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ABSTRACT. Formulae for the expected mean s-content of s-facet per po­

lytope in the Voronoi random polytopal tessellation V of Rd, wIth res 
pect" to a homogeneous Poisson point proc.ss basis, are derived. 
s-flat sectionsof V yield a new class of random s-dimensional poly to­
pal tessellations, whose properties are explored for s = 1,2,3. 

1. INTRODUCTION & SUMMARY. 

The area of random tessellations is &n important one in stochastic 
geometry, and some of the earliest work is due to L.A. Santal6 [12, 

14,15]. An s-flat section of an ergodic homogeneous and isotropic ra~ 

dom polytopal tessellation of Rd is a similar such tessellation in 

the s-f!at as containing space (1 ~ s ~ d-1). The main interest in 

this paper is in exploring properties ,of such sectional tessellations. 

In section 2, Santal6's basic formula for the expected mean projec­
tions of the isotropic uniform random section of a domain, in tenns of the 
mean projections of the domain itself, finds useful application; in 
particular to sectional tessellations. The most rewarding specific 
random tessellations as regards sectioning are the Voronoi tessella­
tions V considered in Section 3. An explicit formula for the mean s­
content E{Ls} of s-facet per polytope of V is derived;' the,case s=O 

gives the mean number of vertices. Sectional Voronoi tessellations 

ar. examined in Section 4, with exact mean sectional values being ob­
tained fo'r s = 1,2 and asymptotic ones as d -> co for s=3. In fact, an 
s-section of homogeneous V is stochastically equivalent to an s-sec­
tion of a corresponding inhomogeneous (s+l)-dimensional structure. In 

Section 5, this aspect is explored in some detail in the line section 
case s=l, with an integral expression being given for the interval 
length distribution. Finally, in Section 6, generalized Voronoi tess~ 
llations Vn , involving the nearest n particles to a point, rather 

than the nearest single particle, are introduced (n = 2,3, ... ). An 
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analogous formula for E{L s } to that obtained for V in Section 3, and 

an integral expression for the'volume moments in s-sections, are de­
rived. 

Some of the results have been stated elsewhere [8,9), but without 
proofs. 

PRELIMINARIES. Qd(x,r) represents the closed ball with centre x, ra­

dius r, in euclidean d-space Rd , with boundary sphere aQd(x,r). 

1 ••• lm is used for appropriate measure, of dimensionm, e.g. 

IQd(x,r)l d = udrd where ud = 7Td/2/r(~+1) , and l'aQd(x,r)ld_1 

adrd- 1 where ad = 27Td/2/r(~). 

2. FLAT SECTIONS OF RANDOM TESSELLATIONS. 

The following result is essentially due to SantaHi [17; Section 5), 

but the form we present here is that given in [4; Relation (2.31T)). 

Suppose X is a compact subset of Rd, and that M.{X} denotes its mean i-
1. 

projection, i.e. the mean i-dimensional Lebesgue measure of its or­

thogonal projection onto an isotropic i-subspace in Rd (i '" O, ••• ,d ; 

with Mo == 1, Md == IXl d). For smooth convex bodies, the mean projec-

tions equal, apart from constant factors, thequermassintegrals of 
integral geometry [4; Relation, (2.27T)). LetFs be an isotropic uni-

form random (IUR) s"flat hitting X, i.e. governed by restricted and 

normalized invariant s-flat measure in Rd. Then X nF is a random 
s 

s-dimensional compact subset, which has its own set of (random) mean 

projections M~s) with respeat to F as aontaining spaae, and we have 
J S 

the striking result 

(2.1) (0 ..; r ..; s ..; d) • 

This extends to a corresponding result relating to a finite aggregate 

of compact subsets {iX} (i = 1, ... ,n) each ex, as follows. If the 

scalar or vector Z is some domain characteristic, then the aggregate 
mean value of Z is defined as 

E{Z} = -1 
n 

n 
L .Z 

i=1 1. 

The (random) sectional mean E{M(s)}' for m independent IUR s-flat sec­
r 

tions of X is also defined in the obvious way as the sum of the M(s) 
r 

values for each flat/subset intersection; divided by the total number 
of such intersections; then, as m + ., almost surely 
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(2.2) 

[7; Sections 5,6]. 

Although this result holds for rather general iX, in this paper we 
shall only be concerned with the specifi'c case where they form a (po­
lytopal) tessellation, i.e. each point of X (apart from boundaries 

aiX) lies in one and only one iX and, apart from edge effects on ax, 

the iX are d-dimensional convex polytopes. 

Since X is arbitrary, (2.2) may be extended as an almost sure identity 

(2.3) 

for an ergodic homogeneous and isotropic random polytopal tessellation 

in Rd [9; Section 3.4.6], where E{M.} are ergodic mean polytope values 
~ 

and E{M(s)} is the corresponding mean value for an arbitrary s-flat 
r 

section of the tessellation. 

CONSISTENCY OF (2.3). These formulae are consistent in the following 

sense. Write Td for the random tessellation in Rd, Ts for the sectio­

nal random tessellation Td n Fs and Tt for Ts n Ft' where t < sand 

Ft C F . Then the values E{M~t)} for T may be obtained either by dou-s ~ z 
ble application of (2.3}, or alternatively by a single application of 
(2.3) with s=t. Equating these, there results a set of consistency re-

lations between the E{M~t)}. 
~ 

As an example, consider the random polytopal tessellation Pd(p) deter­

mined by isotropic Poisson hyperplanes of intensity p in Rd , Pp(d-1,d) 

([9; Section 3.4.6]; see also [3; Chapter 6]). P p (d-1,d) is characte­

rized by the property that the number of hyperplanes hitting any com­

pact X C Rd has a Poisson (pM1{X}) distribution [9; Theorem 1]. For 

Pd(Pd) 

(2.4) E{M } 
r 

2r _r~(..:=4_+_1_)_lr (d;1 ))r 
r(dir +1) r(4)Pd 

[9; Relation (62) with t=d, s=r]. Now 

for which, by (2.3), (2.4) holds with d replaced by s, and 

Thus we obtain as a byproduct the intensities of sections of Pd(p). 



313 

MEAN CROSS-SECTION OF HIT AGGREGATE. Besides the sectional tessella­

tion Ts = Td n Fs ' another quantity of interest is the union U of po-

lytopes'of Td hit by Fs. We now derive a formula for the mean (d-s)­

content, E{Vd_s }' of the intersection of U with orthogonal (d-s)­

flats Fd_s . Suppose the generic 'f' denotes ergodic densities of pol~ 

topes of Td , in. which each polytope has equal weight. Now the 'chance' 

F s hits any specific polytope T of T'" Md_s {T}, so that the aggregate 

of cells hit by Fs has ergodic densities'" Md_sf(Md_s '.). Hence the 

mean d-volume Vd of each is 

(2.5) 

For Ts ' by (2.3) , 

It follows from (2.5), (2.6) that 

E{d-content of U per unit s-content of Fs} 

E'{Vd}/E{Vs } = E{Md_sVd}/E{Vd} , 

which is the expectation of Md_s for a Vd-weighted random member of 

Td • 

THE POLYTOPAL CHARACTERISTICS y~k). Actually, (1.3) applies to random 
J 

aggregates of quite general random 'subsets of Rd. When specializing 
to tessellations, the facet structure of the polytope boundaries per­

mits (2.3) to be replaced by a larger system of such basic relations. 

Writing Tt,i (i = 1, .•. ,Nt ) for the Nt t-facets of a convex polytope 

T, we define 

Defining Lr to be the sum of the r-contents of the Nr r-facets of T, 

we have the special cases 

Y (r) = L 
r r 

yld) 
r M r 

y(r) 
o N 

r 
(0 ..;; r ..;; d) 

(2.1) is replaced by the larger system 

(2.7) E y(s+u-d){Tr>F } = K (s,u)Y(u) {T}/M(d){T}, (O..;;r";;s+u-d";;s..;;d), 
r s d d-s+r . d-s 

where 

[7; Section 10]. As (2.1) becomes (2.3) for a random tessellation, so 
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(2.7) must be replaced by the same relation having two expectations 
on the right side. An important formula for convex polytopes is 

1 N 

(2.8) M {T} = {r(S+21)r(d-S2+1)hr2r(d+21)} ra L .$ . 
a i-I a,1 a,1 

where $ . is the normalized (so that the total angle at an s-facet, a,1 . . 

in the orthogonal (d-s)-subspace, is 1) exterior angle at the s-facet 
T. [4; Relation (2.18T)]. a,1 

3. VORONOf TESSELLATlnNS. 

In geometrical statistical applications, it is desirable to have a va­
riety of specific random tessellations, for modelling purposes. A na­
tural source of such models are three dimensional flat sections of 
higher dimensiorial tessellations. As we have just seen, sectioning P 
tessellations leads to nothing new. However, this is not the case for 
the other basic class of specific tessellations, the Voronoi (someti­
mes Thiessen, or Dirichlet) tessellations. We now determine basic pro­
perties of Voronoi tessellations, before considering their flat sec­
tions in Section 4. 

The basic building block for a Voronoi tessellation is an underlying 
stochastic point process. For simplicity, we shall simply take the lat 
ter as the homogeneous Poisson point process Pp(O,d) of intensity p 

in Rd , for which the number of point partiaZes falling in any measur~:. 
ble set X has a Poisson (pIXl d ) distribution, and realizations in dis 

joint sets are mutually independent. Each point x E Rd has an (almost 
surely well-defined) nearest part~cle of Pp(O,d). The set of all x 

with the same nearest particle is (almost surely) the intersection of 
a finite number of (open) halfspaces in mutual general position, and 
so is a (simple convex) polytope Tx [1;p.58]; x E Tx and may be rega!:. 

ded as its nuaZeus (particle). Being simple, every s-facet of Tx lies 
d-s in the boundaries of (d-t) t-facets of Tx (0 < s < t < d). 

The aggregate of such polytopal ae Z Zs co'nsti tutes a random tessella­

tion V = V(d) of Rd , which is ergodic, homogeneous and isotropic. V(1) 

is a sequence of random intervals in Rl. It is easily analysed, with 
the interval distribution being r(2,2p), i.e. the distribution 9f the 
sum of two independent exponential (2p) random variables. For discus­
sions of V(2) and V(3), the reader may consult f2J and [8], respecti­
vely, 

BASIC (ALMOST SURE) PROPERTIES OF V. As with all polytopal tessella­
tions, each (d-l)-facet bounds two cells,/but in this case it is a po!:. 
tion of the perpendicular hyperplane bisector of the segment joining 
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the two 8,$sociated nuclei. More generally, each s-facet lies in the 
boundaries of d-s+1 cells (5 = D, ... ,d-1): tessellations having this 

property we call nopmaZ. because real-life tessellations for d = 1,2,3 
commonly possess this property. Moreover, for V, each s-facet is a 
portion of the s-flat all of whose points are equidistant from the as­
sociated d-s+1 nuclei. In particular, each vertex (O-facet) is a ver­
tex of d+1cells and is the circumcentre of the circumsphere through 
the associated d+1 nuclei. 

Now for some notation. For particles xo '" .,xd_s in general position 

in Rd, 

is the equidistant s-flat (5 = 0, ... d-1). Y E Fs lies in the common 

s-facet of the cells with nuclei xo" .. ,xd_s iff the unique d-sphere 

centre y through xo, ... ,xd_s contains no other particles of Pp(O,d). 

THE VALUE OF E{L s } FOR V(d). If obvious interest are the ergodic dis­

tributions and momentsof characteristics of the members of V(d). Wri-

ting Vd 

(3.1) 

_ L(d) one obvious one is 
d ' 

true whatever the underlying (ergodic) stochastic point process. We 

shall now derive the yalues of the other E{L s }, and apply them in in­
vestigating sectional Voronoi tessellations (Section 4). 

The method relies heavily on a re-parametrization of xo"",xd_s 

- supposed to have general position in Rd - which lie in a unique 

(d-s)-flat Fd_s ' Write Vd_s for (d-s)! times the (d-s)-content of the 

(d-s)-simplex with vertices xo"",xd_s ' and suppose Qd_s(z,R) is the 

unique (d-s)-sphere through xo"",xd_s ' Then we have, in polar coor­

dinates within Fd_s ' 
.-+ 
zx. 

1. 
= R u~d-s) 

1. 

for unit vectors u~d-s); write dO~d-s) for the volume element of a 
1. 1. 

unit sphere in Fd_s corresponding to uid- s ) (i = 0, ... ,d-s). Finally, 

write Fs(O) for the s-subspace orthogonal to Fd_s ' and parallel to 

Fa = {z} + Fs(O)' 

Now the (d-s+1)-set xo '" .,xd_s is alternatively parametrized by 

(d-s) (d-s) 
z, R, Fs(O)' U o , ... ,u d-s 

and we have the corresponding integral geometric density relationship 



(3.2) 

316 

v:~! Rd (d-s)-1 dz dR dFs(O) dO~d-S) 

dO(d-s) 
. .. d-s 

due to Blaschke & Petkantschin [9; Relation [74)1. Next, we express 

points y in Fs in terms of polar coordinates (S,v(s») within Fs with 

respect to z as origin, so that 

say, and 

(3.3) 

(i 0, ... d-s) 

Pr{y E associated s-facet of V!particles at xo" .• ,xd_s } 

Pr{int Qd(y,T) contains no particles} 

d exp(-p UdT ) . 

The probability element for particles of Pp(O,d) in dxo " .. ,dxd_s is 

pd-s+l n~:~ dx i , so that the probability element for a (d-s+1)-set of 

d d d (d-s) (d-s) particles within limitations dz, R, F (0)' 0 , ... ,dO is 
s 0 d-s 

pd-s+l Vs +1 Rd(d-s)-l dz dR dF dO(d-s) ... dO(d-s) 
d-s . s(O) 0 d-s 

Now consider the contribution is from given particles at xo, ... xd_s 

to the total s-facet content. We may write 

is II I(S,v(s»)Ss-l dS dOes) 

where I(S,v(s») indicates that (S,v(s») lies in an s-facet of V. 
Hence, by the complete independence of Poisson point processes, 

(3.4) E{i !particles at x , ... ,xd } s o-s 

II E{I(S,v(S»)}Ss-1 dS dOes) 

~s I eXPC-PUjTd) ss-1 dS . 

It follows from (3.3) and (3.4) that 

(3.5) E{i s from particle (d-s+1)-sets with circumcentre in dz} 

I .. · I vs+1 dO(d-s) ... dO(d-s) 
d-s 0 d-s 
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say. The (d-s+1)! factor arises because with total int~gration every 
particle (d~s+1)-set is counted this many times. By [6; Relation (12)1 

(3.6) 

while 

(3.7) 

As for J 2, this is Od-s+l 
d-s 

r(d(d;S))r(!) 

2 r(d(d-i)+s) 

times the mean value of for d-s+1 

particles chosen independently and uniformly on the unit.sphere in 

Rd- s • Its value, 

(3.8) d-s+l 
°d_s .' 

is derived in [6; Theorem 21, essentially by manipulation of the ba­
sic Blasthke-Petkantsch-in formula (3.2). Now Xs in (3.5) is the ave-

rage s-content of s-facet per unit·d-.content of Rd. Hence, since each 
s-facet is ans-facet of d-s+1 distinct cells of V, we have 

(3.9) 

which, by (3.1) and (3.5) - (3.8) , 

2 
2d- s +111 (d-s) /2r (d -s1+s + 1) r (~ + 1) d- s+ (sid) r (d-s+£) 

(0 ..; s ..; d). , . 2 
(d-s)! dr(d -~d+s) r(~)d-s r(Si1) ps/d 

Special cases are, for s=d, (3.1) 'and, for s=O, the mean number of 
vertices 

'j d . jd . r(Z + 1) 

r(di 1) . 
(d 1,2, ••• ) . 

No other ergodic distributions or moments of 'V are known. Obvious tar 
gets are formulae for E{M } and E{N'}. . s s 

Each vertex of V is the circumcentre of a set of d+1 particles ot 
ppeO,d), the convex hull of which is a simplex. It turns out that the 

aggregate of such simplices isa random tes~ellation - the Delaunay 

tessellation [11]. Its ergodic distribution and the values of E{V~} 
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are derived in [9; Relations (76), (77)]. 

4. SECTIONAL VORONOI TESSELLATIONS. 

Our main 'concern in this paper is with the sectional Voronoi tessel­
lations 

V(s,d) = V(d) n Fs 

for an arbitrary s-flat Fs' Note that, in this notation, V = V(d) = 

= V(did). Providing the intersections are nonvoid, Fs intersects cells 
of V in simple s-polytopes and t-facets in (s+t-d)-facets. As expec­
ted, each such (s+t-d)-facet lies in the boundaries of s-{s+t-d)+1 

= d-t+1 cells of V(s,d). Thus, topologically, V(s,d) has the same 

properties relative to Fs as V has relative to Rd , and is a normal te 

ssellation. 

We now investigate the application of (2.3) to V(s,d). 

s = 1: Hence FI intersects the polytope boundaries of V in an ergodic 

stationary (= homogeneous) stochastic point process. V(1,d) comprises 

the intervals so formed, and the obvious goal here is to determine 
the (ergodic) interval length (L) distribution. (2.3) reduces to one 
relation, viz. 

(4.1) 

which, by [4; Relation (2.21)] , 
1 

= {2~Zr(d;1)/r(4)} E(Vd)/E(L d_ l ) 

which, by (3.9) , 

Note that, as d ->- 00 , 

I 

E{L} -+ (2e)-Z = 0.4289 . 

This limiting process is examined in closer detail, and an integral 
expression for the distribution of L is given, in the next section. 

s =2: Here V(2,d) is a planar tessellation, and (2.3) yields the two 
relations 

(4.2) E{A} E{Vd }/E{Md _ 2 } 

(4.3) 
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(A = area. B = perimeter). Simple geometric considerations in a Z­
flat orthogonal to any (d-Z)-facet show that the sum of the three ex 
terior angles there is1/Z. It follows from (Z.8) that, for V , 

E{Ld_2}/6(d-1) 

and so (4.Z) , (4.3) become 

(4.4) E{A} 
3 d r(¥ - 1) r(~;-!/ 

(4.5) IHB} 
6(d-1)! r(!f!-)r(3zd - 1) r(Z -~) 

Of course, because each vertex in V(Z,d) is vertex of three polygons, 
the mean number of vertices 

As d -.. co , 

and 

E{N} = 6 

1 

E{A} -+ 32 hre 0.ZOZ8 

1 

E{B} -+ (6/e)2 = 1.486 . 

The reader may check the consistency of (4.1) and (4.4), (4.5), by 
considering a line section of V(Z,d). 

The dimensionless aggregate polygon rotundness measure 

6 = 4~ E{A}/E{B}2 , 

as a function of d, is of interest. As d increases from Z to co, it 
increases from 0.785 to 1.155, suggesting that the polygons become 
more rotund on average as d increases (cf. [5; p.1191). 

s = 3: Here application of (Z.3) (and (Z.7)) yields 

(4.6) E{V} E{V }/E{M(d)} 
d d-3 

1 

(4.7) E{S} = {Zr(~)/~2r(d+l)}E{L(d)}/E{M(d)} Z Z d-l d-3 

(4.8) E{M(3) } 
1 

E{M(d)}/E{M(d)} 
. d-2 d-3 

(4.9) E{L(3)} 
1 

{Z/(d-1)} E{L(d)}/L{M(d)} 
d-2 d-3 

1 

(4.10) E{N(3)} 
0 

{r(d-Z)/~2r(d+1)}E{L(d)}/E{M(d)} 
Z Z d-3 d-3 

where S surface area. Note that, by Euler's formula and the fact 
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that each vertex lies in three faces, Nf3) = (3/2)N!3) and N~3) 

= (N(3») + 2. Unfortunateiy, there appears to be no geometrical idell-
o 

tity governing the exterior angles at (d-3)-facets, allowing E{M~~~} 

to be determined by means of (2.8). However, we know from (3.3) with 
s·= d-3 that the conditional orientation density of the four parti-

d-2 cles generating a (d-3)~facet of V is proportional to '3 on the or-

thogonal 3-sphere. As d -+ w. this distribution tends to degeneracy. 
in which the four particles form an (isotropically oriented) equila­
teral tetrahedron. Consider now the consequences. for the interior and 
exterior angles at (d-3)-facets of V. The in~erior angles actually 
correspond to the spherical Voronoi division of the 3-sphere genera­
ted by the particle orientations. and 'so each tends to 1/4. The ex­
terior angles are those of the dual regions on the 3-sphere [13; 
p.708]; by this duality 

A + B* = A* + B = i 
From this it follows that each exterior angle tends to 

1 3 . -1 (1) 
$ = 8 - 4~ s~n 3 • 

so that. by (2.8). as d -+ w • 

1 

E{M~~~}/E{L~~~} -+ {r(4- 1) /~2r(d;1)} $ 

Application of this and other formulae to (4.6) - (4.10) yields 

E{V} -+ 1/16~e3/2 $ 0.1012 

E{S} -+ 1/23/2~e $ 0.9437 

E{M(3)} 
1 

= E{L(3)}/12 
1 -+ 1/16(3e)1/2 $ 0.4989 

E{N(3)} 
2 -+ 2 + (1/21/1) 13.39 

E{N(3)} 
1 -+ 3/21/1 34.19 

E{N(3)} -+ 1/1/1 
0 

22.79 

as d -+ m. Real-life observational and experimental models have indi­
cated the common ocurrence of random normal tessellations with values 

of E{N~3)} between 13 and 15. Thus. assuming that E{N~3)} for V(3.d) 

decreases monotonically from 15.54 to 13.39 as d increases from 3 to 
w. the random tessellations {V(3.d)} (d = 3.4 •... ) may be advanced as 
natural stochastic models for these pheno~ena. For further details. 
see [8; Section 6] . 

s ~ 4: The above cases s = 1.2.3 are those of obvious practical signi­
ficance from a modelling viewpoint. In principle. such theory may be 
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carried out for general s, with its asymptotics involving an equilate­
ral (s+1)-simp1ex inscribed in an s-sphere. 

5. REDUCED DIMENSION STOCHASTIC EQUIVALENCE. 

The effect of any particle x in Pp(O,d) on V(s,d) is only by way of 

its nearest point y of Fs and the distance ixyi1. Hence V(s,d) is sto 

chastica11y equivalent to V(s,s+l) with respect to ~ new ~(O,s+l) den 
sity which is that of Pp(O,d) collapsed by rotation onto a ha1f-F s+1 

• d-s-l with bounding s-f1at Fs. This density is p 0d_sr , where r deno-

tes orthogona1'distance from Fs; note that it is inhomogeneous. We il­

lustrate this stochastic equivalence in the case s=l by considering, 
in the first instance, the case in which the particles form an inhom~ 

2 ' 
geneous Poisson process in R of intensity p(y) (y ~ 0), with Fl 
= the x-axis. 

We begin by exploring the joint distribution of two particles in R2, 
given that they give rise, as the intersection of their perpendicular 
bisector with Ox, to an endpoint H of the interval process V(1,2) on 
Ox. The necessary and sufficient condition for this to occur is shown 
in Fig.1. 

v 

~. Geometry of an interval end point H of V(l,d}. 

That is, there are two parftic1es on the semicircle C with centre H, 
radius r, and none wi thin ;C., We suppose those particles have angular 
coordinates t,t(-n/2 < t ~ t < n/2) with respect to the orthogonal to 
Ox at H, and are interested in the joint di~tribution of (r;t,t) gi­
ven that the two particles give rise to H.'The method is elementary" 
and uses the alternative coordinates shown in Fig.l, i.e. particles at 
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(u,a) arid (u+v,b) (a,v,b > 0). We have 

(5.1) Pr{particles in (du,da) and (du+v,db), and none in int C} 

. fr 2 2 1/2 = pea) pCb) du da dv db exp{-2 0 p(y)(r -y) dy} 

Integrating this respect to u over an interval of unit length, we ob­

tain E{L}-l f(a,v,b) da dv db , where. the joint density fea,v,b) re­
lates to a random such configuration on Fl. (Here, and below, f(*) 

means 'density of *'). Thus, transforming to the polar coordinates 
(r,l/I,ljI) (Fig.l), we have the ergodic density 

(5.2) f(r,ep,ljI) "'p(r cos ep)p(r cos ljI) r 2 (sinljl- sin ep) 

eXP{-2fr p(y)(r2_y2)1/2 dy} 
o . 

We now specialise to Y(l ,d), for which p(y) = pad_ll -2 • Subs'titution 

of this in (5.2) shows that rand (ep,ljI) are independent, with norma­
lized marginal probability densities 

fer) __ d---:rl- p1T d r 2d - 2 I d/2 }2_l. 
r(2-(I-) r4+ 1) 

(r,;;" 0) , 

f(l/I,ljI) = (2d-2)! (cos epcos ljI)d-2 (sinljl- sin ep) (-!!:.2s:epS:ljIS:!!:.2). 
22d -:- l (d- 2)! 2 

A swift integration gives 

E{r} 1 r(2 -;r) l r(~+l))i p1Td/2 
(d(21Te) 1/2 as 

while the mean projected particle separation onto Ox is 

E{r (sin ljI - sin ep)} E{r}.E{sin ljI - sin ep}= E{L} 

given in (4.1). 

To investigate the limiting behaviour 6f the distributions of r, 
(l/I,ljI), we consider the new variables 

d d-l d+l 
R = {(2e)2 1T--2-- / d--2--} rd 

a = 

Then it is easily shown that, as d -+ ~ , 

(i) the distribution of R + r(2,p), so that r/E{r} + in probability; 

(ii) the joint probability density 
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1 
"2 -1 {1 2 2} f(a,e) .... (2n) (Il-a)exp -.2 (a +Il ) (-00 < a .;;; e < 00) 

with limiting marginal density 
1 2 1 2 

f(a) = (2n 2)-1[e-a - (2n)2ae -a 12{1-~(a)}1 (_00 < a < 00) • 

For the marginal of Il, note that Il and -a have the same distribution. 
Note also that, as d .... 00, the projectiyn of the segment joining the 

two particles onto Fl - r($-~) - (2ne)"2 (Il-a). 

This approach may be extende4 to two adjacent semicircles, resulting 
in an integral expression for the distribution of interval length L 
in V(l ,d). 

Fig.2. Geometry of an interval HH' of Ve1,d). 

Fig.2 shows the geometry. We· have particles Pl ,P2,P3 at the points 

(u,a), (u+v,b) and (u+v+w,c), respectively (a,b,c,v,w > 0). PI and P2 

determine the semicircle C with centre H E Fl , as above, and likewise 

P2 and P3 determine the semicircle C' with centre H' also E Fl' The 

Voronoi geometry requires that there are no other particles within 
U = C u C', so that HH', of length L, is a typical interval of V(l,d). 
Then, with Poisson intensity p(y), the analogue of (5.1) is 

Pr{particles in (du,da), (du+v,db) and (du+v+w,dc) , 

and none in int U} 

flll8ll;(r,r' ) 
p(a)p(b)p(c) du da dv db dw 4c exp{- 0 p(y)t(y) dy , 

where t(y) is the length of the intersection of a line parallel to, 
and distant y from, Fl with U, and r,r' are the radii of C,C'. Again 

integration with respect to u over a unit interval gives 
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E{L}-I f(a,b,c,v,w) da db dc dv dw. Next we switch from (a,b,c,v,~) 
to (L,¢,~,¢' ,~'), where 

PI has polar coordinates (r,¢) with respect to H 

{ (r,~) with respect to H 
P2 has polar coordinates 

(r' ,¢') with respect to H' 

P3 has polar coordinates (r' ,~') with respect to H' 

(fig.2, cf. also Fig.1). The transformation relations are 

with 

a = L cos ¢ cos ¢' Isin(~-¢') 

b L cos~cos ¢'/sin(~-¢') 

c = L cos ~ cos ~'/sin(~-¢') 

v = L cos ¢'(sin~- sin ¢)/sin(~-¢') 

w L cos~ (sin ~' - sin ¢')/sin(~-¢') 

a (a, b, c, v ,w) L 4 (cos ~ cos ¢') 2 

a (L,¢,~,¢' ,~') sin ¢ sin ~' sin7 (~-¢') 

{cos~cos(~-¢') + sin¢sin(~-¢') - cos ¢'}{cos 4>' cos(~-¢') -

- sin ~' sin(~-¢') - cos ~}. 

Thus in principle we have the joint density 

where 

f (L, ¢ , ~ , ¢' , ~ , ) E{L}I a(a/b,c/v,w) I p(a)p(b)p(c) 
a (L, ¢, ~,¢' ,~' ) 

Imax (r, r') 
exp{- 0 p(y)!(y) dy} 

r = L cos ¢'/sin(~-¢') r' = L cos 1jJ Isin(~-¢') 

Finally, the marginal density of L results on integrating 

f(L,¢,~,¢' ,1jJ') over the (¢,~,¢' ,~')-set 

[-1T/2 ..; ¢ ..; ~ ..; 1T/2) n [-1T/2 < ¢' ..;~' < 1T/2) n [¢' ..;~) . 

In the Ve1,d) case, when pry) d-2 {} pOd_IY ,E L is given by (4.1) and, 

as may be anticipated from Fig.2, the integrations with respect to ¢ 

(from -1T/2 to ~) and~' (from ¢' to 1T/2) are elementary, being finite 
series in closed form. 

6. GENERALIZED VORONOI TESSELLATIONS. 

The standard Voronoi tessellation V is defined in terms of proximity 
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to a singZe particle of the underlyi~g point process. However, each 

point of Rd (almost surely) has a well-defined set of nearest n parti­
Cles (n = 2,3, ... ). Similarly the set of points with the same nearest 
n particles constitutes a simple convex polytope, and the aggregate of 
such polytopal cells is a generalized Voronoi tessellation V of Rd 

n 
(see [5,101 for discussions of the case d=2); thus V = VI' Like V and 

V(s,d), Vn is a normal random tessellation. 

One piece of the previous theory extends effortlessly to Vn • We have 

(cf. Section 3 for notation): for particles xO~ ... ,xd_s a point y E F, 

lies in an associated s-facet of Vn iff int Qd(y,T) contains n-l par­

ticles of Pp (O,d), an event of probability 

(pudTd)n-1 exp(- PUdTd)/(n-l)! 

With this modification, the theory of Section 3 carries over, to 
yield (suffix n - Vn ) 

r(d+n-s-l+a-) 

(n-l)!r(d-s+a-) 

i3{L } 
s 

Unfortunately, En{Vd} is only known in two cases, viz. 

1/ (2n-l ) p [5; Theorem 10.11 . 

Apart from this it is known that, because of the one-to-one correspo~ 
deuce between (d~l)-facets of V and cells of V2 ' 

where of course the value of E{Nd_l } is also unknown. 

We may also section Vn and naturally write 

It is possible to write down an integral expression for the ergodic 
moments Of Vs for Vn(s,d) , as we now show. Select an arbitrary point 

o = Xo as origin in Fs' It lies in a random polytope To of Vn(s,d) 

whose distribution is that of a uniform random member of Vn(s,d) 

weighted by Vs' Thus the kth order moment of Vs(To) is 
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E {Vk+l}/E {V } • 
n s n s 

Now we may write 

V (T ) = J lex) dx 
S 0 Fs 

where lex) indicates that x E To. Thus, in the usual way, 

E J F ••• J F I (x 1) ... I (xk) dx 1 ... dXk 
S s 

JF ••• JF E{I(x1)···I(xk)} dx1···dxk 
s S 

IF ... lF Pr{xl'····x~ all E To} dx1···dxk . 
s s 

Now 

and the latter event occurs iff there are particles of Pp(O,d) at 

Yl'··· 'Yn and 
k n 

U = int i~O j~l Qd(xi,IYj-Xill) 

contains no particles of Pp(O,d). Thus 

{ k} - J I J I -pluld E V V - • •• •• • e 
n, s s F F d d 

s s R R 

Further progress seems unlikely, given the complex nature of the ball 
union U. 
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