti-

d-2
3

thogonal 3-sphere. As d — «, this distribution tends to degeneracy,

cles generating a (d—3)—facét of V is proportional to V on the or-

in which the four particles form an (isotropically oriented) equila-
teral tetrahedron. Consider now the consequences.for the interior and
exterior angles at (d-3)-facets of V. The interior angles actually
correspond to the spherical Voronoi division of the 3-sphere genera-
ted by the particle orientations, and 'so each tends to 1/4. The ex-
terior angles are those of the dual regions on the 3-sphere [13;
p.708]1; by this duality

A+B*=A*+B=%—-

so that, by (2.8), as d — « ,

—

(/e — - nmirdihy

Application of this and other formulae to (4.6) - (4.10) yields

3/2

E{V} — 1/16me 0.1012

v

3/2

E{S} — 1/2 0.9437

e Y

(P} = P12 — 1716(3e)1/2 y = 0.4989

EONSDY — 2+ (1/29) = 13.39
E{N{3)} — 3/2 = 34.19
BN — 17y = 22.79

as d — «, Real-life observational and experimental models have indi-
cated the common ocurrence of random normal tessellations with values

of E{N§3)} between 13 and 15. Thus, assuming that E{N§3)} for V(3,d)

decreases monotonically from 15.54 to 13.39 as d increases from 3 to
o, the random tessellations {V(3,d)} (d = 3,4,...) may be advanced as
natural stochastic models for these phenomena. For further details,
see [8; Section 6]. ‘

s > 4: The above cases s = 1,2,3 are those of obvious practical signi-
ficance from a modelling viewpoint. In principle, such theory may be
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carried out for general s, with its asymptotics involving an equilate-
ral (s+1)-simplex inscribed in an s-sphere.

5. REDUCED DIMENSION STOCHASTIC EQUIVALENCE.

The effect of any particle x in Pp(O,d) on V(s,d) is only by way of
its nearest point y of F_ and the distance |xy|1. Hence V(s,d) is sto

chastically equivalent to V(s,s+1) with respect to a new P(0,s+1) den

sity which is that of Pp(O,d) collapsed by rotation onto a half-Fs+1

r475"1  yhere r deno-

d-s
tes orthogonal distance from Fs; note that it is inhomogeneous. We il-

with bounding s-flat Fs. This density is"p o

lustrate this stochastic equivalence in the case s=1 by considering,
in the first instance, the case in which the particles form an inhomo

geneous Poisson process in R? of intensity p(y) (y = 0), with F, =
= the x-axis.

We begin by exploring the joint distribution of two particles in R2,

given that they give rise, as the intersection of their perpendicular
bisector with Ox, to an endpoint H of the interval process V(1,2) on

Ox. The necessary and sufficient condition for this to occur is shown
in Fig.1.

L u L v

Fig.1. Geometry of an interval end point H of V(1,d).

That is, there are two pariticles on the semicircle C with centre H,
radius r, and none within C. We suppose those particles have angular
coordinates ¢,Y(-m/2 < ¢ < ¢ < 7/2) with respect to the orthogonal to
Ox at H, and are interested in the joint di%tribution of (r;¢,y) gi-
ven that the two particles give rise to H. The method is elementary,
and uses the alternative coordinates shown in Fig.1, i.e. particles at
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(u,a) and (u+v,b) (a,v,b > 0). We have

(5.1) Pr{particles in (du,da) and (du+v,db), and none in int C} =

: ¥ 2 _2.1/2
= p(a) p(b) du da dv db.exp{-ZJ p(Y)(r°-y%) dy}
0
Integrating this respect to u over an interval of unit length, we ob-

tain E{L}—lf(a,v,b) da dv db , where.the joint density f(a,v,b) re-
lates to a random such configuration on Fl’ (Here, and below, f(*)

means 'density of *'), Thus, transforming to the polar coordinates
(r,¢,¥) (Fig.1), we have the ergodic density
(5.2) f(r,9,9) = p(r cos ¢)p(r cos ) r?(siny - sin ¢)

r
exp{-ZJ0 p(y)(rZ_YZ)I/Z dy} .
We now specialise to V(1,d), for which p(y)=pod_pﬁ_2 . Substitution

of this in (5.2) shows that r and (¢,y) are independent, with norma-
lized marginal probability densities

d/2 |2-3 d/2_d
f(r) = d 1 pgﬁ 4 p2d-2 exp -Eﬂa——£~ (r>0),
rez-g |TG+N r(z+1)
= _ (2d-2)! - S s .
£(¢,¥) 22«1?-(11 Z(d-z)'z (cos ¢ cos ¥)472 (siny - sin ¢) (-%<¢<w<’2‘)-

A swift infegration gives
1
- d 2
1 r(7-+1) d

~ (d/»Z-ne)l/2 as d — o ,
r(2 _%_) p,n_d/Z

E{r} =

while the mean projected particle separation onto Ox is
E{r(siny - sin ¢)} = E{;}.E{sinxp- sin ¢} = E{L}

given in (4.1).

To investigate the limiting behaviour 6f the distributions of r,
(¢,9), we consider the new variables
d d-1 d+1

R {(Ze)7 m 2 / d 2 } rd

a=alf?2y e=d”2w.
Then it is easily shown that, as d — o ,

(1) the distribution of R » I'(2,p), so that r/E{r} -+ 1 in probability;

(ii) the joint probability density
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1 .
£(a,8) » (2r) 7 (B-a)expl-] (@*+8%)} (= <a<B<=) ,
with limiting marginal density
1
- 2 = 2
f(a) = (an)-lle-a - (ZH)zae-u /2{1-¢(a)}] (-» < o < ),

For the marginal of B, note that B and -o have the same distribution.
Note also that, as d -+ «, the projecti?n of the segment joining the
two particles onto F1 ~1r-¢) ~ (Zne)? (B-a).

This approach may be extended to two adjacent semicircles, resulting
in an integral expression for the distribution of interval length L
in v(1,d).

Fig.2. Geometry of an interval HH' of V{(1,d).

Fig.2 shows the geometry. We have particles Pl,Pz,P3 at the points

(u,a), (u+v,b) and (u+v+w,c), respectively (a,b,c,v,w > 0). P. and P2

1
determine the semicircle C with centre H € Fl’ as above, and likewise

P2 and P3 determine the semicircle C' with centre H' also € Fl’ The

Voronoi geometry requires that there are no other particles within
U=CuC', so that HH', of length L, is a typical interval of V(1,d).
Then, with Poisson intensity p(y), the analogue of (5.1) is

Pr{particles in (du,da), (du*v,db) and (du+v+w,dc) ,

and none in int U}

Jmax(r,r')

= p(a)p(b)p(c) du da dv db dw dc exp{- p(y)e(y) dy ,

where £(y) is the length of the intersection of a line parallel to,
and distant y from, F1 with U, and r,r' are the radii of C,C'. Again

integration with respect to u over a unit interval gives
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E{L}—1 f(a,b,c,v,w) da db dc dv dw. Next we switch from (a,b,c,v,w)
to (L,¢,¥,¢',¥'), where

P1 has polar coordinates (r,¢) with respect to H
(r,y) with respect t6 H

P, has polar coordinates
(r',¢') with respect to H'

P3 has polar coordinates (r',y') with respect to H'
(fig.2, cf. also Fig.1). The transformation relations are

cos ¢ cos ¢'/sin(y-¢"')

a=1
L cosycos ¢'/sin(y-¢"')
c = L cos ycos v ' /sin(y-9")
L cos ¢'(sin ¢y - sin ¢)/sin(y-¢')
L cosy (sin¢' - sin ¢')/sin(y-¢")

with
4 2
3 (a,b,c,v,w) _ _ L (cos¥cos ¢')
a(L,6,b,6',9') sin¢sin y' sin’ (y-9¢')

{cos pcos(P-¢') + sin ¢ sin(y-¢') - cos ¢ '}{cos ¢' cos(yY-¢') -
- sin ¢' sin(y-¢') - cos ¥ 1}.

Thus in principle we have the joint density

£(L,0,0,0",9") = E{L}'—éigibi&l!iﬂl— p(a)p(b)p(c)

3(L,0,¥,¢',¥")

p(y)L(y) dy}

max(r,r')
exp{—J
0

where

r =L cos ¢'/sin(y-¢') , r' =L cos ¢y /sin(y-¢')
Finally, the marginal density of L results on integrating
f(L,¢,‘P,¢',‘41') over the (¢s¢'1¢'9‘p')'set

[-n/2 < ¢ <y <7/2] n[-1/2 <¢' <YP' < n/2] N [¢' < ¢l

=2

In the V(1,d) case, when p(y) = pcd_lyd , E{L} is given by (4.1) and,

as may be anticipated from Fig.2, the integrations with respect to ¢
(from -m/2 to ¢) and y' (from ¢' to w/2) are elementary, being finite
series in closed form.

6. GENERALIZED VORONO! TESSELLATIONS.

The standard Voronoi tessellation V is defined in terms of proximity
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to a single particle of the underlying point process. However, each

point of R¢ (almost surely) has-a well-defined set of nearest n parti-
cles (n = 2,3,...). Similarly the set of points with the same nearest

n particles constitutes a simple convex polytope, and the aggregate of
such polytopal cells is a generalized Voronoi tessellation Vn of RY

(see [5,10] for discussions of the case d=2); thus V = Vl‘ Like V and

V(s,d), Vn is a normal random tessellation.
One piece of the previous theory extends effortlessly to V,. We have

(cf. Section 3 for notation): for particles x a point y € F,

FYRERFE S
lies in an associated s-facet of Un iff int Qd(y,T) contains n-1 par-

ticles of Pp(O,d), an event of probability
(po T exp(- pu, 19/ (n-1)1

With this modification, the theory of Section 3 carries over, to
yield (suffix n ~ Vn)
s .
En{Ls} ~ r(d+n-s-1+a) E{Ls}

E (V) (a-1)r(d-s+§) EV,)

d-s s
— 2 d-s+=+
207 ¢ 2 pdeststly rdeny 9 r@emes-1ed 128
(-1 (d-s)r ar(E=58sy pdghyd-s rsply
Unfortunately, En{Vd} is only known in two cases, viz.
En{Vl} =1/p ,
En{Vz} = 1/(2n-1)p [5; Theorem 10.1]

Apart from this it is known that, because of the one-to-one correspon
dence between (d-1)-facets of V and cells of V2 ,

E,{V,} = 2 E(V,}/B(N,_|} ,

where of course the value of E{Nd—l} is also unknown.
We may also section vn', and naturally write

v,(s,d) = Vn(d,d) nF,
It is possible to write down an integral expression for the ergodic
moments of_Vs for Vn(s,d) , as we now show. Select an arbitrary point
0 = X, as origin in Fs. It lies in a random polytope To of Vn(s,d)
whose distribution is that of a uniform random member of Vn(s,d)

weighted by V_. Thus the kth order moment of V (T ) is
s s o
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ky _ k+1
B, (V5} = B (vE*y/E (v )

Now we may write

VS(TO) JF I(x) dx

s

where I(x) indicates that x € To. Thus, in the usual way,

E {v‘s‘} = E JF JF T enT0g) dxgeendg

s s

= ce E{I(x,)...1(x,)} dx,...dx
JFs JFS 1 k 1 k

. = JF .. IF Pr{xl,...,xk all € To} dxl...dxk

S S
Now

Pr{xl,...,xk all € To} = Pr{xo,...,xk € some cell of Vn}

and the latter event occurs iff there are particles of Pp(O,d) at

YiseeesYy and
k n
U = int iL=JO Jl:l Qd(xi’le-xill)

contains no particles of Pp(O,d). Thus

Ky _ -plUlq
En,V {VS} = [ - J J v J e dy ...dy dx_...dx, .
s F F Rd Rd

Further progress seems unlikely, given the complex nature of the ball
union U. )
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