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INVARIANT POLYGONAL DOMAINS FOR MULTIVALUED
FUNCTIONAL DIFFERENTIAL EQUATIONS

Mihai Turinici

0. INTRODUCTION.

An important question concerning a wide class of functional differen-
tial equations is that regarding flow-invariance properties with res-
pect to certain families of subsets of the ambient state space. As a
classical result in this direction we must quote the 1942 Nagumo's
theorem [15] (see also J.M.Bony [1], H.Brezis [2], M.G.Crandall [6])
dealing with flow-invariance problems for (univalued) ordinary dif-
ferential equations with respect to closed subsets of a finite dimen-
sional Banach space. An infinite dimensional extension of the above
quoted results was performed by R.H.Martin Jr. [13] (see also N.Pavel
[171) and, respectively, by N.Pavel and I.Vrabie [19] in case of uni-
valued and, respectively, multivalued ordinary differential equations
acting on those spaces. Under these lines, it's the main objective of
the present note to state and prove a flow-invariance theorem for a
class of multivalued functional differential equations of the form

(MFDE) x'(t) € k(x)(t)

with respect to a certain family of polygonal domains satisfying a "nor
mality" hypothesis and, in this context, it must be emphasized that the
basic tool in proving our main result is represented by a "multivalued"
fixed poinf theorem comparable with a similar one due to H.Covitz and
S.B.Nadler Jr. [5]. A number of extensions of these results, especially
to time-dependent polygonal domains will be given elsewhere.

1. A "MULTIVALUED'" FIXED POINT THEOREM.

Let (X,d) be a generalized metric space in Luxemburg-Jung's sense
[12], [10], and let C(X) denote the class of all (nonempty) closed sub
sets of X. For every x € X, YC X, r > 0 let X(x) denote the x-com-
ponent of X (the subset of all y € X with d(x,y) < +«), d(Y,x) the
usual distance between Y and x (the infliimum of all distances d(x,y)
with y € Y) and S(Y,r) the open sphere with "center" Y and radius r
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(the subset of all x € X with d(Y,x) < r). Let D be an extended real
valued function from (C(X))2 into ﬁ; = [0,+~] defined, for every
Y,Z € C(X) by the convention

D(Y,Z)

inf {r > 0; Y € S(Z,r), Z C S(Y,r)} , if {r > 0; Y C S(Z,r), Z CS(Y,1)}¥ @
= 4+ , if {r > 0; Y € S(Z,1), Z C S(Y,r)}=@.

A classical result (see, e.g., C.Kuratowski [11,p.106]) assures us that
(C(X),D) is a generalized metric space, the extended real valued func
tion D being called the generalized Hausdorff metric of C(X). The fol-
lowing facts about this metric are almost evident (see S.B.Nadler Jr.

[14], for more details)

(A) <f Y,Z € C(X) and T > 0 are such that, for every u € Y (resp.,l)
there exists Vv € L (resp., Y) with d(u,v) <t then D(Y,Z) <T.

(B) <f the sequences (y,; m € N) C X and (Yu; n € N) € C(X) satisfy

Yn € Yo, n € N and 2f yq 4. Yy » Yo 2, Y as n — o , for some
y € X, Y € C(X), then necessarily, y € Y.

Throughout this note, by a multivalued mapping from X into X we mean

a mapping from X into C(X). In this context, T being a multivalued map
ping from X into X, a sequence (x,; n € N) C X is said to be an <tera
tive sequence generated by x € X and T iff it satisfies

Xg =X , Xy € Tx0 seees Xo4g € Txn se e

and a point z € X is called a fixed point of T provided that z € Tz.

Let £ be a given function from R, into itself. A multivalued mapping
T from X into X is said to be a multivalued contraction with respect
to f provided that it satisfies: if x,y € X and r > 0 are such that
d(x,y) < r then, for every u € Tx (resp.,Ty) there exists v € Ty
(resp.,Tx) with d(u,v) < £(r) (note that, by (A), we necessarily have
in this case D(Tx,Ty) < f(r)). Finally, we shall indicate by Q the
class of all functions f: R, —»> Ry with J f(n)(t) < +w , for all

n=0
t € R, (here f(“) denotes the n-th iterate of the function f, for all

n € N).

Suppose. in what follows (X,d) is a complete g.m.s., and T is a multi-
valued mapping from X into itself. Concerning fixed points of this map
ping, the main result of this paragraph is

THEOREM 1. Suppose there exists a function £ € Q such that
(1) T 4s a multivalued contraction with respect to f
(ii) X(T) = {x € X; X(x) NnTx # @} <s not empty.

Then, for every x € X(T) there is an iterative sequence (xn; n e N) c
C X(x) generated by X and T , a real number p > 0 and an element
z € X(x), such that the following conclusions hold

(Cl) z € Tz (z is a fixed point of T).
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oo
(C,) x, — z as n—> = in the sense d(x_,2) < ] £™ (1),
m=n
all T >p ,m€EN.

Proof. Let x € X(T) be a given element and put Xg = x. By (ii), there

must be an element x, € Tx0 with p = d(xo,xl) < +», In this case, ta-

king into account (i), an element x, € Tx; may be chosen with
d(xl,xz) < f(p), and 'so on. By induction, we get an iterative sequence
(x,; n € N) c X(x) generated by x and T, satisfying

d(xn,xn+1) < f(n)(p), for all n € N

It follows at once that (x_ ; n € N) is a Cauchy sequence so that, by
completeness, x, — z as n — «, for some z € X(x) C X. Moreover,
taking into account that (A) gives

D(Txn,Tx < f(n+1)(p), for all n € N

n+1)

we derive Txj —2 . Tz as n — o, in which case, by (B), z € Tz and

this completes, practically, the proof. Q.E.D.

As an important particular case, let the function f: R, — R, be de-
fined by f(t) = At, t € R,, for some A € (0,1); then, the above result
may be compared with a similar one due to H.Covitz and S.B.Nadler Jr.
[ 5] (see also S.B.Nadler Jr. [14]).

2. THE MAIN RESULTS.

In what follows, (R™,l.l1) stands for the classical n-dimensional vec
tor space endowed with an usual norm. Let X (resp.,x(g denote the
class of all continuous x: R, — R" (resp., x: R, —> R,). Define a
mapping x — |[Ixll from Xn into Xo-by Ixi(t) Ix(t)l , t e R,, X € Xn
and for every g € xo let H.ng denote the generalized norm on Xn defi-
ned, for every x € X, by

e g

qug inf {} > 0; Ixl < Ag} , if (A > 0; x| <Ag} # O

=+ , if (A =>0; Ixl <)g} =0 .
It is a simple matter to verify that (Xn,l.lgj is a generalized Banach

space (resp., a complete g.m.s., by the standard construction of its
metric). For every g € X, denote also (Xn)g = {x € X; Hxﬂg < +»} and

Cg(xn) ={YcX;Y #0, Y is N.ﬂg -closed}.

Suppose x +— k(x) is a given mapping from X, into P(Xn) = {Y C X3 Y # ¢}
and let xO € R™ be a given vector. Then, we may consider the multiva-
lued Cauchy problem of a functional differential type

(MCP) x'(t) e k(x)(t) , teRy , x(0) = x°.
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An important notion related to this class of Cauchy problems may be
formulated as follows. Let H be a nonempty subset of R™. H is said to
possess a flow-invariance property with respect to (MCP) iff, for e-
very x0e H,the corresponding solution x € X, of (MCP) will remain in
H for all t € R, or, in other words, (denoting by X, (H) the class of
all x € X, with x(t) €H, t € R,) the corresponding solution x € X,
of (MCP) will belong to X (H). In order to state and prove an useful
flow-invariance result for the Cauchy problem (MCP) we have to intro-
duce an appropriate terminology. Let (R™)* denote the class of all 1i
near functionals on R®. For every h € (R®)¥, A € R, let (h;)\) denote
the half-space h(x) > A. A family ((h;;X;);i € I) of half-spaces is
said to be admissible iff its intersection H = N ((hj;A;); 1 € I) is
nonempty, H being termed the polygonal domain generated by this fami-
1y of half-spaces.Now, as a first flow-invariance result of the pre-
sent note we have

THEOREM 2. Let the mapping X +— k(x) and the polygonal domain H be as

above and suppose that, in addition,
(IH) ieIl, te€R , x €X , hi(x(t)) < Ai imply
hi(y(t)) >0 for all y € k(x)

Then, necessarily, H posesses a flow-invariance property with respect
to the Cauchy problem (MCP).

Proof. Suppose there is a vector x0 € H such that, the corresponding
solution x € X, of (MCP) is not remaining in H. Then, there must exist
i €I and t; > 0 such that hi(x(tl)) < Ay- Put t, = sup(t € [O,tl] 5

h,(x(t)) >A,); clearly, t, € [0,t}) , h (x(t,)) = Ay, h. (x(t)) <Ay
for all t € (t2’t1] so that, from the classical mean value theorem ,
there must be t, € (tz,tl) with hi(x'(tB)) < 0. On the other hand, by
(IH)’,hi(Y(tB)) > 0, for all y € k(x) (since t, € (tz’tl) implies
hi(x(t3)) < Xi) and in particular, hi(x'(t3)) > 0, contradicting the

above relation and proving our theorem. Q.E.D

A close analysis of the above invariance condition (IH) shows that it
. is, in fact, difficult to be manevrated because the whole class X, is
implicated there. It would be of interest to replace it by an invariag
ce condition involving only the class Xn(H), eventually under some res
trictive assumptions about the considered polygonal domain H. On the
other hand, for a number of practical reasons, it is important to con-
nect flow-invariance conditions with existence uniqueness and approxi-
mation conditions about the considered (MCP). To this end, we have to
introduce the notion of normal polygonal domain. Let H be defined as
above. A mapping y: R® — R® is said to be a normal H-mapping iff
Y(R™ CcH, ¥/H = iy (the identity mapping), Iv(x)-v(¥)I < Ix-yl, all
x,y € R®, and, in addition, i € I, x € R®, hi(x) < Ai imply hi(w(x)) =
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= Aj. Every normal (polygonal domain generating) H-mapping will be
denoted as x — X and, the same convention will be used to denote the
associated mapping from X, into X, (H) defined by x(t) = x(t), all

t € R, , x € X,. Finally, a polygonal domain H is said to be a normal
polygonal domain iff it possesses at least an associated normal H -
mapping.

It is supposed henceforward H is a normal polygonal domain, x +— ky(x)
a mapping from X (H) into P(X,) and xOeHa given vector. Let us de-
note by (MCP)y the corresponding multivalued Cauchy problem (MCP) with

k replaced by ky. In this case, the main existence, uniqueness aproxi
mation and flow-invariance result of this note is

THEOREM 3. Suppose there exist a couple of functions g € Xg, £ € Q
and a mapping X b— e(x) from X, into X, such that
(iii) for every x € X, (H) the set Ky(x) of all y*e X, with yE(t) =
t
= x0 + IO y(s)ds , t € R,, for some y € kH(x) i8 in cg(xn) (resp.,

a ﬂ.ﬂg - closed subset of X,).

(iv) <f x,y € X, (H) and a € X satisfy Ix-yl < a then, for every
u € ky(x) (resp., ky(y)) there exists v € kH(y) (resp., kH(x)) satis-—
fying lu-vl < e(a),
t
v) JO e(g.t)(s)ds < f(t)g(t) , T>0 , teR,.
t
(vi) the set Xg C X, of all y € X, satisfying ly(t) - x0 - Jtﬂs)dsﬂ<
0
<ug(t), tE€ R, , for some u>0, ue kH(y), is not empty.
(vii) i €I, t € R, , x € X ,(H), h (x(t)) = A; <mply hi(y(t)) = 0 for
all y € ky(x).
Then, for every yo € Xg there is a sequence (yp; m € N) C yo + (Xn)g,

and an element 2z € (yo + (Xn)g) n Xn(H) such that

(C3) z is a solution of (MCP)y in X, (H)
€) vo=Y", ¥4 €kg(¥) » mEN

(CS) (ym; m € N) converges in the sense of H.ﬂg to z with an eva-
luation of the convergence given by

by, -2l < (I £P(m)g , t30% , meN

p=m

p(yo) > 0 being dependent only on yo € Xg.

Proof. Let x +— k(x) be a mapping from X, into P(X,) given by k(x) =
= kH(f) » all x € X, and let T be a multivaled mapping from (Xn,n.ug)

into itself given by-the convention Tx = Ky(x) , all x € X (note
that, by (iii), T is well defined). We claim that T is a multivalued
contraction with respect to f. Indeed, let x,y € X, and T > 0 be

such that le—yug < 1. From the definition of H-ﬂg combined with the
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definition of .a normal mapping, 1xX-yl < Ix-yl < gt. Let u* € Tx (resp.,
t
Ty) be given; clearly, u®*(t) = x0 + Jo u(s)ds, t € R,, for some

u € ky(x) (resp., kH(?)). Now, let v € kH(?) (resp., kH(f)) be the as
sociated element given by (iv), then [u-vi < e(gt) so that, denoting

vE(t) = xo + It v(s)ds, t € R, - clearly, v¥ € Ty (resp., Tx) - we have
0
lu® () -v* () < J: lu(s)-v(s)lds < [; e(gr)(s)ds < f(r)g(t) , t €R,

that is, uux—v“ng < f(1), showing that T is a multivalued contraction
with respect to f. On the other hand, clearly, (vi) says that, for

: t
every y0 e Xg we have (denoting u®(t) = x% + J u(s)ds, t € R, and
0

observing that, evidently, u* € T(yo)) Iyo—u"lg <u<+= , i.e.,

y0 e Xn(T), showing that X (T) is not empty. Finally, we claim that
the invariance condition (IH) holds. Indeed, let i € I, t € R, and

x € X, with hi(x(t)) < Xi then, X € X, (H) and hi(i(t)) = Xj so that,by
(vii), hi(y(t)) =0, for all y € kH(i) = k(x), proving our assertation.
In this case both Theorem 1 and Theorem 2 are applicable and this com-

pletes the proof. Q.E.D.

A very important particular case of our theorem is that corresponding
to the choice H = R}. Here, obviously, H = n ((h;;2;); 1 <1 < n) with
hy(x) = x5, Ay = 0, for all x = (X},Xp,...,X;) € R%, 1 <i<n, and a
standard normal H - mapping is x — X = max(x,0), the function "max"
being usually defined by the lattice structure of R™. Then, the inva-
riance condition (vii) becomes

(vii)' i e {1,...,n} , tE€R,, x €X (RY) , x;(t) = 0 <mply
yi(t) >0 for all y € kH(x)

in which case, the corresponding variant of Theorem 3 above may be con
sidered as being a "multivalued" extension of a result due to the au-
thor [21] (see also, N.Pavel and M.Turinici [18]).

As a final remark, let t — t be a mapping from R, into P(R,). In this
case, for every x € X, k(x)(t) may be considered as being completely
defined only by the values of the vector function x € X taken on the
subset T c R,. Note that, in the case £t clo,t}, t €R,, the Cauchy pro
blem (MCP) is a nonanticipative one (for a number of general results

in this direction see C.Corduneanu [4] and, respectively, A.Cellinal3],
H.Hermes [ 9], T.Wazewski [22], A.F.Filippov [8], D.T.Do€ev and D.D.Baj-
nov [7] for the univalued and, respectively, multivalued case) while,
in the case £ n (t,+») # ® , t € R, , the Cauchy problem (MCP) appears
as an anticipative one, being considered as a multivalued extension of
a similar problem introduced by the author [20] (see also in this direc

tion Oberg's paper [16]).
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