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" SIMPLE HOMOTOPY TYPE OF PSEUDO-LENS SPACES

A. Neme and C. Sanchez

1. INTRODUCTION.

In this paper we study actions of cyclic groups on spheres by consi-
dering their quotient spaces. We consider the important special case
of "linear" actions.

Amongst all the quotient spaces of linear actions, we choose a special
type which we call "Pseudo-Lens" spaces since, as we show in the sub-
sequent sections, they have properties similar to those of the well
known Lens spaces.

We believe that these spaces are interesting in themselves and also be-
cause they provide models for the study of quotient spaces of a special,
but important, type of not-necessarily-free actions on spheres; name-
ly those with well ordered set of isotropy groups.

In section two, we define pseudo-lens spaces and describe a cell struc
ture for them and their universal coverings.

In section three, we give a necessary condition for simple homotopy
equivalence and in section four, we see that in the case of actions of
cyclic p-groups this condition is also sufficient.

2, PSEUDO-LENS SPACES.

Let m > 3 be an integer and G = Z_ with a preferred generator t. Let

m
2n-1

S C C" the unit sphere in complex n-space, with a standard orien-
tation.
Let w = exp(i %%) and consider the action of G on Szn_1 defined by
q q
(2.1 g(z),..052) = (v Lz ,0i0 m2).

Our objective is to study the quotient space s?2-1/G which in the case
(q4.m) = 1, i = 1,...,n is a manifold and is called lens space.

We shall restrict our attention to effective actions without fixed

points and we pose on the coefficients, the restriction 1 < q; <m
i=1,2,...,n.
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There is a natural partial ordering relation among the isotropy sub-
groups of the action (2.1) given by inclusion. If Hy,ooosHy is the
set of isotropy subgroups, we may think that the order is such that
Hj 2 H; implies j < i. '

If the resulting order is total, i.e. Hy 2Hy, 2 ... 2 H,, we shall
call the quotient space s2n-1,G 4 "pseudo lens-space'" and denote it
by L (4;,...,9 ) or L(m;ql,---,\qﬁ)-

Since the actions we consider are effective, we must have Hk = {e},
where e is the identity of G.

It is easy to provide these spaces with a CW-complex structure.

In order to describe this structure, we consider the following rein-

dexing of the coefficients q; = 1,...,n.

(2.2) i<j implies (q;,m)|(q;,m)

where (qj,m) is the usual greatest common divisor. We have then
(qi’m)l(qi—l’m) i= 2,-..,11-

We can associate to each a; another integer Li defined by

(2'3) LiL‘E 1 (mod—m)
(qi’m) (qi,m)

We can give now a cell decomposition of Lp(ag,...5a,).

2k-1

We shall have cells e and ezz,l <k<n,0<4£<n-1. The cell

e?%1 4i11 be image in the quotient of
A2k- iak (qk!m)
a2k-1 {(zl,...,zk_l, T, e 30,...,0) : 0 < 0 < 2m —/——
and ezz the image of
321 = {(z z T 0 0): r >0}
12°°2%p> (£+1), 3y . L+1 ..
The boundary relations in g2n-1 take the form
~ - “c A -
aek-1 o (tk - 1)_e2k 2 1<k<n
(2.4)
38%% = (1 + t +...+ t(3s71)y g2s-1
|
1 <s < n-1 as = ’(—qﬁy .

We easily obtain the homology and cohomology groups of Lm(ql,...,q ).
The homology groups are

0 i= 2k ’ 1 < k < n-1
(2.5) H; (Lm,Z) = 47 i=0 , 2n-1
Z i= 2k-1 , 1 <k <n-1

ax
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-compare [ 3].

We want to consider now the universal covering im(ql,...,qn) of
Lp(ays.-.59,)-

Let H be the subgroup of G generated by t?1l and consider the quotient
space S2-1/H,

Since H acts trivially on the first coordinate we clearly have:

2n-1 1
SMT/H = 8 % Ly (h .»h)

YRR
where h; = q; (mod a;) 1 <h; <a,.

Now, since the 1-squeleton of Lal(hz,...;hn) is Sl, we have that the
3-squeleton of sy js s3 and clearly then s2n-l/g js simply-con-
nected.

sZn—l

Furthermore, /H supports a free action of G/H = Za1

(6] 0(Z),..52)) = [t(Z),...,2 )]

R

and clearly (Szn_l/H)/(G/H) Lo(ay,...5a,).

We can obtain a 'natural' cell structure on im(ql,...,qn) = Szn_l/H
by the same procedure as before i.e. by inducing the ''quotient" cell

2n-1

structure from S . In this way, we have a; cells in each dimension

and by taking quotient under the action of Zal we get the cell struc-
ture already described in Lm(ql,...,qn).

We shall take the following notation

2n-1 P

s — L L (ays.--say)

2.6
( ) 1:1\\,, /PZ

and q; = so 2. q. =1 (mod ai).

3. SIMPLE HOMOTOPY EQUIVALENCE.

In this section we study conditions under which two pseudo-lens' spaces
are simple homotopy equivalent.

(3.1) PROPOSITION. Let L = L (m;qy,...,q,) and L' = L' (m;qi,...,qﬁ)-

be speudo-lens spaces and let m (L) = Zag = <[t]> = <h> and m{(L') =

o Zai = <[t']> = <h'> be the corresponding fundamental groups (t and

t' are generators of G).

Let f: L —> L' be a simple homotopy equivalence such that fx(h) =
(h*)?2 (a,ai) = 1. Then

i) (m,qy) = (m,q}) i=1,...,n

ii) There is a permutation ¢ of (1,...,n) such that g, a a&(k) = ak



(mod a;) where g, =*1 for each k = 1,...,n.

Proof. We can clearly assume t = t' = exp(i %?).
(1) is clear. Let us proceed to prove (ii).

Let L and L' be the corresponding universal coverings and f the map
such that the diagram

|l el o 3
o
-

o
N
s 2

commutes.

Let us consider now the chain-complexes C(i') and [C(i)]f# (see [ 1]
p.74 for notation)

]

o~

c(L') 0 —C

N -
=]

1
-
N
=]

1
N
- -

with the boundary relations
v ~ A - 'e . ~ -
3r(py(82%)) = L)k - 1) pp (8%FH)

~ ~ ag (a;-1) -
31 (py(8%%)) = 21+ h w1 pr(@®eTh

21
[CIT gy 0"“’6211-1_"5211_2—-*...—-»61__,&0 . 0
with boundaries
~ A= a,@k Ak
Syl =t E - 11 pp 8P
~ a _
31 (82%)) = 22 11 + (h)® +...v (n)*(B17D) pra?enly,

1

Now f is a simple homotopy equivalence and therefore T(f) = 0 and by
[1] p.74, Th.(22.8) it is possible to construct a W(nl(L')) complex C
such that t(C) =1(f) and C can be put into a based short exact sequen
ce of W(my;(L')) complexes

0 — c(l') — ¢ —— T(L) — 0

where C(i) is [C(i)]f# shifted in dimension by one and with its boun
dary multiplied by (-1) [1] p.74.

C is acidic, as can be verified from the definition and now we comple-
te the proof of the theorem as in [1] (30.1).m

4, cYCLIC P-GROUPS.

We shall restrict ourselves now to the case m = pS with p odd prime.
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If L(p®%;q;,-.-»q,) is a pseudo-lens space and i(ps;ql,...,qn) is the
universal covering, then

~ 1 1 .
L=s!ss £ st « Lpdsap,yseeeeay)

where k > 1 is the greatest natural number such that (ps,ql)_=

= (p%,qy) = ... = (p%,q,) and p? = (p®,q;). Also m, (L) = Zp(s—j)= Za,-

Let us take now pseudo-lens spaces L(ps;ql,...,qn) and

L(p®%;a},...,ql). Let £, k = 1,...,n be as in (2.3) and qj as in (2.6);

then we have the following

(4.1) LEMMA. If a® £, ... £ @} ... L =*1 (mod p'*73)) then there
exists a cellular map f£q: i}——* L' such that f4(h(x)) = (h')af3(x)
and deg f3 =1,

Proof. Let us start by defining a function F: g?n-1 __, g2n-1
variant respect to the two actions of G = 1Z

equi-
PS
F(zy,...52,) = F(1} exp(i2m¢y),...,rn exp(i2mg,)) =
= (r, exp(i2ral; q}¢;)s...,T, exp(iZmal qlén))
we clearly have

F(g(2g0--r2,)) = (8)% F(zy,...,2,)

F is cellular and deg F = a™ &; ... £, q} ... q} = d with d =21
(mod p(s‘j)). (In order to simplify notation we shall consider from
now on that d = 1 (mod p(s'j)). The proof will be the same in the
other case). F induces a new cellular function f: L — L' and
deg £ = d.

The new f satisfies

f(h(x)) = (h')® £(x).
Now, since d = 1 (mod p(s_j)), we have d = 1 + a p(s_j) and since,
sl « ... & Sl is the (2k-1)-squeleton of L and we can define
———  —

£f.: 8" % ... % S1 —_ S1 X L, % S1 (k factors)

such that it is cellular, f;(h'(x)) = h'f(x) and deg fi=1+a p(sd).

Such an f; exists since sl « ... = sl = SZR'1 and the actions of nl(L)
and m;(L') are free (see [1] (29.4)).

Let us take now £f: sl ... 28l — sl &« ... «sl. 1t is cellular,
££ (b (x)) = h'£f(x) and deg £f = (1 + o p(s7INYE,

It is clear then, that for each £ > 1 we can construct ftz L' — L
cellular equivariant (fz(h'(x)) h' f,(x)) and such that

deg £, = (1 + a p(87))t

since it suffices to define fl = (fl)Z * Id.
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Let us define now f,: L — L' by £, = £fp o £f. Then f, is cellular,
2 2 = % " 2

£,(h(x)) = (h')® £,(x), and deg £, = (1 + a p{e~I)LHL 4 e,

deg £, =1 + (£ + 1) a p(s'j) + ...+ a(z+l) p(m_j)(1+l).

We can clearly choose £+1 as a sufficiently high power of p in order
to obtain deg £, = 1 + B re.

Now we can change the degree of f, by multiples of p°® since there are
functions of arbitrary degree, say (-8),

o: (DZn—l’ 2n- 2) — (S *)

and then if we define
6 =pl e o (01,827 — (I',%)

we have deg 6 = -B pj. Furthermore there is a standard procedure to

modify the degree of fz by using 6 ([1] p.95, [2] p.98) and it gives
a function fj: L. —— L' cellular, such that f (h(x)) (h")? f4(x)

and deg f3 =1.m

We want to show now that f3 is in fact a homotopy equivalence and to
that end it is enough to check that it induces isomorphisms in homo-
logy. Furthermore, we see that it suffices to show that for each
1<r <n-1 ’

(deg (£5 | WM™ H),p) =

and this follows from the fact that

£, = £, | @' 1 <r<n-1
and £, (D2 = (5, | AT e (g M
since deg (£1 (AN =a®e ..., q ... q
and (deg (fy |(L')2r—1),P) =
We have then
(4.2) The function f4 in (3.2) is a homotopy equivalence.®

We can prove now

(4.3) THEOREM. Let L = L(p®;q;,...,q,) and L' = L'(p®;q},-..,q;) be
pseudo-lens spaces and let w, (L) = Zal = <[t]> = <h> and 7y (L') =

o Zai = <[t']> = <h'> be the corresponding fundamental groups (t and
t' are generators of G).

There exists a simple homotopy equivalence f: L —— L' such that
£(h) = (h')? (a,a}) = 1 if and only if

1) (%a5) = (@%,a}) i=1,...,n

ii) There is a permutation ¢ of (1,...,n) such that ¢, a a;(k) =
(mod a;) where € = 1 for each k=1,...,0n.
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Proof. The conditions are necessary by (3.1). In order to show that
they are sufficient we notice that our hypothesis imply those on (3.2)
and (3.3) and therefore we have a function f: L —— L' such that f
is a homotopy equivalence and fx(h) = (h')? (a,a') = 1.

It remains fo be shown that f is simple. To that end we first notice
that the complexes L and L' are special in the sense of [4] p.404
since they are finite complexes which fundamental groups are finite
abelian and operate trivially on the rational homology groups of the
universal covering spaces.

Now according to lemma 12.5 [4] p.405 we just have to prove
£, A(L) ~a(L")

(see [4] p.405 for notation).

n K_
Now a short calculation shows that A(L) ~ .IH (h™* - 1) and since
f*{h) = (h')? we have =

n L.
£,00m) ~ I (()*i - 1)
1=
and'accordingly

. n z l.
ALY = I () - 1.

Now since we have ta aé(k) = q, (mod p(m-j))
we can write ta aé(k) zé(k) L, =T, zé(k) £, (mod p(m-j))
i.e. + g lk = Zé(k) (mod p(m—j)).

We must consider two cases:

i) ae bty gy

]

» 2
K= Loy (med p@3)  then ((ANTK - 1 = (N

af_k

i1) -a £, = 25, (mod p™)) then ((1)TF - 1. -

zl
()% -,
Therefore we conclude
al

oo™~ B (o oy

i= i=

and this finishes the proof of (4.3).®

(4.4.) FINAL REMARKS.

It follows from the proof of (4.3) that one can extend this result to

the following more general situation:

a
1

a o .
If m = P, pz2 v ij is the decomposition of m into prime factors

then
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i) All the p; s are odd.

. _ m _ 61 Bi Bj A .
ii) a, = TEITET = p; -Py° ... pj for some T <B; <oy , 1i=1,...,].
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