
Revista de 1a 
Un!6n. Matemii.tica Argentina 
Vo1umen jO. 1981-82. 

INVARIANT POLYGONAL DOMAINS FOR MULTIVALUED 

FUNCTIONAL DIFFERENTIAL EQUATIONS 

M;ha; Tur;n;c; 

O. INTRODUCTION. 

85 

An important question concerning a wide class of functional differen
tial equations is that regarding flow-invariance properties with res
pect to certain families of subsets of the ambient state space. As a 
classical result in this direction we must quote the 1942 Nagumo's 
theorem [15] (see also J .M. Bony [1]. H. Brezis [2]. M. G • Crandall [6]) 

dealing with flow-invariance problems for (univalued) ordinary dif
ferential equations with respect to closed subsets of a finite dimen
sional Banach space. An infinite dimensional extension of the above 
quoted results was performed by R.H.Martin Jr. [13] (see also N.Pavel 
[ 17]) and, respectively, by N. Pavel and I. Vrabie [19] in case of uni
valued and, respectively, multivalued ordinary differential equations 
acting on those spaces. Under these lines, it's the main objective of 
the present note to state and prove a flow-invariance theorem for a 
class of multi valued functional differential equations of the form 

(MFDE) x' (t) E k(x) (t) 

with respect to a certain family of polygonal domains satisfying a 'no~ 
mality" hypothesis and, in this context, it must be emphasized that the 
basic tool in proving our main result is represented by a "multivalued" 
fixed point theorem comparable with a similar one due to H.Covitz and 
S.B.Nadler Jr. [5]. A number of extensions of these results, especially 
to time-dependent polygonal domains will be given elsewhere. 

1. A "MULTI VALUED" FIXED POINT THEOREM. 

Let (X,d) be a generalized metric space in Luxemburg-Jung's sense 
[12], [10], and let C(X) denote the cl~ss of all (nonempty) closed su£ 
sets of X. For every x E X, Y C X, r > 0 let X(x) denote the x-com
ponent of X (the subs~t of all y E X with d(x,y) < +_), d(Y,x) the 
usual distance between Y and x (the infamum of all distances d(x,y) 
w,ith y E Y) and S (Y, r) the open sphere with "center" Y and radius r 
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(the subset of all x E X with d(Y,x) < r). Let D be an extended real 
valued function from (C(X))2 into R+ = [0,+00] defined, for every 
Y,Z E C(X) by the convention 

D(Y,Z) = inf {r> 0; Y C S(Z,r), Z C S(y,r)} , if {r > 0; Y C S(Z,r), Z C S(Y,r)}¥ 0 

=+00 , if {r > 0; Y C S(Z,r), Z C S(y,r)}=0. 

A classical result (see, e.g., C.Kuratowski [11,p.106]) assures us that 
(C(X),D) is a generalized metric space, the extended real valued fun£ 
tion D being called the generalized Hausdorff metric of C(X). The fol
lowing facts about this metric are almost evident (see S.B.Nadler Jr. 
[14], for more details) 

(A) if Y,Z E C(X) and r > 0 are such that, for every u E Y (resp.,Z) 
there exists v E Z (resp., Y) with d(u,v) ~ r then D(Y,Z) ~ r. 

(B) if the sequences (Yn; n E N) C X and (Yn ; n E N) C C(X) satisfy 

d D Yn E Yn, n E N and if Yn ~ Y , Yn ---+ Y as n -+ 00 , for some 

y E X, Y E C(X), then necessarily, y E Y. 

Throughout this note, by a multivalued mapping from X into X we mean 
a mapping from X into C(X). In this context, T being a multivalued ma£ 
ping from X into X, a sequence (xn ; n E N) C X is said to be an itera 

tive sequence generated by x E X and T iff it satisfies 

and a point z E X is called a fixed point of T provided that z E Tz. 

Let f be a given function from R+ into itself. A multivalued mapping 
T from X into X is said to be a multivalued cpntraction with respect 
to f provided that it satisfies: if X,y E X and r > 0 are such that 
d(x,y) ~ r then, for every u E Tx (resp.,Ty) there exists v E Ty 
(resp.,Tx) with d(u,v) ~ fer) (note that, by (A), we necessarily have 
in this case D(Tx,Ty) ~ fer)). Finally, we shall indicate by Q the 

class of all functions f: R+ --+ R+ with L f(n)(t) < +00 , for all 
n=O 

t E R+ (here f(n) denotes the n-th iterate of the function f, for all 
n E N). 

Suppose in what follows (X,d) is a complete g.m.s., and T is a multi
valued mapping from X into itself. Concerning fixed points of this ma£ 
ping, the main result of this paragraph is 

THEOREM 1. Suppose there exists a function f E Q such that 

(i) T is a multivalued contraction with respect to f 

(ii) X(T) {x E X; X(x) n Tx ¥ 0} is not empty. 

Then, for every X' E X.(T) there is an iterative sequence (xn ; n E N) C 

C X(x) generated by x and T , a real number p > 0 and an element 

z E X(x), such that the following conclusions hold 

(C1) z E Tz (z is a fixed point of T). 
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Xn ~ z as n --+ 00 in the sense d(xn,z) .;;;;. L f(m) (T) , 
m=n 

all T ~ P , mEN. 

Proof. Let x E X(T) be a given elem.ent and put Xo = x. By (ii), there 
must be an element xl E Txo with P = d(xO'x l ) < +00. In this case, ta-

king into account (i), an element x 2 E TX I may be chosen with 

d(x l ,x2) .;;;; f(p), and~o on. By induction, we get an iterative sequence 

(xn ; n E N) c X(x) generated by x and T, satisfying 

d(xn,xn+l) .;;;; f(n) (p), for a,ll n E N 

It follows at once that (xn ; n E N) is a Cauchy sequence so that, by 
completeness, xn --+ z as n --+ 00, for some z E X(x) C X. Moreover, 
taking into account that (A) gives 

D(Txn,Txn+l ) .;;;; f(n+l)(p), for all n EN 

we derive TXn ~ Tz as n --+ 00, in which case, by (B), z E Tz and 

this completes, practically, the proof. Q.E.D. 

As an important particular case, let the function f: R+ --+ R+ be de
fined by f(t) = At, t E R+, for some A E (0,1); then, the above resuh 
may be compared with a similar one due to H.Covitz and S.B.Nadler Jr. 
[5) (see also S.B.Nadler Jr. [14)). 

2. THE MAIN RESULTS. 

In what follows, (Rn , II. 0) stands for the classical n-dimensional vec 
tor space endowed with an usual norm .. Let Xn (resp. ,XJ deno.te the 
class of all continuous x: R+ --+ Rn Cresp., x: R+ --+ R+). Define a 
mapping x I-- Ilxll from Xn into Xo by IIxll (t) = IIx(t) 0 , t E R+, x E Xn 
and for every g E Xo let 1I.lI g denote the generalized norm on Xn defi
ned, for every x E Xn by 

Ilxl g inf {A ~ 0; Uxl .;;;; Ag} 

+00 

if {A ~ 0; Ilxll .;;;; Ag} #- 0 

if {A ~ 0; UxU .;;;; Ag} = 0 

It is a simple matter to verify that (Xn ' U. Ug) is a generalized Banach 
space (resp., a complete g.m.s., by the standard construction of its 
metric). For every g E Xo denote also (Xn)g = {x E Xn; UXU g < +oo} and 

C (X ) = {Y eX; Y #- 0, Y is H.II -closed}. 
g n n g 

Suppose x I-- k (x) i~ a given mapping from Xn into P (Xn) = {Y c Xn; Y #- (il} 

and let x O E Rn be a given Vector. Then, we may consider the multiva

lued Cauchy problem of a functional differential type 

(MCP) X, (t) E k(x) (t) x(O) = xo. 
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An important ~otion related to this class of Cauchy problems may be 
formulated as follows. Let H be a nonempty subset of Rn. H is said to 
possess a flow-invarianae property with respect to (MCP) iff, for e
very XOE H,the corresponding solution x EXn of (MCP) will remain in 
H for all t E R+ or, in other words, (denoting by Xn(H) the class of 
all x E Xn with x(t) E H, t E R+) the corresponding solution x E Xn 
of {MCP) will belong to Xn(H). In order to ~tate and prove an useful 
flow-invariance result for the Cauchy problem (MCP) we have to intro
duce an appropriate terminology. Let (Rn)H denote the class of all. II 
near functionals on Rn. For every h E (Rn)*, A E R, let (h;A) denote 

the half-spaae hex) ~ A. A family ((hi;Ai);i E I) of half-spaces is 
said to be admissible iff its intersection H = n ((hi;A i ); i E I) is 
nonempty, H being termed the polygonal domain generated by this fami
ly of half-spaces. Now, as a first flow-invariance result of the pre
sent note we have 

THEOREM 2. Let the mapping x r- k(x) and the polygonal domain H be as 

above and suppose that. in addition. 

(IH) iEI,tER+ , x EX 
n 

hi(y(t» ~ 0 fur all y E k(x) 

imply 

Then. neaessarily. H posesses a flow-invarianae property with respeat 

to the Cauahy problem (MCP). 

Proof. Suppose there is a vector xO E H such that, the corresponding 

solution x E Xn of (MCP) is not remaining in H. Then, there must exist 

i E I and tl > 0 such that hi(x(t l » < Ai' Put t2 = sup(t E [O,tll ; 

hi(x(t» ~ A); clearly, t2 E [O,t l ) , h i (x(t 2» = Ai' hi(x(t» < Ai 

for all t E (t 2,t l l so that, from the classical mean value theorem 

there must be t3 E (t 2,t l ) with hi(x' (t 3» < O. On the other hand, by 

(IH),h i (y(t 3» ~ 0, for all y E k(x) (since t3 E (t 2,t l ) implies 

h i (x(t 3» < Ai) and in particular, h i (x'(t 3» ~ 0, contradicting the 

above relation and proving our theorem. Q.E.D. 

A close analysis of the above invariance condition (IH) shows that it 
is, in fact, difficult to be manevrated because the whole class Xn is 
implicated there. It would be of interest to replace it by an invarian 
ce condition involving only the class Xn(H), eventually under some res 
trictive assumptions about the considered polygonal domain H. On the 
other hand, for a number of practical reasons, it is important to con
nect flow-invariance conditions with existence uniqueness and approxi
mation conditions about the considered (MCP). To this end, we have to 

introduce the notion of normal polygonal domain. Let H be defined as 
above. A mapping $: Rn --+ Rn is said to be a normal H-mapping iff 

$(Rn) C H, $/H = iH (the identity mapping), U$(x)-$(y)U < Ux-yU, all 
x,y ERn, and, in addition, i E I, x ERn, h.(x) < A. imply h.($(x» 

]. ]. ]. 
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= Ai' Every n0rmal (polygonal domain generating) H-mapping will be 
denoted as x ~ x and, the same convention will be used to denote the 
associated mapping from Xn into Xn(H) defined by x(t) = X{t), all 
t E R+ , x E Xn . Finally, a polygonal domain H is said to be a normal 

polygonal domain iff it possesses at least an associated normal H -
mapping. 

It is supposed henceforward H is a normal polygonal domain, x ~ kH(x) 
a mapping from Xn(H) into P(Xn) and xO E H a given vector. Let us de
note by (MCP)H the corresponding multivalued Cauchy problem (MCP) with 
k replaced by kH. In this case, the main existence, uniqueness aproxl 
mation and flow-invariance result of this note is 

THEOREM 3. Suppose there exist a couple of functions g E XO' f E Q 
and a mapping x I-- e(x) from Xo into Xo such that 

(iii) for every x E Xn(H) the set KH(x) of all :If y E XIi with y:lf(t) = 

xO + I~ y(s)ds , t E R+, for some y E kH(x) is -in Cg(Xn) (resp . , 

a U.U g - closed subset of Xn ). 

(iv) if X,y E Xn(H) and a E Xo satisfy Ilx-yll .;;; a then, for every 

u E kH(x) (resp., kH(y)) there exists v E kH(y) (resp., kH(x)) satis

fying Uu-vU.;;; e(a). 

(v) It e(g.T)(s)ds ';;;f(T)~(t) 
° 

T > 0 

(vi) the set XO C X of an n n satisfying Uy(t) - xO - J:U(S)dSII';;; 

';;;l1g(t), t E R+ , for some 11 > 0, u E kH(y), is not empty. 

(vii) i E I, t E R+ 
an y E kH(x). 

x E Xn(H), h (x(t)) 

Then, for every yO E X~ there is a sequence (Ym; mEN) C yO + (Xn)g' 

and an element Z E (yO + (Xn)g) n Xn(H) such that 

(C s ) (Ym; mEN) converges in the sense of II. Ug to zwith an eva

luation of the convergence given by 

p=m 

p(yO) > 0 being dependent only on yO E XO. 
n 

mEN 

Proof. Let x ~ k(x) be a mapping from Xn into P(Xn) given by k(x) = 

= kH(x) , all x E Xn and let T be a multivaled mapping from (Xn ,U.lI g) 

into itself given by the convention Tx = KH(x) ,all x E Xn (note 
that, by (iii), T is well defined). We claim that T is a multivalued 
contraction with respect to f. Indeed, let x,y E Xn and T > 0 be 
such that UX-YU g .;;; T. From the definition of U.U g combined with the 
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5lefinition of .a normal mapping, II x-yO .;;;; Ilx-yll .;;;; gT. Let ulf E Tx (resp., 

Ty) be given; clearly, ulf(t) = xO + f~ u(s)ds, t E R+, for some 

u E kH(x) (resp., kH(y)). Now, let v E kH(y) (resp., kH(x)) be the as 
sociated element given by (iv), then Ilu-vll .;;;; e(gT) so that, denoting 

vlf(t) = xO + f: v(s)ds, t E R+ - clearly, vlf E Ty (resp., Tx) - we have 

nulf(t)-vlf(t)H .;;;; f: Hu(s)-v(s)Hds .;;;; f: e(gT)(s)ds .;;;; f(T)g(t) t E R+ 

that is, Hulf-vlfn g .;;;; f(T), showing that T is a multivalued contraction 
with respect to £. On the other hand, clearly, (vi) says that, for 

every yO E X~ we have (denoting ulf(t) = xO + f: u(s)ds, t E R+ and 

observing that, evidently, u lf E T(yO)) nyO-ulfng .;;;; U < +00 , i.e., 
yO E Xn(T), showing that Xn(T) is not empty. Finally, we claim that 
the invariance condition (IH) holds. Indeed, let i E I, t E R+ and 

x E Xn with hi(x(t)) < Ai then, x E Xn(H) and hi(x(t)) = Ai so that,by 
(vii), hi(y(t)) ~ 0, for all y E kH(x) = k(x), proving our assertation. 
In this case both Theorem 1 and Theorem 2 are applicable and this com-
pletes the proof. Q.E.D. 

A very important particular case of our theorem is that corresponding 

to the choice H = R~. Here, obviously, H = n ((hi;Ai); 1 .;;;;i .;;;; n) with 

hi(x) = xi' Ai = 0, for all x = (x1'xZ""'xn) ERn, 1 .;;;; i .;;;; n, and a 
standard normal H - mapping is x I-- X = max(x,O), the function "max" 
being usually defined by the lattice structure of Rn. Then, the inva
riance condition (vii) becomes 

(vii)' i E {1, ... ,n}, t E R+ , x E Xn(R~) , xi(t) 

Yi(t) ~ 0 for all y E kH(x) 

o imply 

in which case, the corresponding variant of Theorem 3 above may be co~ 
sidered as being a "multivalued" extension of a result due to the au
thor [21] (see also, N.Pavel and M.Turinici [18]). 

As a final remark, let t I-- t be a mapping from R+ into P(R+). In this 
case, for every x E Xn' k(x)(t) may be considered as being completely 
defined only by the values of the vector function x E Xn taken on the 
subset t C R+. Note that, in the case t C [O,t], t E R+, the Cauchy pr~ 
blem (MCP) is a nonanticipative one (for a number of general results 
in this direction see C.Corduneanu [4] and, respectively, A.Cellina [3], 
H.Hermes [9], T.Wazewski [22], A.F.Filippov [8], D.T.Docev and D.D.Baj
nov [7] for the univalued and, respectively, multivalued case) while, 
in the case t n (t,+oo) # 0 , t E R+ , the Cauchy problem (MCP) appears 
as an anticipative one, being considered as a multivalued extension of 
a similar problem introduced by the author [20] (see also in this direc 
tion Oberg's paper [16]). 
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