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1. INTRODUCTION.
In paper [5] Y.Li proved the following results:

THEOREM 1. Assume that q(xX) Zs a real integrable funetion on [0,r]
and that a is a real non-null constant.

i) The spectrum of the boundary problem

€D y' + [A-q(x)ly =0 , rA=s?2 , 0<x<m,

(2) y(0) =0 , ay'(s) + sy(s) =0,
uniquely determines q(X) almost everywhere.
ii) The spectrum of (1) with boundary conditions
(3 y(0) =0 , y'(m) -isy(m) =0,

uniquely determines q(x) a.e..

The assumption a#0 is essential. In [3], p.179, H.Hochstadt shows that
Theorem 1, i) is logically equivalent to the following result:

THEOREM 2. Assume q(x) Zs a real function in LI(O,W), that f(s) <s an
odd real entire function of S of order less than one and that g and Y

are different numbers in [0,7). Consider the boundary conditions:

y(0)cos a + y'(0)sinao = 0
(4) .
[y(m)cos B + y'(n)sin B] + f(s)ly(m)cos vy + y'(w)siny] = 0.

The eigenvalues of (1) and (4) uniquely determine q(x) a.e..

The proof is based on the idea that the knowledge of the spectrum of
(1-(4) is équivalent to the knowledge of several spectra, in particu
lar that of (1) with two sets of regular boundary conditions. Thus,
the proof of Theorem 2 is reduced to the following theorem, mainly
due to G.Borg but in its actual form due to N.Levinson.
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THEOREM 3. Let q(x) € Ll(O,ﬂ) be a real function and 0 < 0,8,y <
< m,B # y. Assume given the two spectra corresponding to (1) and the

boundary conditions

y(0)cos a + y'(0)sin a = 0 ,
y(m)cos B + y'(m)sin B = 0 ,

(5)

y(0)cos o + y'(0)sin a = 0 ,
y(m)cos vy + y'(m)sin Y = 0

(6)

Then, o,B,Y and the spectra determine q(X) uniquely (a.e.).

In this paper our aim is to generalize these results. Next Theorem 7
generalizes Li's ‘theorem and the content of our Theorem 9 is a partial
generalization of Hochstadt's theorem.

2. BASIC NOTATION.

The differential equation (1) will be denoted by (q) and the first
boundary condition in (5) and (6) by {a, the second ones by B} and v}
respectively. Thus, (q), {a;B} will denote the boundary problem [@&D)
(5). Instead of {o we could have

(7) P(A).y(0) + Q(A\).y'(0) =0

a boundary condition that will be denoted by {P,Q. The corresponding
boundary condition with 0 replaced by 7 will denoted by P,Q}. Here, P

and Q are entire functions of ) and more precisely, polynomials in

A= 52. If instead we had

(8) R(s).y(m) + S(s).y'(w) =0

with R and S polynomials in s, we shall write R,S).

We shall assume that the polynomials P()),Q(A) that appear in (7), or
in the corresponding pair at x = 7, satisfy the following hypotheses:

1) if one of them is identically zero the other one is identically
one.

II) g.c.d.(P(0),Q(n)) = 1.

For boundary conditions of type (8)-we shall also assume that R(s) and
S(s) satisfy I), II).

q(x) will always denote a function in LI(O,W).

3. AUXILIARY RESULTS.

Let us denote by Us(x) the solution of (q) y" +(ix-q)y = 0 such that

U (0) = -Q(») , U'(0) = P(A), and by § (x) the solution that U (7) =
S S S s
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= -S(s) , U} (m) = R(s).

W(P,Q ; R,S)(s) is the characteristic function of the problem (q),
{P(1),Q(A) ; R,S) defined by the wronskian W(Us,ﬁs) = W(s):

(9 W(P,Q ; R,S)(s) = U_(x)T!(x) - UL ()T (x) = W(s).

The zeroes of the entire function W(s) are, by definition, the eigen-
values, .and the spectrum is this set of zeroes, each zero counted as
many times as its multiplicity. By the multiplicity of an eigenvalue
we shall understand its multiplicity as a zero of W, so, a simple ei-
genvalue is a simple zero of W(s).

THEOREM 4. Consider the problem (q) {P,Q ; R,S) where q is complex-va-
lued and P,Q,R and S are complex polynomials. Assume that R and S are

not simultaneously even polynomials in s. Then,

(1) the spectrum and the boundary conditions determine completely
the characteristic function W(P,Q ; R,S)(s),

(ii) for any pair of polynomials X(s),Y(s), the characteristic fune-
tion W(P,Q;X,Y) Zs completely determined by W(P,Q;R,S)(s).

Proof. (i) is nothing but Theorem 1, [6] , §2. (Observe that hypothe-
sis iv) in p.7 is verified in our situation).

ii) In the proof that follows we make use of the following

PROPOSITION 1. R(s) and S(s) are not simultaneously even <if and only
Zf R(s).S(-s) Zs not even.

(In fact, assume R(s) not even. Then there exists Sy, TOOt of R(s) =0,
such that R(-sy) # 0. If R(s).S(-s) were even, $o and -s; would be
roots of this polynomial and therefore S(sg) = 0. But then

g.c.d(R,S) # 1, a contradiction).

From proposition 1 it follows that A = R(-s).S(s) - R(s).S(-s) #0
and therefore for s such that A(s) # 0, ﬁs(x) and ﬁ_s(x) are linearly
independent. Let us call Vs(x) the solution of (q) that verifies the
initial conditions:

(10) VoM = -¥(s) , Vi(m = X(s).
Then, if s is not a zero of the polynomial A(s) and

A

(1 (Y(s).R(-s) - X(s).S(-s))A(s)"1,
(X(s).S(s) - Y(s).R(s))A(s)~}

we have

(12) V(x) = AT (x) + B.U__(x).
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Therefore, for s such that A(s) # 0:

(13) W(P,Q ; X,Y)(s) = -P().V_(0) - Q(1).V}(0) =
-P(s?).(A.T_(0) + B.U__(0)) - Q(s?). (A.T1(0) + B.U!_(0)) =

A(s).W(P,Q ; R,S)(s) * B(s).W(P,Q ; R,S)(-s), QED.

THEOREM 5. Consider the boundary problem (q), {P,Q;B} , q(x) a com-
plex-valued function. Except for a denumerable set of B's in [0,7)
the spectrum of the problem is simple (Z.e. all the eigenvalues are
simple).

Proof. Next proposition will be used in the proof:

PROPOSITION 2. Us(ﬂ) and U;(ﬂ) are linearly independent.

(In fact, if F; = P - i.s.Q , F, = P + i.s.Q then these polynomials
have the same degree m and

F, (s) e:'Ls1l’ - F,(s) e—isﬂ ;
U (n) = L 2 . O(eIIm s‘ﬂ.lslm 2y
s 2is
(14)
F.(s) eisﬂ' + F.(s) e—is'll’
U (m) = 1 2 . O(e|1m s|ﬂ.|slm—1)
s 2
as it follows from (5) and (8), [6], 8§2. For s = -it, t > 0, we have:

Us(n) ~c.t™1.e™ and U;(w) ~c'.t®.e"t, and the proposition follows).

In consequence,

| U (m) U (m)
(15) D(s) = ‘ # 0.
d U (m) d U'(m)
5 s
ds ds
Let us call z(x,s) the solution such that z(w,s) = -sin B , z'(m,s) =

= cos B. Then W(P,Q ; B) is equal to:
(16) W(Us(x),z(x,s)) = Us(w).cos B + U;(ﬂ).sin B
If s were a non-simple eigenvalue, we would have
Us.cos B + U;.sin B =20,

7£;§ cos B + dss . sin B = 0.

an ldU du

In consequence, W(s) = 0, D(s) = 0. Since always |Ug| + |Ul| # 0, for
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each zero sg of D(s) it will exist exactly a unique By such that
W(sg) = 0. QED.

EXAMPLE. Next we show that it is necessary to exclude certain B's for
the preceding theorem to hold. Let us assume that u and v are two
(real) consecutive normalized eigenfunctions of the problem (0),
{a;8} , 0 <a,B <7 , and A and u the corresponding eigenvalues. Then
u+iv # 0 on [0,7]. Besides, the function y = u+iv satisfies the equa-
tion:

y" + q(x).y =0,

- Au(x) + ipv(x)
u(x) + iv(x)

q(x)

4
and the relation: f yz(x) dx = 0. From the corollary to next theorem
0

6 we know then that the spectrum of (q), {a;B} is not simple.

L. MAIN RESULTS.
The following result is a complement to Theorem 3.

THEOREM 6. Consider the boundary value problems (q) {o;B} and

(@) {a;Y} where 0 < a,8,y <7 , Y#8 , and q is complex-valued. If the
corresponding characteristic functions W(a,Bj(l) and W(a,y) (A) have
simple zeroes then they uniquely determine q(x) a.e..

Proof. The proof of Theorem 1 in Levinson [4] can be repeated verba-
tim to show that

w
wy ). [ u ) £8) a
(18) £(x) = £

o~ 8

n=0 e, W (@,8) (1)

where <, is a non-null constant and the function ui(x,kn) is an eigen
function corresponding to the eigenvalue A, for the problem (qi),
{G;B}’ is= 192- '

q; and q, are the two complex-valued L!-functions that are assumed to
have the same characteristic functions W(a,B) and W(a,Y). The series
converge uniformly on compact sets of (0,7) and boundedly on [0,7]
for £ € cl([0,7]),£(0) = £(x) = 0, £ real.

It is proved as usual for A, # A, that

(19) f u, (x,2 ) .uy (x,) ) dx = 0
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Assume that (19) holds for m=n. Then, we would have Ez(x,ln) 1
1 uz(x,Aj), v j, a contradiction since (18) shows that {u,(x,Ar;)} is
a complete set in L2,

Then, {uz(x,lj)} and {ﬁz(x,lk)} form a complete biorthogonal set in
LZ. This implies that, after a suitable normalization, uz(x,kn) =

= ul(x,xn) holds for every n, and therefore that ql(x) = qz(x) a.e.
QED.

COROLLARY. If the problem (q), {a:8}, q(x) a complexz-valued function,

has a simple spectrum, then any eigenfunction u verifies:

s
I u? ax # 0.
0

THEOREM 7. Consider the boundary value problem (@), {a; R,S) , with
0<a<®, Rand S not simultaneously even. Then, the boundary con-
ditions and the spectrum determine completely the potential q(x) even

for q(x) a complex-valued integrable function.

Proof. For any B, W(a,B)(s) is uniquely determined bva(a'; R,S)
(Theorem 4) and for an infinite number of B's, W(a,B) has simple ze-
roes (Theorem 5). Theorem 7 follows now from Theorem 6. QED.

The following result is proved in [1] following the same line of proof
as in Levinson's paper.

THEOREM 8. Assume that q(x) is a real function and the boundary condi

tion:

[B: -(8;y(0) *+ B,y'(0)) = A(B{y(0) * B;y'(0))
verifies By B, - By By > 0. For 0 <v,8 <m , Y#S8, the spectra of the

boundary value problems (q) [B;Y} and (q)[B;8} and the boundary con-
ditions determine q(x) uniquely a.e..

THEOREM 9. Consider the boundary value problem (@)[B; R,S) with q(x)
real-valued, and R,S not simultaneously even. Then, the spectrum and

the boundary conditions uniquely determine q(x) a.e..

Proof . The same as in Theorem 7 but using Theorem 8 instead of Theo-
rem 6. In fact, the characteristic functions of problems (q) [B;v}
and (q)[B;8} are. determined in particular for some pair v,§ such that
sin(y-8) # 0. This unequality implies that these functions have no ze
ro in common. QED.
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