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1. INTRODUCTION. 
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In this paper we study actions of cyclic groups on spheres by consi­

dering their quotient spaces. We consider the important special case 
of "linear" actions. 

Amongst all the quotient spaces of linear actions, we choose a special 

type which we call "Pseudo-Lens" spaces since, as we show in the sub­

sequent sections, they have properties similar to those of the well 
known Lens spaces. 

We believe that these spaces are interesting in themselves and also be­
cause they provide models for the study of quotient spaces of a special, 

but important, type of not-necessarily-free actions on spheresj name­

ly those with ~ell ordered set of isotropy groups. 

In section two, we define pseudo-lens spaces and describe a cell struc 

ture for them and their universal coverings. 

In section three, we give a necess.ary condition for simple homotopy 

equivalence and in section four, we see that in the case of actions of 

cyclic p-groups this condition is also sufficient. 

2. PSEUDO-LENS SPACES. 

Let m ~ 3 be an integer and G ~ Zm with a preferred generator t. Let 

S2n-l C en the unit sphere in complex n-space, with a standard orien­
tation. 

Let w exp(i ~) and consider the action of G on S2n-l defined by 

(2. 1 ) ql qn 
g(zl.···. zn) = (w zl' ... ,w zn). 

Our objective is to study the quotient space S2n-l/G which in the case 

(qi.m) = 1, i = 1~ •.. ,n is a manifold and is called lens spaae. 

We shall restrict our attention to effective actions without fixed 

points and we pose on the coeffi~ients, the restriction 1 < qi < m 
i = 1,2, ... ,n. 
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There is.a natural partial ordering relation among the isotropy sub­
groups of the action (2.1) given by inclusion. If H1, ... ,Hk i~ the 
set of isotropy subgroups, we may think that the order is such that 

Hj 2Hi implies j < i. 

If the resulting order is total, i.e. HJ 2 H2 2 ... 2 Hk , we shall 
call the quotient space s2n-l/G a '-'pseudo lens-space" and denote ~ t 

by Lm(ql, ... ,qn) or L(m;ql, ... ,q~). 

Since the actions we consider are effective, w~ must have Hk {e}, 

where e is the identity of G. 

It is easy to provide these spaces with a eW-complex structure. 
! 

In order to describe this structure, we consider the following rein-
dexing of the coefficients qi = 1, ... ,n. 

(2.2) i < j implies (qj ,m) I (qi ,m) 

where (q.,m) is the usual greatest common divisor. We have then 
J 

i = 2, ••. ,n. 

We can associate to each q1. another integer L. defined by 
• 1 

(2.3) (mod _---""m_ 

We can give now a cell decomposition of Lm(ql, ... ,qn). 

We shall have cells e 2k- 1 and e 2L, 1 < k < n , 0 < L < n-l. The cell 

e 2k- 1 will be image in the quotient of 

"2k-l e 

and e 2L the image of 

The boundary relations in S2n-l take the form 

(2.4) 

ae 2k- 1 = (tLk _ 1)e2k- 2 

.;;;; s < n-l a = s 
m 

We easily obtain the homology and cohomology groups of Lm(ql, ... ,qn)' 
The homology groups are 

. {: 
i 2k 1 < k < n-l 

(2.5) Hi (Lm,Z) i 0 2n-l 

Zak i 2k-l 1 < k < n-l 
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-compare [3]. 

We want to consider now the universal covering Lm(q1, ••. ,qn) o£ 

Lm(q1'··· ,qn)· 

Let H be the subgroup of G generated by tal and consider the quotient 
space S2n-1/H. 

Since H acts trivially on the first coordinate we clearly have: 

Now, since the 1-squeleton'of La1 (h2, ••• ;hn) is Sl, we have that the 
3-squeleton of S2n-1/H is S3 and clearly then S2n-1/H is simply-con­
nected. 

Furthermore, S2n- 1/H supports a free action of G/H ~ Za1 

[t].[ (Zl, •.. ,Zn)] = [t(Zl, ••• ,Zn)] 

and clearly (S2n-1/H)/(G/H) ~ Lm(q1, •.• ,qn). 

We can obtain a "natural" cell structure on Lm(q1, .•. ,qn) = S2n-1/H 
by the same procedure as before i.e. by inducing the "quotient" cell 
structure from S2n-1. ,In thi~ way, we have a1 cells in each dimension 
and by taking quotient under the action of Za1 we get the cell struc­
ture already described in Lm(q1, ... ,qn). 

We shall take the following notation 

(2.6) 

and so 

3. SIMPLE HOMOTOPY EQUIVALENCE. 

In this section we study conditions under which two pseudo-lens' spaces 
are simple homotopy equivalent. 

(3.1) PROPOSITION. Let L = L (m;qr, .•. ,qn) and L' = L' (m;qi, .•• ,q~) 
be speudo-lens spaces and let n1(L) ~ Za1 = <[t]> = <h> and n1(L') ~ 
~ Zai = <[t']> = <h'> be the co~~esponding fundamental g~oups (t and 

t' a~e gene~ators of G). 

Let f: L --+ L' be a simple homotopy equivalence such that f*(h) 
= (h,)a (a,ail = 1. Then 

i) (m,qi) = (m,qi) i = 1 •.•. ,n 

ii) There is a· permutation a of (l, •.. ,n) such that Ek a qd(k) - qk 
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(mod al) where Ek = ± 1 for each k = 1, ... ,no 

Proof. We can clearly assume t = t' = exp(i ~). m 

(i) is clear. Let us proceed to prove (ii). 

Let Land L' be the corresponding universal coverings and f the map 

such that the diagram 

f L' 

f 

commutes. 

Let us consider now the chain-complexes C(L') and [C(L)1 f # (see [11 

p.74 for notation) 

C (L' ) o --->- C2n-l 

with the boundary relations 

C' 2n-2 --r •.. ---!" Co -- 0 

a' (a'-l) 
~r1+h'+ ... +h' 1 1 p,(~s-l) 
ai 1 

[C(L)lfll C 2n-2 

with boundaries 

3 (pi (~2k-l)) = [ (h') a.tk - 11 pi (e 2k- 2) 

3(pi(e 2S )) = as [1 + (h,)a + ... + (h,)a(al-l)1 pi(g2s-l). 
a 1 

Nowf is a simple homotopy equivalence and therefore T(f) = 0 and by 

[11 p.74, Th. (22.8) it is possible to construct a W(TIl(L')) complex C 

such that T (C) = T (f) and C can be put into a based short exact seque!! 

ce of W(TIl(L')) complexes 

o ----+ ceL') --->- C -- E(L) -- 0 

where C(L) is [C(L)1 f # shifted in dimension by one and with its boun 

dary multiplied by (-1) [11 p.74. 

C is acidic, as can be verified from the definition and now we comple­

te the proof of the theorem as in [11 (30.1).-

4. CYCLIC P-GROUPS. 

We shall restrict ourselves now to the case m pS with P odd prime. 
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If L(pS;q1' .. ·.'qn) is a pseudo-lens space and i(Ps;q1, ... ,qn) is the 
universal covering, then 

L = 51 * 51 * ... * 51 * L ( j q ) p ;qk+1'···' n 
~ k------

where k ;;;. 

= (pS,q2) 

is the greatest natural number such that (pS,q1). 
... = (pS,qk) and pj = (pS,Ql). Also n1 (L) ~ Zp(s-j)= Za1. 

Let us take now pseudo-lens spaces LlpS;Q1, ..• ,Qn) and 

L(pS;Qi, ... ,Q~). Let lk k = 1, ... ,n be as in (2.3) and 'if as in (2.6); 
then we have the following 

(4.1) LEMMA. If an II :n ci"i_ ... q~ ==±1 (mod p(s-j)) then there 

exists a cellular map f3: L - L' such that f 3 (h(x)) = (h,)af3(x) 
and deg f3 =± 1 . 

Proof. Let us start by defining a function F: 52n- 1 _ 52n- 1 eQui­

variant respect to the two actions of G ~ Z S 
P 

F(zl, ... ,zn) = F(r1 exp(i2nt1), ... ,rn exp(i2ntn)) 

(r 1 exp(i2nal1 Qit1),···,rn exp(i2naln q~tn)) 

we clearly have 

F(g(zl •... 'znJ) = (g,)a F(zl, ... ,zn) 

F is cellular and deg F = an II In qi ... q~ = d with d == ± 1 
(mod p(s-j)). (In order to simplify notation we shall consider from 
now on that d == 1 (mod p(s-j)). The proof will be the same in the 

other case). F induces a new cellular function f: i ---+- L' and 
deg f = d. 

The new f satisfies 

f(h(x)) = (h,)a f(x). 

NOW, since d == 1 (mod p(s-j)), we have d 1 + ~ p(s-j) and since, 

51 * ... * 51 is the (2k-1)-sQueleton of L and we can define 
'-----., k,------' 

(k factors) 

such that it is cellular, f 1 (h'(x)) = h'f(x) and deg f1 = 1 + ~ p(s-j) 

5uch an f1 exists since 51 * ... * 51 
and n1 (L') are free (see [1] (29.4)). 

52k- 1 and the actions of n1(L) 

Let us take now ff: 51 * * 51 ---+ 51 * ... * 51. It is cellular, 
ff (h' (x)) = h'ff(x) and deg ff (1 + ~ p(s-j))l. 

It is clear then, that for each l ;;;. 1 we can construct f l : L' ---+ L' 
cellular equivariant (fl(h' (x)) h' flex)) and such that 

deg fl = (1 + ~ p(s-j))l 

since it suffices to define fl = (f1)l * Id. 
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Let us define 'now f 2 : L --+ L' by f2 = f t D f. Then f2 is cellular. 
f 2 (h(x)) (h,)a f 2 (x), and deg f2 = (1 + a p(s-j»)t+l i.e. 

deg f2 + (! + 1) a p(s-j) + ••• + a(t+l) p(m-j)(t+l ). 

We can clearly choose !+1 as a sufficiently high power of p in order 

to obtain deg f2 = 1 + a pS. 

Now we can change the degree of f2 by multiples of pS since there are 
functions of arbitrary degree, say (-a), 

and then if we define 

e = pi 0 a: (D2n-I,S2n-2) _ (i>, *) 

we have deg e = -a pj. Furthermore there is a standard procedure to 

modify the degree of f2 by using e ([1) p.95, 12] p.98) and it gives 

a function f3: L - L' cellular, such that f 3 (h(x)) = (h,)a f 3 (x) 

and deg f3 = 1.-

We want to show now that f3 is in fact a homotopy equivalence and to 
that end it is enough to check that it induces isomorphisms in homo­

logy. Furthermore, we see that it suffices to show that for each 
1 ..;; r ..;; n-l 

- - 2 I (deg (f3 I (L) r- ) ,p) 

and this follows from the fact that 

and 

since 

a!ld 

We have then 

f3 I (1) 2r-1 

f 2 (L) 2r-1 

(deg (f.e I (L') 2r-l) ,p) 1. 

1 ..;; r ..;; n-l 

(4.2) The funation f3 in (3.2) is a homotopy equivalenae.-

We can prove now-

(4.3) THEOREM. Let L = 
pseudo-lens spaaes and 

~ Z a' = <I t ') > = <h' > 
I 

L(pS;ql, ••• ,qn) and L' = L'(pS;qi, ••• ,q~) be 

Zet ~l(L) ~ Zal = <It]> = <h> and wl(L') ~ 
be the aorresponding fundamen~al groups (t and 

t' are generators of G). 

There e~ists a simple homotopy equivalenae f: L ---+ L' suah that 

fJ(h) = (h,)a (a,ai) • 1 if and only if 

i) i 1, ...• n 

ii) There is a permutation a of (l, .•• ,n) suah that £k a q~(k) - qk 

(mod all where' £k = 1 for eaah k = 1 •.•. ,n. 
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Proof. The conditions are necessary by (3.1). In order to show that 
they are sufficient we notice that our hypothesis imply those on (3.2) 
and (3.3) and therefore we have a function f: L ---+ L' such that f 
is a homotopy equivalence and f*(h) = (h,)a (a,a') = 1. 

It remains to be shown that f is simple. To that end we first notice 

that the complexes Land L' are speciaZ in the sense of [4) p.404 
since they are finite complexes which fundamental groups are finite 
abelian and operate trivially on the rational homology groups of the 
universal covering spaces. 

Now according to lemma 12.5 [4] p.405 we just have to prove 

(see [4] p.405 for notation). 
n .t-

Now a short calculation shows that ~(L) - IT (h 1 - 1) and since 
i=l 

f*{h) = (h,)a we have 

and accordingly 

~(L' ) IT ((h').t~ - 1). 
i=l 

Now since we have 

we can write + -, 0' 0 - 0, ° (mod p(m- j )) 
- a qo (k) "-0 (k) "-k == qk "-0 (k) "-k 

i. e. ±a.tk - .t~(k) (mod p(m- j )). 

We must consider two cases: 

i) p (m-j )) a.tk = ((h,).t;,(k) - 1) a .tk - .t~(k) (mod then ((h' ) 1) 

ii) -a .tk - .t~(k) (mod p(m- j )) then ((h,)a.tk 1). (- (h' )-a.tk) = 

.t' ((h') o(k) - 1). 

Therefore we conclude 

n a.t - n .t' (-) 
IT ( (h' ) 1 _ 1) _ IT ((h') 0 1 - 1) 

i= 1 i= 1 

and this finishes the proof of (4.3).-

(4.4.) FINAL REMARKS. 

It follows from t"he pToof of (4.3) that one can extend this result to 
the following more general situation: 

01 0z 0-
If m = PI Pz pjJ is the decomposition of m into prime factors 

then 
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i) All the Pi s are odd. 

ii) 
_ m _ 61 13 2 

a 1 - (ql,m) - PI 'P 2 i 1 , ••• ,j . 
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