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ABSTRACT. We show how to stabilize an improperly-posed inverse heat 

problem with slab symmetry by attempting to reconstruct a slightly 

"blurred" image of the unknowns. After introducing certain Inverse Ker 

nels, the numerical problem is solved with an absolute minimum of com 
putation. 

1. INTRODUCTION. 

In this paper we would like to consider a transient heat conduction 

problem with slab symmetryin which the temperature and heat flux histories 

f(t) and q(t) on the right hand side are desired and unknown, but the 
temperature and heat flux histories F(t) and Qlt) on the left hand si 

de surface are approximately measurable for all t in (-00,00). 

This inverse problem is an improperly-posed problem in the sense of 

Hadamard [6]; that is, there are no decent norms for the data and so­

lutions such that the solution depends continuously upon the data. 

The inverse problem appears in many situations of considerable practi­

cal interest and may arise, for instance, in quenching studies, in de­

veloping transient calorimeters and in the measurements of aerodynamic 
heating. 

The direct or well posed problems in this situation of course would 

involve specifying one of the two functions flux or temperature on 

the left surface and one on the right surface. 

For the direct problems the well known solution formulae given in stan 

dart texts [ 3] may be applied in a relatively straight forward manner. 

For the inverse problem, however, special methods must be employed. It 

is known that certain types of continuous dependence on data can usual 
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ly be restored by restricting attention to those solutions satisfying 

certain prescribed global bounds, see Miller 18] and [9] for example. 

If the unknown function, q (or f) is quite s.mooth, for instance, it is 

reasonable to assume that,some high order derivative of q satisfies a 

known L2 bound, Manselli and Mille~ [7]. 

~owever, for many problems of interest it is to be expected that the 

unknown function is not very smooth. In this case, the imi;erse problem 

can be stabilized if, instead of attempting to find the po.:lnt valf,u,es 

of q, we content ourselves with attempting to reconstruct aSligh'ily 

"blurred" image of q. One natural functional is Joq the "a-mollifica­

tion" of q, that is, the convolution of q with the Gaussian kernel·p.<5 

of "blurring radius" o. Such an approach was also taken in [7] for a 

simplified special case of the present problem. 

One of the first papers on inverse heat conduction was written by 

Stolz [11]. His procedure is an integral equation method which, when 

discretized allows a step by step recursive calculation of the solu­

tion, but which is unstable if the time intervals are made small. In­

tegral equation methods with step by step solutions are also used by 

sparrow et al. [10] and by Beck [1] who however adds the distinct im­

provement of allowing the least squares use of several future data points to 

compute the solution at the present time. Burggraf [2] uses a trunca­

tion of the classical power series method for attempting to solve the 

Cauchy initial value problem; however for this to be convergent F and 

Q would have to be analytic and the space interval sufficiently small; 

moreover the method would immensely amplify errors in the data. Other 

approaches, using finite difference methods, are studied by Frank [5] 

and Davies [4] . 

. In th'epapers mentioned above, the assumptions on the solutions and on 

the choice of parameters which help restore stability are not usually 

clearly stated and the consequent continuity with respect to the data 

is not adequately studied. 

In section 2 we consider the inverse problem in the slab with one in­

sulated boundary, Q(t) = o. We 'present the nondiscrete version of this 

problem with data specified on a continuum of times t and data error 

measured in the L2 norm, and derive stability bounds for the inverse 

problem. 

Section 3 is devoted to the discretized version of the problem of sec­

tion 2, involving data at only a discrete sampling of times. 

In section 4 we consider the general problem with approximate data for 

both temperature and flux, F(t) and Q(t), specified on the left hand 

surface of the slab. We proceed to solve this general problem by su­

perposition of a direct, and an inverse problem. 

Finally, in section S, the numerical method occupies our attention with 

the computation of ,certain inverse and direct convolution kernels with 

which we shall compute our numerical solution. 
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2. THE SLAB WITH ONE INSULATED BOUNDARY. 

DESCRIPTION OF THE PROBLEM. We considerer a transient temperature con­
duction problem with slab symmetry where the left hand surface is in­

sulated, so that Q(t) = O. We assume linear heat conduction and after 
appropriate changes in the space and time scales we may consider with­

out loss of generality the normalized problem, with constant conducti­
vity 1, heat capacity 1 and slab thickness 1. 

The problem can be described mathematically as follows: 

The unknown temperature u(x,t) satisfies 

(2. 1 ) u t = u O<x<l -CD < t < cp xx 

(2.2) u(O,t) F(t), with corresponding approximate data function F(t). 

(2.3) ux(O,t) = Q(t) = 0 -CD < t < 00 

(2.4) u(l,t) = f(t), the desired but unknown temperature function. 

(2.5) U x (1 , t) = q(t), .the desiied but unknown heat flux function. 

Because Q(t) = 0, everything about u(x,t) is uniquely determined by 

the single unknown function q (or f). 

Considering the sinusoidal in time solutions of the heat equation (2.1) 

and the boundary conditions, we get 

(2.6) F(t) = Aq(t) = [(lJ+iolJ) sinh (lJ+iolJ) ]-1 q(t). 

where lJ = /lw1/2 , and 0 = sign (w). 

Thus, if q(t) = e iwt , it follows from (2.6) that the operator A is 
. strongly smoothing for high frequencies w. Conversely, however, the 

inverse problem attempting to go from Aq to q magnifies an error in a 
high frequency component by the gigantic factor "" lJell I /2 , showing that 
this inverse problem is greatly ill-posed in the high frequency compo­
nents. 

THE STABILIZED INVERSE PROBLEM. For the moment, in order to use Fourier 
integral analysis, we are going to assume that all functions involved 
are L2 functions on the whole line (-00,00) and we will use the corres­
ponding L2 norm to measure errors, This is rather unnatural since in 
many applications one might expect the temperature and the flux to ne­
ver tend to 0 as t ~ ± 00, but to oscillate about in bounded fashion 
forever. Nevertheless, this assumption will be later loosened by swit­

ching to L2 norms on bounded intervals of interest. 

We assume only a known L2 global error bound on q, 

(2.7) 

and since there is nothing that adequately forces down the high freque!! 
cy part of q(w), we seek to reconstruct some useful functional of q 
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which strongly damps the high frequency part of q(w). One such functio­
nal is Joq the "o-mollification" of q at time t, defined as 

(2.8) 

(2.9) 

Joq(t) == (po*q) (t), where 

poet) = (6/n)-1'e- t2 / 02 

is the Gaussian kernel of "blurring radius 0". 

We thus have the followlng stabilized problem: 

Attempt to find the linear function Joq(t) at some time t of interest 
and for some assigned blurring radius 0, given that q is a particular 
function satisfying 

(2.10) IIAq-FIl .;;; e: 

(2.11) 

We shall prove that the bound (2.11) is not necessary to stabilize this 
problem; the data error bound (2.10) by itself is sufficient to assure 
Lipschitz continuous dependence-on the data as e: + 0, provided we keep 

o fixed. 

However, the prescribed bound (2.11) can actually aid the stability in 
the case of e: which are not small, or in the case of data at only dis­
crete sampling points in a limited data interval, as will occur in the 
numerical applications. 

STABILITY ANALYSIS. The problem is now in a form that can be solved by 

the Method of Least Squares, see Miller [8] and [9]. 

This method is a "nearly-best-possible-method" in the sense that for 
any seminorm <.> which might be used to measure the error, it gives 
an approximation q to q which satisfies the error bound 

(2.12) <q-q> .;;; 2M(e: ,E), where M(e:,E) is the "best-possible-stability-bound" 

(2.13) M(e:,E) = sup {<q> : IIAqll .;;; e: IIqll .;;; E} 

If q satisfies (2.10) and (2.11), it also satisfies 

(2.14 ) IIF-AqIl2 + (~)2 IIqll2 .;;; 2 e: 2 

and we have lost at most a factor of 12 going from the two constraints 
to the one. 

Let our approximation q be chosen such as to minimize 

(2.15) 

The cannonical equation for this_ minimization is given by 

(2.16) {A*A + (~)2 I} q = A*F. 
E 

We can now derive an estimate for M(e:,E) for the linear functional 

Joq(t). We may assume the time of interest to be t=O. 
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We want the supremum of 

(2.17) 

with respect to the two constraints (2.10) and (2.11). These cons­
traints can also be written as 

(2.18) 

and 

(2.19) 

However, it is sufficient to bound (2.17) by the single constraint 

(2.18) alone. Using the Cauchy inequality we have 

(2.20) 

Since e-w202/2 is about .6 for w ~ wl = 1/0 and falls rapidly to zero 

for w > wI' while on the other hand ].J2e 2].J"I e /2; grows only slowly 

with w, it follows that 

(2.21) 

which as £ + 0 becomes the best possible bound but for a .factor of two, 

for fixed o. 

This shows that the error can be guaranteed to go down in Lipschitz 

fashion as £ + 0 for a fixed o. 

Finally, performing the same type of arguments, we can estimate the 

supremum of IJof(O) 1 with respect to the constraint (2.18). We get 

(2.22) 

3. THE SLAB WITH ONE INSULATED BOUNDARY, DISCRETIZED PROBLEM. 

In this section we assume that q is locally L2 bounded, uniformly on 

every sufficiently long interval, and that the data for Aq is measured 

at a discrete set of equally spaced data points in some finite interv~ 

of lenght 8; we then seek to reconstruct Joq (~) at some point ~ ap­
proximately opposite the middle of the data set. If we choose our point 

of interest to be ~ = 0, the dati. set consists of K points dl •. ~~,dk 
in the [-8/2,8/2] interval, with equal spacing 6t = 8/(k-1). The data 

function ~ is a discrete function measur~d at these sampling points .. 
The interval [ -8/2,8/2) should contain all the data for Aq which might 
reasonably be expected to enter into the reconstruction of q at time 
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s = 0, provided we make 6 sufficiently large. If that is the case, 
since the operator A makes Aq so smooth, we have reason to believe 

that a discrete sampling of Aq in [-6/2,6/2] contains Just as much in 

formation as a continuous sampling, provided that the sampling inter­
val lit is made sufficiently small. 

Aq is given by the integral 

(3.1) Aq(t) = J:oo P(t-s)q(s) ds 

where the kernel function pet) has the Fourier series 

(3.2) P (t) 1+2 I (_l)n exp(-n2rr2t)~ 
n=l 

The shape of the kernel shows that Aq(t) depends strongly on almost 

the entire "past history of q". This means that 6/2 should be taken so 

large that the number of points in the discrete data sampling interval 

will become enormous when the sampling interval lit is made sufficiently 

small. 

In order to avoid this situation, we subtract from the actual data 

Aq(t) the influence of the past history of q. Of course, this implies 
the knowledge of q for all previous times. Because of this difficulty, 

we will lower our goal for the moment and assume as an alternative, 

(3.3) q (t) o for t < 0 and therefore 

(3.4) Aq(t) o for t < O. 

Now, the choice of 6/2 sufficiently large certainly allow us to .igo­
rously approximate our problem by a completely discretized one with q 

replaced by a 6-periodic Nth order trigonometric sum of the form 

N 
(3.5) q(t) ~ I x. exp(iw.t) 

-N J J 
with w. 

J 
(2rr/6)j 

Since the operators A and J o are very smoothing, it is easy to pick N 

sufficiently large such that A(q-q) < .1 E on the data set and Jo(q-q) 

is negligibly small at the reconstruction point of interest. 

NUMERICAL METHOD. Given a function q on [-6/2,6/2] of the form (3.5) 

satisfying 

(3.6) II Aq -PII [ _ 6 / 2 , 6 / 2] where P o on [-6/2,0], 

and 

(3.7) II qll [ _ 6/2, 6/2] < E , 

we wish to approximately determine the linear fu~ction Joq(s) at the 

point s = 0 of interest. 



31 

The least squares problem becomes 

(3.8) minimize <j>(x) = IIHx-h1l 2 + (£)2 IIRxll 2 
. K E K 

where H is the KX(2N+1) matrix with entries 

(3.9) HkJ. = k- 1 / 2 eidkWj [()J.+io)J.) sinh()J.+io)J.)l-I 
J J J J 

k = 1, ••• ,K j = -N, ... ,N. 

R is the Kx(2N+1) matrix with entries 

(3.10) 

k = 1, ... ,K -N, ... ,N. 

h is the vector with elements 

(3.11 ) k = 1, .•. ,K. 

The vector xO minimizing (3.8) is the solution of the normal equations 

(3.12) 

The desired lirieir functional can be written as 

(3.13) 

(3.14 ) 

Joq(~) = (po * q) (0 = (x, v), where 

v. 
J 

1 

orn 
and using (3.12) it follows that 

(3. 15) 

The vector V = HZ-Iv can be computed and stored once and for all for 

that time ~ of interest. 

Therefore, 

(3.16) 

If our data F is measured at a whole long sequence of sample points 

with equal spacing ~t, we can just translate our data set along the t 

axis by the multiples Tj = j~t, j integer, and attempt to reconstruct 

our lineal functional Joq at those new points using the previous 

weights given by (3.15) if and only if we are able to repeat the condi 

tions for the reconstruction at ~ = 0, which requires that F be = 0 

for t < Tj . This can actually be achieved if we subtract the influence 
upon the data of the last reconstructed point. In doing so, we sub­

tract the influence upon the data of the last Joq instead of q, but 
this is allowed since A is a smoothing operator and therefore the high 

frequencies die out very fast in Aq. 
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Hence, our approximation at Tj is given by the very cheap and simple 

discrete convolution against the data sequence, updated as mentioned: 

(3.16) 

4. GENERAL PR~BLEM. 

The general problem is obtained replacing (2.3) in the system (2.1)­

(2.5) by 

(4.1) ux(O,t) = Q(t), with corresponding approximate data function Q(t). 

The boundary functions are related now by 

(4.2) [
f(t)) = [ cosh (]..I+iOlJ) sinh (].l+io]..l) I (]..I+iOlJ)) [F(t)J) 

q(t) (]..I+io]..l) sinh(]..I+io]..l) cosh (]..I+io].l) J Q(t) 

The last equation clearly shows that this inverse problem is quite ill­

posed in the high frequency components. 

We recall that the direct or well-posed problems in this situation 

would involve specifying one of the two functions F(t) orQ(t) on the 

left surface and one of the two functions f(t) or q(t) on the right 

surface. 

THE STABILIZED INVERSE PROBLEM. We decompose the general problem in 
two parts and proceed bv superposition. The main idea is to perform 

the decomposition in such a way that only one of the new problems is 

ill-posed. 

Let's consider the following well-posed problem in the slab: 

PROBLEM A 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

" 

u = U 
t xx ° < x < 1 ~"" < t < "". 

ux(O,t) = Q(t), with corresponding approximate data function Q(t). 

uxl1,t) = ° ,given. 

u(O,t) unknown. 

u (1 ,t) unknown. 

It we denote by Ko the solution for FI(t) with Q(t) 
the solution for fl(t) with Q(t) 50(t), we get 

(4.8) ....:..L [1+ 2 L 
lift m=l 

and 
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2 e-(2m-1) /4t 

Of course for small t the m o term completely dominates in these 
sums. 

We now see how to give a stabilized solution of the general problem 

as a superposition of the well-posed problem A and the stabilized ill­

posed insulated boundary problem (Q = 0) treated in sections 2 and 3. 

In order to solve the general problem, we first solve problem A with 

data QA(t) = Q(t) and qA(t) = 0, obtaining F1(t) and Jef1(t). 

Next, we solve the insulated boundary problem with data Fz(t) 

- F1(t) and Q(t) = 0, obtaining J ef2 and Jeqlt). 

F(t)-

Since f1 (and even more so Jef 1), J ef2 and Jeq depend continuously 
upon the data, the superposition gives a stabilized solution of the 
general problem. 

5. THE GENERAL PROBLEM. DISCRETIZED VERSION. 

NUMERICAL METHOD. The transition to the discrete case for problem A is 

relatively straightforward. 

"In order to be consistent with the discussions of section 4, we add 

for the moment the assumption that the data Q(t) = 0 for t ~ 0, and 
of course we assume Q to be locally L2 bounded, uniformly on every suf 

ficiently long interval of interest. 

The data function Q(t) is a discrete function measured at the sampling 

points, and we consider Q(t) to be constant in each subinterval. 

However, a discrete approximation of KO(t) or K1(t) by piecewise cons­
tant functions is very poor for small values of t since these kernels 

blow up at t = O. Thus we would like to average the kernels Ko and K1 
before considering the discrete versions of the convolutions against 

the data function Q(t). One natural way to accomplish this is to re­

place Ko and K1 by the piecewise constant functions Ka and Kl equal 
their mean values on each ith interva!. 

Thus the discrete convolutions Ka * Q and Kl * Q are actually the con­
tinuous convolutions that would be obtained if Q were extended to be 

a piecewise constant function. 

After ~omputing f: Ka(s) ds for t = (j ± 1/2) 6t ; j integer, the 

mean value ~ollows by difference and division by 6t. Using (4.8) and 
the Laplacetransfo?m, we get 

(5. 1 ) 

Similarly, 

-2 It + 4 
TI L 

n=l 
n erfc(~) 

rrr 
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The temperature solution for problem A at x = 0 is computed approxi­

mately by means of 'the discrete convolution 

(5.3) 
K 

FI(k~t) = I Q(i~t) Ko((k-i)~t).~t 
i=O 

k 0, ... ,N. 

Similarly, the temperature solution at x 
means of the discrete convolution 

1, could be computed by 

(5.4) 

and 

(5.5) 

The weights J 8KI are easily computed since KI is a linear combination 

of the step function ~i(t), i.e.: 

(5.6) 
M 

KI(t) = I· Ki ~l..(t) 
i=1 I 

and it follows that 

(5.7) 
M 

J 8KI (t) = I 
i=1 

where ~ indicates the normalized Gaussian distribution function with 
r; = 8112. 

The data temperature F 2 (t) for the insulated boundary problem (Q=O) is 

now computed as the difference between the measured data temperature 

F(t) and the computed temperature given by (5.3). 

I NVERSE KERNELS. In order to investigate the stability of our numerical 

method, we would like to know the amplification factor associat~d with 
errors in the data when using numerical procedures. 

We notice that any piecewise constant data function can be expresed by 
a discrete convolution against the numerical delta function N(t) defi­
ned as 

(5.8) N (t) 
rl/~t if (-1/2) ~t < t < (1/2)~t 

10 otherwise 

Moreover, if we know the solution for N(t) as data, our Inverse Kerne1,· 

it follows by linearity that the total error in the solution can be 

obtained as the discrete convolution of the data error against the in­
verse kernel. 

For the general problem we have to consider four Inverse Kernels: 

I) IKQf(t) , the temperature solution for the problem in the slab with 
data F(t) = 0 and Q(t) = N(t). 
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II) IKFf(t) , the temperature solution for the problem in the slab 
with data F(t) = N(t) and Q(t) = o. 

III) IKQq(t) , the flux solution for the problem in the slab with da­
ta F(t) = 0 and Q(t) = N(t). 

IV) IKFq(t) , the flux solution for the problem in the slab with da­

ta F(t) = N(t) and Q(t) = O. 

,In figures 1,2,3 and 4 we plot the Inverse Kernels I), II), III) and 
IV) respectively, for different values of the parameters. In a11 ca­
ses the ordinate values have been scaled by the factor arcsinh(y). 

The most important feature of the inverse kernels is the fact that they 
nearly have compact support. In Table 1 the apparent "support" indi­
cates the interval in which the absolute value of the reconstructed 
function is greater than 10- 4 . This allows us to actually compute the 

solutions by means of the discrete convolutions 

(5.9) [JOf(t)] = [IKFf 

J oq (t) IKFq * [~ (t)) 
Q (t) 

without needing the history of F and Q for very long times before or 
after the time t of interest; i.e.: the kernels are taken to be zero 

outside their "support". 

The Inverse Kernels are computed once and for all for fixed 6t at the 

points Sj = ± jllt, j = 0,1, ... ,m which include the "support" interval 
shown in Table 1. Then if we want to reconstruct the functionals Jof 

and Joq at any time Ti illt, i integer, we read the data in the sup­
port interval with Ti as center and merely use (5.9) in the form 

m 
(5.10) Jof(t i ) = lit L (F(T.-s.)IKFf(s.) + QlT.-s.)IKQf(s.) 

j =-m 1. J J 1. J J 

and 
m 

(5.11) Joq(t) = lit L (F(T.-s.)IKFq(s.) + Q(T.-s.)IKQq(s.)). 
j =-m 1. J J 1. J J 

DIRECT KERNELS. In order to test the accuracy of our method, we would 
like to approximately reconstruct a delta function at time t = 0 in 
u(1,t) by solving the problem 

(5.12) u = U 
t xx o < x < 1 

uCO,t) = 0 , data. 

Ux(O,t) = data. 

u(1,t) = 0oCt) , unknown. 

-00 < t < 00. 

We generate the exact data as the solution of the well-posed problem 

(5.13) u t = u xx o < x <. 1 < t < 00. 

u(O,t) = O. 
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u(l,t) = 00(t). 

Similarly, using (5.10) and (5.%1) we reconstruct a delta function at 

time t= 0 in ux (l,t) = q(t) with exact data Q(t) and F(t) = O. 

Several numerical solutions using different values of the parameters 

are shown in figures 5 and 6. Figures 7 and 8 show the reconstructed 

delta functions at t=O in u(l,t) = f(t) and ux (l,t) = q(t) respecti­

vely, corresponding to exact data F(t) and Q(t) = O. 

In all cases, the Direct Kernels are symmetric, positive and the to­

tal integral is extremely well conserved. 

Finally, figure 9 shows the reconstructed temperature solution (with 

S=l, N=39, ~t=.0125 and 0=2~t) which is the superposition of two so­

lutions of simple structure; the first has FCt) = 0 and f(t) = a step 

function of height 1 between t = .1 and .3; the second has Q(t) = 0 
and the same f(t). The reconstructed mollified temperature shows over 

and undershoots of only 5% when 1% random error is added to both FCt) 

and QCt) (1% of max IF(t) Ifor F(t) and 1% of max IQCt) Ifor Q(t)). 

S 1 

N 9 19 39 
~t .05 .025 .0125 
E/E 10-4 10- 4 10- 4 

<5 4M 4~t 4M 
"'support" I [ - . 5, . 6] [ - . 5, . 6] [ - . 5, . 6] 

"support" II [-.5",8] [ -.4, . 4] [ - . 3, . 2] 

"support" III [ - . 5, . 8] [ - . 4, . 4] [ -.3, .2] 

"support" IV [ - .5, .9] [ - .5,1.1 [ -.5,1.] 

Table 1 for Figures 1, 2, 3 and 4 

Same parameters as in Table 1 , 

Fig. 5: 

"support" [ -.4, .4] [ - .2, .2] [ - . 1 5 •. 15] 
Integral .9993 .99952 .99999 

Fig. 6: 

"support" [ - .4, .4] [ - .2, .2] [-.15,.15] 
Integral .994 .99998 .99999 

Fig. 7 : 

"support" [ - .4, .4 J [ - .2, .2] [-.15,.15] 

Integral .994 .99998 .99999 

Fig. 8: 

"support" [ - .4, .4] [ - .3, .5] [ - .35, .5] 

Integral 1. 02 1.002 1.0001 
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Figure 4 - Inverse Kernels IKFq; flux q(t) 
corresponding to O(t) = 0, ~(t) = discrete 
<5 function. 
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Figure 5 - Reconstructed temperature f(t) 
corresponding to r(t)=O, Q(t}=exact data. 
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Figure 6 - Reconstructed flux q(t) corresponding 
to r(t)=o, O(t)=exact data. 
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Figure 7 - Reconstructed temperature f(t) 
corresponding to ~(t)=O, r(t)=exact data. 
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Figure 9 - Reconstructed temperature f(t) 
with exact (--) and perturbed ( •. ) data F(t) 
and Q(t). c5 = 2 l1t = .025. 
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