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Let L be a Lie algebra over a field K. We say that L is perfeat if 
for every ideal I of L is [I,L] = I. Throughout this paper we will 
assume that K is a field of characteristic O. Examples of perfect Lie 
algebras are the semisimple's and more generally the semi-direct pro­
duct of a semisimple Lie algebra by a faithful finite representation 
of it (See [11, Exercise 4, §6). 

In this Note we intend to construct for every non-negative integer m 
a perfect Lie algebra of dimension 3(m+1) essentially different from 
those mentioned above. To carry out the construction we make use of 
the split 3-dimensional simple Lie algebra s with bases e,f,h satis­
fying: 

(0) [e,h] = 2e [f,h] = -2f [ e,f] h 

and its irreducible representations. 

As it is well known (See [2], Th.12, Chap.III) there exists, for eve­
ry non-negative integer m, and in the sense of isomorphism, only one 
irreducible representation V of ~, of dimension m+1. V has a (let us 
call characteristic) basis Xi' 0 ~ i ~ m such that in the representa-

tion e,~E f J----+- F h J----+- H 

we have 

Hx. (m- 2i)x i o < i ~m 
~ 

(1 ) Fx. x i +1 if 0 ~ i < m and Fx = 0 
~ m 

Ex. i(-m+i-1)xi _ 1 
~ 

if 0 < i ~m and Exo = O. 

Let U be an irreducible representation of ~ of dimension 2m-1 with 

characteristic basis Uk ' 0 ~ k ~ 2(m-1) satisfying: 

HUk 2(m-k-1)uk o ~ k ~ 2 (m-1) 

(2) FUk uk+1 if o ~ k < 2 (m-1) and FU 2 (m_1) = 0 

EUk k(-2m+k+1)uk_1 if o < k ~ 2 (m-1) and Euo O. 

THEOREM. Fqr every non-negative integer m. there is a unique (in the 

sense of isomorphism) struature of perfeat Lie algebra over the K-vea-
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tor space 

L = seVeU 

satisfying all the following conditions: 

i) The structure on ~ coincides with (0) 

ii) ~ induces (by the adjoint representation) the repre.entations gi­

ven by (1) and (2) on V and U respectively 

iii) [V,U] [U,U] = 0 

iv) [V,V] U. 

Proof. We have to define the products [Xi,xj ] E U 

2(m-l) k 
[ xi' X J'] = L c .. 

k=O ~J 
(3) O';;;i,j';;;m 

consistently with the conditions 

(a ij ) k + c~. = 0 c .. 
~J J~ 

(b ij) H.[xi,x j ] [HXi,x j ] + [ Xi,HX j ] 

(c ij ) F.[Xi,xj ] [ Fxi,xj ] + [xi,FXj ] 

(d ij ) E.[xi,xj ] [ EXi,x j ] + [ xi' EX j ] 

By a direct computation we get the equivalence 

(b .. ) holds ~ c~. = 0 if i+j # k+1. 
1J ~J 

So, we set 

(3' ) q(i,j) = 
i+j-l c .. 
~J 

Now conditions (c ij ) are equivalent to conditions 

q(i+1,j) + q(i,j+l) = q(i,j). 

LEMMA 1. Conditions (c!.) are equivalent to 
~J 

(c'! .) : 
~J 

i . 
q(i,j) = l (_l)k e) q(O,j+k) . 

k=O k 

Proof. Assume (cij). We have 

q(i+1,j) + q(i,j+1) 

i+l k i+l . i k' L (-1) .( k ).q(O,]+k) + l (-1) .(~).q(O,j+1+k) 
k=O k=O 
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q(O,j) + 
i k+l i + 1 . i k i l (-1) • (k+1) .q(O,J+k+1) + l (-1). (k) .q(O,j+k+1) 
~o ~o 

i-I k+l i .) 
q(O,j) + l (-1) ·(k+1)·q(0,J+k+1 

k=O 

q(O,j) + 
i k· i k· l (-1) .(~).q(O,j+k) = l (-1) .(~).q(O,j+k) = q(i,j). 

k=l k=O 

Conversely, assume (ci j ). Notice that (cOj ) holds for every j. We can 

proceed inductively assuming (c'~.). A computation as in the first part 
~J 

of Lemma 1 gives (c'(i+l)j) and so we are done. 

As a consequence of Lemma 1 we have that the q(i,j)'s are uniquely de­
termined by the q(O,j)'s consistently with (b .. ) and (c .. ). 

~J ~J 

Next we see that the .q(O,j)'s, ° < j, are uniquely determined by con­
ditions (dOj ). In fact, 

E.[xo'x.] = q(O,j).Eu. 1 = q(0,j)(j-1)(-2m+j)u. 2 ' and 
J J - J-

= j (-m+j-1)q(0,j-1)u. 2 that is (j-1)(2m-j)q(0,j) = j(m-j+l)q(0,j-1) 0< j. 
J-

Therefore 

(4) q(O,j) (2m-j-l)! 
j. (m-j)! 

~ ~ q(O,l) ° < j 

(2m- j -1) ! 
j. (m-j)! . a (a im-=1J~ ~ q(O,1)) 

Next we define 

q(O,j) 

q(O,O) ° 
° < j ~ m according to (4) 

q (j ,0) -q(O,j) ° .;;; j .;;;m. 

The coefficients q(i,j)'s are so defined in a unique way (up to the 
constant factor q(O,l) consistently with conditions (aOj )' (ajo)' ~ij)' 

(c ij ), (dOj )' (djo) forallO.;;;i,j.;;;m. 

We have to verify the consistency with the remaining conditions. 

LEMMA 2. i) (aij ) hoZds for every i ,j . 

ii) (d ij ) hoZds for every i, j . 

Proof· i) Induction over i j-l c Oj = q(O,j) = -qU,O) 

Assume (aij ). Then q(i+1,j) + q(i,j+1) = q(i,j) 

q(j+1,i) + q(j,i+1) q (j ,i) 

j-l -c jO • 
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and adding we get q(i+1,j) + q(j,i+1) = Q, that is (a(i+I)j). 

ii) Induction over i. Case (dOj ) is true. Assume (d(i_I)j). Then, 

E.[Xi,x j ] - [Exi,xj ] - [xi,EXj ] = E.[Fxi_I,Xjl - [EFXi_I,x j ] - [xi,Ex} 

E (F . [ X. I' x . ] - [x. I' Fx . ]) - [EFx. I' x .] 
1- J 1- J 1- J [Xi·EXj ] = 

FE.[x. I'x.] + H.[x. I'X.] 
1- J 1- J E • [ x. I' Fx . ] 

1- J 
[EFXi_I,xj ] - [xi,Exj ]= 

F (I Ex. I' x .] + [x. I' Ex . ]) + H. [ x. I' x . ] - [Ex. l' Fx . ] - [EFx. l' x . ] -
1- J 1- J 1- J 1- J 1- J 

- [xi_I~FXj] - [xi,EXj ] = 

[ FEx. I' x .] + [Ex. I' Fx .] + [Fx. I' Ex.1 + [x. I' FEx.] + H. [ x. l' x.] -
1- J 1- J 1- J 1- J 1- J 

- [Ex. I' Fx .] - [FEx. I' x .] - [Hx. I' x . ] - [x. 1"' FEx . ] - [x. l' Hx .1 -
1- J 1- J 1- J 1- J 1- J 

We now pass to define a Lie algebra structure on L = s eVe U. 

We define products ~ x ~ --+- ~ , ~ x V -- V , ~ xU -- U , V xU--+- 0 
U xU -- 0 such that conditions i), ii) and iii) of Theorem are sati~ 
fied. We define a product VxV -- U by (3') where the q(i,j)'s are 
determined by (c .. ), (4) and (5) giving to q(0,1) any non-zero value. 

1J 

In this way we get a Lie algebra structure on L and we claim that con 
dition iv) of the Theorem is satisfied. In fact, !!. = Ve U is an ideal 
of L (the radical) satisfying!!.2 cU. Moreover!!.2 -f 0 since it-contains 

the products [xo,x.] = q(O,j) u. I and q(O,j) -f 0, 0 < j. Since n 2 is 
J J- -

an ideal of L is stable under~. But the representation U is irredu­
cible, so V2 = ~2 = U. The uniqueness in the Theorem follows clearly 
from the uniqueness in which coefficients q(i,j) are determined. 

We have finally to prove that L so defined is a perfect Lie algebra. 
To this end observe that the adjoint representation of ~ on L is fai­
thful and completely reducible. Therefore if I is an ideal of L we 
have [~,I] = I and~ a fortiori, [L,I] = I. 

REMARKS. We now add some remarks on perfect Lie algebras and their Lie 
algebra of derivations. 

1) Let L be a perfect Lie algebra. Then its radical is nilpotent. In 
fact, let ~ and!!. denote respectively the radical and the nilpotent 
radical. For any x in L we have adL(x)(~) C!!.. Therefore r = [~,L] C 
cE, that is ~ =!!.. 

2) Let D(L) denote the Lie algebra of derivations of a perfect Lie al. 
gebra. Then D(D(L)) = D(L). In fact, observe that the center of L is 
O. Our claim follows from the Schenkman's derivation tower theorem 
(See (2], Chap. II, Ex. 16). 

3) Let L be one of the perfect Lie algebras copstructed above. Then 
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L .;. D(L) , that is, L has outer derivations. In fac~, the radical of L 
isa (nilpotent) quasy-cyclic Lie algebra in the sense of Leger (See 
[3), pag.145). Therefore Theorem 5 of [3] applies and we have then 
our claim. 
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