Revista de la Unión Matemática Argentina Volumen 30, 1981-82.

INVARIANT POLYGONAL DOMAINS FOR MULTIVALUED FUNCTIONAL DIFFERENTIAL EQUATIONS

Mihai Turinici

O. INTRODUCTION.

An important question concerning a wide class of functional differential equations is that regarding flow-invariance properties with respect to certain families of subsets of the ambient state space. As a classical result in this direction we must quote the 1942 Nagumo's theorem [15] (see also J.M.Bony [1], H.Brezis [2], M.G.Crandall [6]) dealing with flow-invariance problems for (univalued) ordinary differential equations with respect to closed subsets of a finite dimensional Banach space. An infinite dimensional extension of the above quoted results was performed by R.H.Martin Jr. [13] (see also N.Pavel [17]) and, respectively, by N.Pavel and I.Vrabie [19] in case of univalued and, respectively, multivalued ordinary differential equations acting on those spaces. Under these lines, it's the main objective of the present note to state and prove a flow-invariance theorem for a class of multivalued functional differential equations of the form

(MFDE) $x'(t) \in k(x)(t)$

with respect to a certain family of polygonal domains satisfying a "no<u>r</u> mality" hypothesis and, in this context, it must be emphasized that the basic tool in proving our main result is represented by a "multivalued" fixed point theorem comparable with a similar one due to H.Covitz and S.B.Nadler Jr. [5]. A number of extensions of these results, especially to time-dependent polygonal domains will be given elsewhere.

1. A "MULTIVALUED" FIXED POINT THEOREM.

Let (X,d) be a generalized metric space in Luxemburg-Jung's sense [12], [10], and let C(X) denote the class of all (nonempty) closed subsets of X. For every $x \in X$, $Y \subset X$, r > 0 let X(x) denote the x-component of X (the subset of all $y \in X$ with $d(x,y) < +\infty$), d(Y,x) the usual distance between Y and x (the infimum of all distances d(x,y) with $y \in Y$) and S(Y,r) the open sphere with "center" Y and radius r

(the subset of all $x \in X$ with d(Y,x) < r). Let D be an extended real valued function from $(C(X))^2$ into $\overline{R}_+ = [0, +\infty]$ defined, for every $Y, Z \in C(X)$ by the convention

$$D(Y,Z) = \inf \{r > 0; Y \subset S(Z,r), Z \subset S(Y,r)\}, \text{ if } \{r > 0; Y \subset S(Z,r), Z \subset S(Y,r)\} \neq \emptyset$$
$$= +\infty, \text{ if } \{r > 0; Y \subset S(Z,r), Z \subset S(Y,r)\} = \emptyset.$$

A classical result (see, e.g., C.Kuratowski [11,p.106]) assures us that (C(X),D) is a generalized metric space, the extended real valued function D being called the generalized Hausdorff metric of C(X). The following facts about this metric are almost evident (see S.B.Nadler Jr. [14], for more details)

- (A) if $Y, Z \in C(X)$ and r > 0 are such that, for every $u \in Y$ (resp., Z) there exists $v \in Z$ (resp., Y) with $d(u,v) \leq r$ then $D(Y,Z) \leq r$.
- (B) if the sequences $(y_n; n \in N) \subset X$ and $(Y_n; n \in N) \subset C(X)$ satisfy $y_n \in Y_n, n \in N$ and if $y_n \xrightarrow{d} y$, $Y_n \xrightarrow{D} Y$ as $n \to \infty$, for some $y \in X, Y \in C(X)$, then necessarily, $y \in Y$.

Throughout this note, by a *multivalued mapping* from X into X we mean a mapping from X into C(X). In this context, T being a multivalued map ping from X into X, a sequence $(x_n; n \in N) \subset X$ is said to be an *itera tive sequence* generated by $x \in X$ and T iff it satisfies

 $x_0 = x$, $x_1 \in Tx_0$,..., $x_{n+1} \in Tx_n$,...

and a point $z \in X$ is called a *fixed point* of T provided that $z \in Tz$. Let f be a given function from R_+ into itself. A multivalued mapping T from X into X is said to be a *multivalued contraction* with respect to f provided that it satisfies: if $x, y \in X$ and r > 0 are such that $d(x,y) \leq r$ then, for every $u \in Tx$ (resp.,Ty) there exists $v \in Ty$ (resp.,Tx) with $d(u,v) \leq f(r)$ (note that, by (A), we necessarily have in this case $D(Tx,Ty) \leq f(r)$). Finally, we shall indicate by Q the class of all functions f: $R_+ \longrightarrow R_+$ with $\sum_{n=0}^{\infty} f^{(n)}(t) < +\infty$, for all $t \in R_+$ (here $f^{(n)}$ denotes the n-th iterate of the function f, for all $n \in N$).

Suppose in what follows (X,d) is a complete g.m.s., and T is a multivalued mapping from X into itself. Concerning fixed points of this map ping, the main result of this paragraph is

THEOREM 1. Suppose there exists a function $f \in Q$ such that

(i) T is a multivalued contraction with respect to f

(ii) $X(T) = \{x \in X; X(x) \cap Tx \neq \emptyset\}$ is not empty.

Then, for every $x \in X(T)$ there is an iterative sequence $(x_n; n \in N) \subset C X(x)$ generated by x and T, a real number $\rho > 0$ and an element $z \in X(x)$, such that the following conclusions hold

 (C_1) $z \in Tz$ (z is a fixed point of T).

$$(C_2) \quad x_n \longrightarrow z \text{ as } n \longrightarrow \infty \text{ in the sense } d(x_n, z) \leq \sum_{m=n} f^{(m)}(\tau) ,$$

all $\tau \geq \rho$, $m \in \mathbb{N}$.

Proof. Let $x \in X(T)$ be a given element and put $x_0 = x$. By (ii), there must be an element $x_1 \in Tx_0$ with $\rho = d(x_0, x_1) < +\infty$. In this case, taking into account (i), an element $x_2 \in Tx_1$ may be chosen with $d(x_1, x_2) \leq f(\rho)$, and so on. By induction, we get an iterative sequence $(x_n; n \in N) \subset X(x)$ generated by x and T, satisfying

$$d(x_n, x_{n+1}) \leq f^{(n)}(\rho), \text{ for all } n \in \mathbb{N}$$

It follows at once that $(x_n; n \in N)$ is a Cauchy sequence so that, by completeness, $x_n \longrightarrow z$ as $n \longrightarrow \infty$, for some $z \in X(x) \subset X$. Moreover, taking into account that (A) gives

$$D(Tx_n, Tx_{n+1}) \leq f^{(n+1)}(\rho), \text{ for all } n \in \mathbb{N}$$

we derive $Tx_n \xrightarrow{D} Tz$ as $n \longrightarrow \infty$, in which case, by (B), $z \in Tz$ and this completes, practically, the proof. Q.E.D.

As an important particular case, let the function f: $R_+ \longrightarrow R_+$ be defined by f(t) = λt , $t \in R_+$, for some $\lambda \in (0,1)$; then, the above result may be compared with a similar one due to H.Covitz and S.B.Nadler Jr. [5] (see also S.B.Nadler Jr. [14]).

2. THE MAIN RESULTS.

In what follows, $(\mathbb{R}^n, \|.\|)$ stands for the classical n-dimensional vec tor space endowed with an usual norm. Let X_n (resp., X_0) denote the class of all continuous x: $\mathbb{R}_+ \longrightarrow \mathbb{R}^n$ (resp., x: $\mathbb{R}_+ \longrightarrow \mathbb{R}_+$). Define a mapping $x \longmapsto \|x\|$ from X_n into X_0 by $\|x\|(t) = \|x(t)\|$, $t \in \mathbb{R}_+$, $x \in X_n$ and for every $g \in X_0$ let $\|.\|_g$ denote the generalized norm on X_n defined, for every $x \in X_n$ by

$$\begin{aligned} \|\mathbf{x}\|_{g} &= \inf \{\lambda \ge 0; \ \|\mathbf{x}\| \le \lambda g\} \quad , \quad \text{if } \{\lambda \ge 0; \ \|\mathbf{x}\| \le \lambda g\} \neq \emptyset \\ &= +\infty \qquad , \quad \text{if } \{\lambda \ge 0; \ \|\mathbf{x}\| \le \lambda g\} = \emptyset \end{aligned}$$

It is a simple matter to verify that $(X_n, \|.\|_g)$ is a generalized Banach space (resp., a complete g.m.s., by the standard construction of its metric). For every $g \in X_0$ denote also $(X_n)_g = \{x \in X_n; \|x\|_g < +\infty\}$ and $C_{\sigma}(X_n) = \{Y \subset X_n; Y \neq \emptyset, Y \text{ is } \|.\|_{\sigma}$ -closed}.

Suppose $x \mapsto k(x)$ is a given mapping from X_n into $P(X_n) = \{Y \subset X_n; Y \neq \emptyset\}$ and let $x^0 \in \mathbb{R}^n$ be a given vector. Then, we may consider the *multivalued Cauchy problem* of a functional differential type

(MCP)
$$x'(t) \in k(x)(t)$$
, $t \in R_+$, $x(0) = x^0$.

An important notion related to this class of Cauchy problems may be formulated as follows. Let H be a nonempty subset of \mathbb{R}^n . H is said to possess a *flow-invariance property* with respect to (MCP) iff, for every $x^0 \in H$, the corresponding solution $x \in X_n$ of (MCP) will remain in H for all $t \in \mathbb{R}_+$ or, in other words, (denoting by $X_n(H)$ the class of all $x \in X_n$ with $x(t) \in H$, $t \in \mathbb{R}_+$) the corresponding solution $x \in X_n$ of (MCP) will belong to $X_n(H)$. In order to state and prove an useful flow-invariance result for the Cauchy problem (MCP) we have to introduce an appropriate terminology. Let $(\mathbb{R}^n)^{\texttt{H}}$ denote the class of all 1<u>i</u> near functionals on \mathbb{R}^n . For every $h \in (\mathbb{R}^n)^{\texttt{H}}$, $\lambda \in \mathbb{R}$, let $(h;\lambda)$ denote the *half-space* $h(x) \ge \lambda$. A family $((h_i;\lambda_i); i \in I)$ of half-spaces is said to be *admissible* iff its intersection $H = \cap ((h_i;\lambda_i); i \in I)$ is nonempty, H being termed the *polygonal domain* generated by this family of half-spaces. Now, as a first flow-invariance result of the present note we have

THEOREM 2. Let the mapping $x \mapsto k(x)$ and the polygonal domain H be as above and suppose that, in addition,

(IH)
$$i \in I, t \in R_+, x \in X_n, h_i(x(t)) < \lambda_i$$
 imply
 $h_i(y(t)) \ge 0$ for all $y \in k(x)$

Then, necessarily, H posesses a flow-invariance property with respect to the Cauchy problem (MCP).

Proof. Suppose there is a vector $x^0 \in H$ such that, the corresponding solution $x \in X_n$ of (MCP) is not remaining in H. Then, there must exist $i \in I$ and $t_1 > 0$ such that $h_i(x(t_1)) < \lambda_i$. Put $t_2 = \sup(t \in [0, t_1];$ $h_i(x(t)) \ge \lambda_i)$; clearly, $t_2 \in [0, t_1]$, $h_i(x(t_2)) = \lambda_i$, $h_i(x(t)) < \lambda_i$ for all $t \in (t_2, t_1]$ so that, from the classical mean value theorem, there must be $t_3 \in (t_2, t_1)$ with $h_i(x'(t_3)) < 0$. On the other hand, by (IH), $h_i(y(t_3)) \ge 0$, for all $y \in k(x)$ (since $t_3 \in (t_2, t_1)$ implies $h_i(x(t_3)) < \lambda_i$) and in particular, $h_i(x'(t_3)) \ge 0$, contradicting the above relation and proving our theorem. Q.E.D.

A close analysis of the above invariance condition (IH) shows that it is, in fact, difficult to be manevrated because the whole class X_n is implicated there. It would be of interest to replace it by an invarian ce condition involving only the class $X_n(H)$, eventually under some res trictive assumptions about the considered polygonal domain H. On the other hand, for a number of practical reasons, it is important to connect flow-invariance conditions with existence uniqueness and approximation conditions about the considered (MCP). To this end, we have to introduce the notion of normal polygonal domain. Let H be defined as above. A mapping $\psi: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is said to be a normal H-mapping iff $\psi(\mathbb{R}^n) \subset H, \ \psi/H = i_H$ (the identity mapping), $\|\psi(x) - \psi(y)\| \leq \|x - y\|$, all $x, y \in \mathbb{R}^n$, and, in addition, $i \in I$, $x \in \mathbb{R}^n$, $h_i(x) < \lambda_i$ imply $h_i(\psi(x)) =$ = λ_i . Every normal (polygonal domain generating) H-mapping will be denoted as $x \vdash \overline{x}$ and, the same convention will be used to denote the associated mapping from X_n into $X_n(H)$ defined by $\overline{x}(t) = \overline{x(t)}$, all $t \in R_+$, $x \in X_n$. Finally, a polygonal domain H is said to be a normal polygonal domain iff it possesses at least an associated normal H mapping.

It is supposed henceforward H is a normal polygonal domain, $x \leftarrow k_{H}(x)$ a mapping from $X_n(H)$ into $P(X_n)$ and $x^0 \in H$ a given vector. Let us denote by $(MCP)_{H}$ the corresponding multivalued Cauchy problem (MCP) with k replaced by k_{H} . In this case, the main existence, uniqueness aprox<u>i</u> mation and flow-invariance result of this note is

THEOREM 3. Suppose there exist a couple of functions $g \in X_0$, $f \in Q$ and a mapping $x \vdash e(x)$ from X_0 into X_0 such that

(iii) for every $x \in X_n(H)$ the set $K_H(x)$ of all $y^{\mathbb{H}} \in X_n$ with $y^{\mathbb{H}}(t) = x^0 + \int_0^t y(s) ds$, $t \in R_+$, for some $y \in k_H(x)$ is in $C_g(X_n)$ (resp., a $\|.\|_g$ - closed subset of X_n).

(iv) if $x, y \in X_n(H)$ and $a \in X_0$ satisfy $||x-y|| \leq a$ then, for every $u \in k_H(x)$ (resp., $k_H(y)$) there exists $v \in k_H(y)$ (resp., $k_H(x)$) satisfying $||u-v|| \leq e(a)$.

 $(v) \int_{0}^{t} e(g.\tau)(s) ds \leq f(\tau)g(t) , \tau > 0 , t \in R_{+}.$

(vi) the set $X_n^0 \subset X_n$ of all $y \in X_n$ satisfying $||y(t) - x^0 - \int_0^t u(s)ds|| \le \le \mu g(t)$, $t \in R_+$, for some $\mu > 0$, $u \in k_H(\overline{y})$, is not empty.

(vii) i \in I, t \in R₊ , x \in X_n(H), h (x(t)) = λ_i imply h_i(y(t)) \geq 0 for all y \in k_H(x).

Then, for every $y^0 \in X_n^0$ there is a sequence $(y_m; m \in N) \subset y^0 + (X_n)_g$, and an element $z \in (y^0 + (X_n)_g) \cap X_n(H)$ such that

 (C_3) z is a solution of $(MCP)_H$ in $X_n(H)$

 (C_4) $y_0 = y^0$, $y'_{m+1} \in k_H(\overline{y}_m)$, $m \in N$

 $(C_5) \quad (y_m; \ m \in N)$ converges in the sense of $\|.\|_g$ to z with an evaluation of the convergence given by

 $\|y_{m} - z\| \leq \left(\sum_{p=m}^{\infty} f^{(p)}(\tau)\right)g , \tau \geq \rho(y^{0}) , m \in \mathbb{N}$ $\rho(y^{0}) > 0 \text{ being dependent only on } y^{0} \in X_{p}^{0}.$

Proof. Let $x \leftarrow k(x)$ be a mapping from X_n into $P(X_n)$ given by $k(x) = k_H(\overline{x})$, all $x \in X_n$ and let T be a multivaled mapping from $(X_n, \|.\|_g)$ into itself given by the convention $Tx = K_H(\overline{x})$, all $x \in X_n$ (note that, by (iii), T is well defined). We claim that T is a multivalued contraction with respect to f. Indeed, let $x, y \in X_n$ and $\tau > 0$ be such that $\|x-y\|_g \leq \tau$. From the definition of $\|.\|_g$ combined with the

definition of a normal mapping, $\|\overline{x}-\overline{y}\| \le \|x-y\| \le g\tau$. Let $u^{\texttt{M}} \in \mathsf{Tx}$ (resp., Ty) be given; clearly, $u^{\texttt{M}}(t) = x^0 + \int_0^t u(s)ds$, $t \in \mathsf{R}_+$, for some $u \in \mathsf{k}_{\mathsf{H}}(\overline{x})$ (resp., $\mathsf{k}_{\mathsf{H}}(\overline{y})$). Now, let $v \in \mathsf{k}_{\mathsf{H}}(\overline{y})$ (resp., $\mathsf{k}_{\mathsf{H}}(\overline{x})$) be the as sociated element given by (iv), then $\|u-v\| \le e(g\tau)$ so that, denoting $v^{\texttt{M}}(t) = x^0 + \int_0^t v(s)ds$, $t \in \mathsf{R}_+$ - clearly, $v^{\texttt{M}} \in \mathsf{Ty}$ (resp., Tx) - we have $\|u^{\texttt{M}}(t) - v^{\texttt{M}}(t)\| \le \int_0^t \|u(s) - v(s)\| ds \le \int_0^t e(g\tau)(s) ds \le f(\tau)g(t)$, $t \in \mathsf{R}_+$

that is, $\|\mathbf{u}^{\mathbf{x}} - \mathbf{v}^{\mathbf{x}}\|_{g} \leq f(\tau)$, showing that T is a multivalued contraction with respect to f. On the other hand, clearly, (vi) says that, for every $\mathbf{y}^{0} \in \mathbf{X}_{n}^{0}$ we have (denoting $\mathbf{u}^{\mathbf{x}}(t) = \mathbf{x}^{0} + \int_{0}^{t} \mathbf{u}(s)ds$, $t \in \mathbf{R}_{+}$ and observing that, evidently, $\mathbf{u}^{\mathbf{x}} \in T(\mathbf{y}^{0})$) $\|\mathbf{y}^{0} - \mathbf{u}^{\mathbf{x}}\|_{g} \leq \mu < +\infty$, i.e., $\mathbf{y}^{0} \in \mathbf{X}_{n}(T)$, showing that $\mathbf{X}_{n}(T)$ is not empty. Finally, we claim that the invariance condition (IH) holds. Indeed, let $\mathbf{i} \in \mathbf{I}$, $\mathbf{t} \in \mathbf{R}_{+}$ and $\mathbf{x} \in \mathbf{X}_{n}$ with $\mathbf{h}_{\mathbf{i}}(\mathbf{x}(t)) < \lambda_{\mathbf{i}}$ then, $\overline{\mathbf{x}} \in \mathbf{X}_{n}(\mathbf{H})$ and $\mathbf{h}_{\mathbf{i}}(\overline{\mathbf{x}}(t)) = \lambda_{\mathbf{i}}$ so that,by (vii), $\mathbf{h}_{\mathbf{i}}(\mathbf{y}(t)) \geq 0$, for all $\mathbf{y} \in \mathbf{k}_{\mathbf{H}}(\overline{\mathbf{x}}) = \mathbf{k}(\mathbf{x})$, proving our assertation. In this case both Theorem 1 and Theorem 2 are applicable and this completes the proof. Q.E.D.

A very important particular case of our theorem is that corresponding to the choice $H = R_{+}^{n}$. Here, obviously, $H = \cap ((h_{i};\lambda_{i}); 1 \le i \le n)$ with $h_{i}(x) = x_{i}, \lambda_{i} = 0$, for all $x = (x_{1},x_{2},...,x_{n}) \in \mathbb{R}^{n}$, $1 \le i \le n$, and a standard normal H - mapping is $x \vdash \overline{x} = \max(x,0)$, the function "max" being usually defined by the lattice structure of \mathbb{R}^{n} . Then, the invariance condition (vii) becomes

(vii)'
$$i \in \{1, ..., n\}$$
, $t \in R_+$, $x \in X_n(R_+^n)$, $x_i(t) = 0$ imply
 $y_i(t) \ge 0$ for all $y \in k_H(x)$

in which case, the corresponding variant of Theorem 3 above may be considered as being a "multivalued" extension of a result due to the author [21] (see also, N.Pavel and M.Turinici [18]).

As a final remark, let $t \mapsto \hat{t}$ be a mapping from R_+ into $P(R_+)$. In this case, for every $x \in X_n$, k(x)(t) may be considered as being completely defined only by the values of the vector function $x \in X_n$ taken on the subset $\hat{t} \subset R_+$. Note that, in the case $\hat{t} \subset [0,t]$, $t \in R_+$, the Cauchy problem (MCP) is a *nonanticipative* one (for a number of general results in this direction see C.Corduneanu [4] and, respectively, A.Cellina[3], H.Hermes [9], T.Wazewski [22], A.F.Filippov [8], D.T.Dočev and D.D.Bajnov [7] for the univalued and, respectively, multivalued case) while, in the case $\hat{t} \cap (t, +\infty) \neq \emptyset$, $t \in R_+$, the Cauchy problem (MCP) appears as an *anticipative* one, being considered as a multivalued extension of a similar problem introduced by the author [20] (see also in this direction Oberg's paper [16]).

REFERENCES

- J.M.BONY, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, 19, 277-304, (1969).
- H.BREZIS, On a characterization of flow-invariant sets, Comm. Pure Appl. Math., 23, 261-263, (1970).
- [3] A.CELLINA, Multivalued differential equations and ordinary differential equations, SIAM J. Appl. Math., 18, 533-538, (1970).
- [4] C.CORDUNEANU, Sur certain équations fonctionnelles de Volterra, Funkc. Ekv., 9, 119-127, (1966).
- [5] H.COVITZ and S.B.NADLER Jr., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math., 8, 5-11, (1970).
- [6] M.G.CRANDALL, A generalization of Peano's existence theorem and flow-invariance, Proc. Amer. Math. Soc., 36, 151-155, (1972).
- [7] D.T.DOČEV and D.D.BAJNOV, On the existence of solutions of a class of multivalued differential equations with deviating argument (in Russian) Rev. Roum. Math. Pures Appl., 23, 1497-1503, (1978).
- [8] A.F.FILIPPOV, The existence of solutions of multivalued differential equations, Mat. Zametki, 10, 307-313, (1971).
- [9] H.HERMES, The generalized differential equation x' E R(t,x), Adv. in Math., 4, 149-169, (1970).
- [10] C.F.K.JUNG, On generalized complete spaces, Bull. Amer. Math.Soc., 75, 113-116, (1969).
- [11] C.KURATOWSKI, Topologie, vol.I, P.W.N., Warszawa, 1958.
- [12] J.S.W.LUXEMBURG, On the convergence of successive approximations. in the theory of ordinary differential equations, Indag. Math., 20, 540-546, (1958).
- [13] R.H.MARTIN Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc., 179, 399-414, (1973).
- [14] S.B.NADLER Jr., Multi-valued contraction mappings, Pacific J.Math., 30, 475-488, (1969).
- [15] M.NAGUMO, Über die Lage Integralkurven gewöhnlicher Differentialgleichungen, Proc. Phys.-Math. Soc. Japan, 24, 551-559, (1942).
- [16] R.J.OBERG, On the local existence of solutions of certain functional differential equations, Proc. Amer. Math. Soc., 20, 295-302, (1969).
- [17] N.PAVEL, Invariant sets for a class of semi-linear equations of evolution, Nonlinear Analysis, TMA, 1, 187-196, (1977).
- [18] N.PAVEL and M.TURINICI, Positive solutions of a system of ordinary differential equations, An. St. Univ. "Al.I.Cuza" Iaşi, 24, 63-70, (1978).
- [19] N.PAVEL and I.VRABIE, Semi-linear evolution equations with multivalued right hand side in Banach spaces, An. St. Univ. "Al.I.Cuza" Iaşi, 25, 137-157, (1979).
- [20] M.TURINICI, Volterra functional equations with transformed argument, Bull. Math. Soc. Sci. Math. Roum., 22(70), 99-107, (1978).
- [21] M.TURINICI, Invariant polygonal domains for a class of functional

[22] T.WAZEWSKI, Sur une généralisation de la notion des solution d'une équation au contingent, Bull. Acad. Pol. Sci., 10, 11-15, (1962).

> Seminarul Matematic "Al.Myller" 6600 IASI ROMANIA.

Recibido en octubre de 1980.