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1. INTRODUCTION. 

In paper [5] Y.Li proved the following results: 

THEOREM 1. Assume that q(x) is a real integrable funation on [O,w] 
and that a is a real non-null aonstant. 

i) The speatrum of the boundary problem 

(1) y" + [A-q(X)]Y = 0 A = s2 

(2) yeO) =" 0 ay'{w) + sy(w) = 0 

uniquely determines q(x) almost everywhere. 

ii) The speatrum of (1) with boundary aonditions 

(3) yeO) = 0 y' (w) - isy(w) = 0 , 

uniquely determines q(x) a.e .. 
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The assumptiona#O is essential. In [3], p.179, H.Hochstadt shows that 
Theorem 1, i) is logically equivalent to the following result: 

THEOREM 2. Assume q(x) is a real funation in L1 (O,w), that f(s) is an 

odd real entire funation of s of order less than one and that 8 and y 

are different numbers in [0 ,w). Cons,ider the boundary aonditions: 

y(O)cos (l + y' (O)sin (l = 0 
(4) 

[y(1f)cos 8 + y'(w)sin 8] + f(s)[y(w)cos y + y'(w)siny] = O. 

The eigenvalues of (1) and (4) uniquely determine q(x) a.e .. 

The proof is based on the idea that the knowledge of the spectrum of 
(1)-(4) is equivalent to the knowledge of several spectra, in partic~ 
lar that of (1) with two sets of regular boundary conditions. Thus, 
the proof of Theorem 2 is reduced to the following theorem, mainly 
due to G.Borg but in its actual form due to N.Levinson. 
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THEOREM 3. Let q(x) E Ll(O,~) be a real function and 0 ~ a,S,y < 
< ~,S # y. Assume given the two spectra corresponding to (1) and the 

boundary conditions 

(5) 
y(O)cos a + y' (O)sin a 0 

y(~)cos S + y' (~) sin S 0 

(6) 
y(O)cos ct + y' (O)sin ct 0 

y(~)cos y + y' (~)sin y 0 

Then, ct,S,y and the spectra determine q(x) uniquely (a.e.). 

In this paper our aim is to generalize these results. Next Theorem 7 

generalizes Li's theorem and the content of our Theorem 9 is a partial 

generalization of Hochstadt's theorem. 

2. BASIC NOTATION. 

The differential equation (1) will be denoted by (q) and the first 

boundary condition in (5) and (6) by {ct, the second ones by S} and y} 

respectively. Thus, (q), {a;S} will denote the boundary problem (1) 

(5). Instead of {ct we could have 

(7) peA) .y(O) + Q(A) .y' (0) = 0 

a boundary condition that will be denoted by {P,Q. The corresponding 

boundary condition with 0 replaced by ~ will denoted by P,Q}. Here, P 

and Q are entire functions of A and more precisely, polynomials in 

A = s2. If instead we had 

(8) RCs) .y(~) + 5(s) .y' (~) = 0 

with Rand 5 polynomials in s, we shall write R,5}. 

We shall assume that the polynomials P(A),Q(A) that appear in (7), or 

in the corresponding pair at x = ~, satisfy the following hypotheses: 

I) if one of them is identically zero the other one is identically 

one. 

II) g.c.d. (PCA) ,Q(A)) = 1. 

For boundary conditions of type (8) we shall also assume that R(s) and 

5(s) satisfy I), II). 

q(x) will always denote a function in Ll(O,~). 

3. AUXILIARY RESULTS. 

Let us ~enote by Us(x) the solution of (q) y" +(A-q)y = 0 such that 

U (0) = -QCA) U' (0) = PCA), and by U (x) the solution that U C~) 
s s s s 
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= -S(s) ,U~ (71') = R(s). 

W(P,Q ; R,S)(s) is the characteristic function of the problem (q), 
{P(A),Q(A) ; R,S) defined by the wronskian W(U ,U) = W(s): 

s s 

(9) W(P,Q ; R,S)(s) = U (x)U'(x) - U'(x)U (x) = W(s). s s s s 

The zeroes of the entire function W(s) are, by definition, the eigen
values, .and the spectrum is this set of zeroes, each zero counted as 
many times as its multiplicity. By the multiplicity of an eigenvalue 
we shall understand its multiplicity as a zero of W, so, a simple ei
genvalue is a simple zero of W(s). 

THEOREM 4. Considep the ppobZem (q) {P,Q ; R,S) whepe q is aompZez-va

Zued and P,Q,R and S ape aompZez poZynomiaZs. Assume that Rand S ape 

not simuZtaneousZy even poZynomiaZs in s. Then. 

(i) the speatpum and the boundapy aonditions detepmine aompZeteZy 

the ahapaatepistia funation W(P,Q ; R,S)(s), 

(ii) fop any paip of polynomials X(s),Y(s), the ahapaatepistia funa

tion W(P,Q;X,Y) is aompleteZy detepmined by W(P,Q;R,S)(s). 

Ppoof. (i) is nothing but Theorem 1, [6] , §2. (Observe thathypothe
sis iv) in p.7 is verified in our situation). 

ii) In the proof that follows we make use of the following 

PROPOSITION 1. R(s) and S(s) ape not simuZtaneously even if and only 

if R(s).S(-s) is not even. 

(In fact, assume R(s) not even. Then there exists sO' root of R(s) =0, 

such that R(-so) # O. If R(s). S(-s) were even, ~O and -sO would be 
roots of this polynomial and therefore S(sO) = O. But then 
g.c.d~R,S) # 1, a contradiction). 

From proposition. 1 it follows that ~ = R(-s).S(s) - R(s).S(-s) ~ 0 

and therefore for s such that ~(s) # 0, Us(x) and U_s(x) are linearly 
independent. Let us call Vs(x) the solution of (q) that verifies the 
initial conditions: 

(10) V (71') = -yes) 
s V' (71') = X(s). s 

Then, if s is not a zero of the polynomial ~(s) and 

A (Y(s).R(-s) - X(s).S(-s))~(s)-l, 
(11 ) 

B (X(s).S(s) -·Y(s).R(s))~(s)-l 

we have 

( 12) Vs (x) 
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Therefore, for s such that ~(s) # 0: 

(13 ) W(P,Q ; X,Y) (s) = -PCA).V (0) - Q(>") .'1' (0) s s 

_p(s2). (A.U (0) + B.U (0)) - Q(s2). (A.U' (0) + B.U' (0)) s -s s-s 
A(s).W(P,Q; R,S)(s) + B(s).W(P,Q; R,S)(-s), QED. 

THEOREM 5. Consider the boundary probZem (q). {P,Q;S} • q(x) a aom

pZex-vaZued funation. Exaept for a denumerabZe set of S's in [O,~) 

the speatrum of the probZem is simpZe (i.e. aZZ the eigenvaZues are 

simpZe). 

Proof. Next proposition will be used in the proof: 

PROPOSITION 2. Us(~) and U~(~) are ZinearZy independent. 

(In fact, if FI = P - i.s.Q , F2 = P + i.s.Q then these polynomials 
have the same degree m and 

is~ -is~ 
F I (s) - F2 (s) 

r 

e e 
+ O(elrm sl~.lslm-2) Us(~) 

2is 

( 1 4 ) 

is~ -is~ j F I (s) + F2 (s) e e 
+ O(elrm sl~.lslm-l) U~(~) 

2 

as it follows from (5) and (8), [6], §2. For s = -it, t > 0, we have: 

Us(~) - c.tm-I.e~t and U~(~) - c'.tm.e~t, and the proposition follows). 

In consequence, 

(15) D(s) 

Let us call z(x,s) the solution such that z(~,s) 
= cos S. Then W(P,Q ; S) is equal to: 

l' o. 

- s in S , z' (~ ,s) 

(16) W(Us(x),z(x,s)) = Us(~).cos S + U~(~).sin S . 

If s were a non-simple eigenvalue, we would have 

r 
U .cos S + U' .sin S = 0 , s s 

(1 7) 

l d U d U' s S + 
s sin S o. (fS. cos ---as 

In consequence, W(s) 0, D(s) o. Since always IUsl + lu~1 # 0, for 
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each zero So of D(s) it will exist exactly a unique Bo such that 

W(so) = 0. QED. 

EXAMPLE. Next we show that it is necessary to exclude certain B's for 
the pre~eding theorem to hold. Let us assume that u and v are two 
(real) consecutive normalized eigenfunctions of the problem (0), 

{a;B} , ° < a,B < w , and A and ~ the corresponding eigenvalues. Then 
u+iv # ° on [O,w]. Besides, the function y = u+iv satisfies the equa
tion: 

q(x} 

y" + q(x).y = ° , 
AU(X) + i~v(x) 

u(x) + iv(x) 

and the relation: f: y2(x) dx = 0. From the corollary to next theorem 

6 we know then that the spectrum of (q), {a;B} is not simple. 

4. MAIN RESULTS. 

The following result is a complement to Theorem 3. 

THEOREM 6. Consider the boundary vaZue probZems (q) {a;B} and 

(q) {a;y} where ° ~ a,B,y < w , y#B , and q is aompZex-vaZued. If the 

aorresponding aharaateristia funations W(a,~)(A) and W(a,y)(A) have 

simpZe zeroes then they uniqueZy determine q(x) a.e .. 

Proof. The proof of Theorem 1 in Levinson [4] can be repeated verba
tim to show that 

(18) 

where c 
n 

function 

f(x) L 
n=O 

w 

U2 (X,An)· fo ul(~,An) f(~) d~ 

c .W'(a,B)(A ) 
n ,n 

is a non-null constant and the function Ui(X,An) is an eige~ 
corresponding to the eigenvalue An for the problem (qi)' 

i = 1,2. 

ql and q2 are the two complex-valued L1-functions that are assumed to 
have the same characteristic functions W(a,B) and W(a,y). The series 
converge uniformly on compact sets of (O,w) and boundedly on [O,w] 
for f E C1([0,w]),f(0) = few) = 0, f real. 

It is proved as usual for An # Am that 

(19) o 
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Assume that (19) holds for m=n. Then, we would have u2(x'~n) 1 

1 u2(x'~j)' V j, a contradiction since (18) shows that {u2{x'~j)} "is 
a complete set in L2. . 

Then, {u2'(x'~j)} and fU2(x'~k)} form a complete biorthogonal set in 

L2. This implies that, after a suitable normalization, u2(x'~n) = 
= u1 (x'~n) holds for every n, and therefore that q1(x) = q2(x) a.e. 

QED. 

COROLLARY. If the problem (q), {a:B}, q(x) a comple~-valued function, 

has a simple spectrum, then any eigenfunction u verifies: 

f1r 2 
o u dx;' O. 

THEOREM 7. Consider the boundary value problem (q), {a; R,S) , ~ith 
o ~ a < W , Rand S not simultaneously even. Then, the boundary con

ditions and the spectrum determine completeiy the potential q(x) even 

for q(x) a comple~-valued integrable function. 

Proof. For any B, W(a,B)(s) is uniquely determined by W(a ; R,S) 
(Theorem 4) and for an infinite number of B's, W(a,B) has simple ze
roes (Theorem 5). Theorem 7 follows now from Theorem 6. QED. 

The following result is proved in [11 following the same line of proof 
as in Levinson's paper. 

THEOREM 8. Assume that q(x) is a real function and the boundary condi 
tion: 

verifies Bi B2 - B1 B2 > O. For 0 ~ ~,6 < W , y;'6, the spectra of the 

boundary vaZue problems (q) [B;y} and (q)[ B;6} and the boundary con

ditions determine q(x) uniquely a.e .• 

THEOREM 9. Consider the boundary value problem (q)[ B; R,S) ~ith q(x) 
real-valued, and R,S not simultaneously even. Then, the spectrum and 

the boundary conditions uniquely determine q(x) a.e~. 

Proof . The same as in Theorem 7 but using Theorem 8 instead of Theo
rem 6. In fact, the characteristic functions of problems (q) [B;y} 
and (q)[B;6} are. determined in particular for some pair y,6 such that 
sin(y-6) ;. O. This unequality implies that these functions have no ze 
ro in common. QED. 
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