ESTIMACION DE ALGUNOS OBJETOS GEOMETRICOS RELACIONADOS CON HOROESFERAS

Guillermo G. R. Keilhauer

ABSTRACT. Let M be a Hadamard manifold of dimension n+1 (n \geqslant 1), with sectional curvature K satisfying $-b^2 \leqslant K \leqslant -a^2$ for some positive constants. We first give a comparison theorem for Jacobi fields, then we apply this theorem to obtain some estimates for geometric objects related to horospheres (e.g.: sectional curvature, mean curvature and geodesic curvature if n=1).

INTRODUCCION. Sea M una variedad de Hadamard de dimensión n+1 $(n \ge 1)$; es decir, una variedad de Riemann conexa, completa y simplemente conexa con curvatura seccional K \leq 0. Sea c: R \rightarrow M una geodésica parame trizada por su longitud de arco e Y un campo de Jacobi a lo largo de c que satisface Y(0) = 0 e $Y'(0) \perp c(0)$, donde \perp denota perpendicular. Es sabido ver [1], que si K \geqslant -b² para alguna constante b \geqslant 0, entonces $|Y'(t)| \le b.Coth(b.t).|Y(t)|$ si t > 0; luego también se verifica $\langle Y'(t), Y(t) \rangle \leq b.Coth(b.t).|Y(t)|^2$ si t > 0. Dado que una estimación análoga a la anterior (aunque posiblemente conocido) no aparece en la literatura suponiendo $K \leq -a^2$ para alguna constante positiva, en esta nota mostramos que a.Coth(a.t). $|Y(t)|^2 \le \langle Y'(t), Y(t) \rangle$ si t > 0. La combinación de ambas desigualdades permite en el caso que -b $^2 \le$ K \le -a 2 , comparar la curvatura seccional de las horoesferas (si $n \ge 2$), curvatura geodésica (en valor absoluto si n=1), curvatura media y el laplaciano de las funciones de Busemann con sus respectivos, en el caso de curvatura constante negativa. Una comparación con respecto a la curvatura media y al laplaciano ha sido obtenida en [3], en variedades simplemente conexas, sin puntos focales y con curvatura de Ricci acotada superior e inferiormente por constantes no positivas. La estimación de la curvatura media y del laplaciano que obtenemos (Corolario 2.3) son más finas que las obtenidas en [3], pues las condiciones que le impon \underline{e} mos a la métrica de M son más fuertes que las impuestas en [3].

1. CAMPOS DE JACOBI ESTABLES Y FUNCIONES DE BUSEMANN.

En lo que sigue, sea M una variedad de Hadamard de dimensión n+1 $(n \geqslant 1)$, $\Pi \colon SM \longrightarrow M$ el fibrado unitario tangente, d la función distancia en M inducida por la métrica $\langle \ , \ \rangle$ de M y para cada $p \in M$, sea M_p el

espacio tangente a M en p. Las geodésicas de M se considerarán no constantes y parametrizadas por su longitud de arco. Un campo de vectores Y a lo largo de una geodésica c se dice un campo de Jacobi si satisface

$$Y''(t) + R(Y(t),\dot{c}(t))\dot{c}(t) = 0$$
 (1)

para todo número real t. El acento denota derivación covariante a lo largo de c, R es el tensor de curvatura y \dot{c} es el campo tangente a c. Un campo de Jacobi Y queda determinado univocamente por sus valores Y(0) e Y'(0).

Debido a las propiedades de simetría del tensor de curvatura, si X e Y son campos de Jacobi a lo largo de c, entonces

$$\langle X'(t), Y(t) \rangle - \langle X(t), Y'(t) \rangle = constante$$
 (2)

para todo real t. Si Y es un campo de Jacobi que satisface Y(0) = 0, $Y'(0) \perp \dot{c}(0)$ con $Y'(0) \neq 0$, por ser $K \leq 0$ de (1) se obtiene

$$\langle Y(t), Y(t) \rangle > 0 \quad y \quad \langle Y'(t), Y(t) \rangle > 0$$
 (3)

para todo t > 0.

DEFINICION. Sea c una geodésica e Y un campo de Jacobi a lo largo de c; Y se dice estable si |Y(t)| está acotado para todo $t \ge 0$.

PROPOSICION 1.1. Sea c una geodésica y u \in M_p con p = c(0). Entonces existe un único campo de Jacobi estable Y a lo largo de c con Y(0) = u. Si para todo s > 0, Y_s denota al único campo de Jacobi a lo largo de c que satisface $Y_s(0)$ = u e $Y_s(s)$ = 0, entonces $Y_s'(0)$ converge a Y'(0) para s $\rightarrow \infty$.

Demostración. Ver [4].

Para $v \in SM$ con $\Pi(v) = p$, denotemos con c_v a la geodésica que satisface $c_v(0) = p$ y $\dot{c}_v(0) = v$. Si $u \in v^{\perp}$ (subespacio ortogonal a v en M_p), sea $Y_{v,u}$ el único campo de Jacobi estable a lo largo de c_v que verifica $Y_{v,u}(0) = u$. Como $u \in v^{\perp}$, entonces $Y'_{v,u}(0) \in v^{\perp}$; luego queda definido un endomorfismo D_v : $v^{\perp} \to v^{\perp}$ por $D_v(u) = Y'_{v,u}(0)$. Denominamos a D_v el endomorfismo estable determinado por v.

LEMA 1.2. El endomorfismo $\mathbf{D_v}$ es simétrico y semi-definido negativo.

Demostración. Sean u,w \in v¹ y para s > 0, sean X_s e Y_s los únicos campos de Jacobi a lo largo de c_v que satisfacen X_s(0) = u, X_s(s) = 0, Y_s(0) = w e Y_s(s) = 0. Por (2) es \langle X'_s(0), Y_s(0) \rangle = \langle X_s(0), Y'_s(0) \rangle ; luego por la proposición anterior tomando límite se obtiene \langle D_v(u),w \rangle = = \langle u,D_v(w) \rangle .

Sea ahora $Z_s(t) = X_s(s-t)$; luego $Z_s(0) = 0$, $Z_s'(s) = -X_s'(0)$ y $Z_s(s) = u$. Como X_s es perpendicular a c_v , entonces Z_s es perpendicular a la geodé sica g definida por $g(t) = c_v(s-t)$; luego $Z_s'(0) \perp \dot{g}(0)$. Por (3) se verifica $\langle Z_s'(s), Z_s(s) \rangle \geqslant 0$; es decir, $\langle X_s'(0), u \rangle \leqslant 0$. Tomando límite resulta $\langle D_v(u), u \rangle \leqslant 0$ y el lema queda demostrado.

Concluimos la sección, relacionando los campos de Jacobi estables con las funciones de Busemann. Para cada $v \in SM$ y $s \ge 0$, sea $b_{s,v} \colon M \to R$ la función definida por $b_{s,v}(q) = s \cdot d(q,c_v(s)); b_{s,v}$ es diferenciable en todo punto excepto en $c_v(s)$ y debido a la desigualdad triangular la función $s \to b_{s,v}(q)$ es creciente y acotada en valor absoluto por $d(q,c_v(0))$.

En consecuencia, $b_v(q) = \lim_{s \to \infty} b_{s,v}(q)$ existe para todo $q \in M$. La función b_v se denomina la función de Busemann determinada por v y los conjuntos $H_v = b_v^{-1}(0)$ y $B_v = b_v^{-1}([0,\infty))$ se denominan respectivamente la horoesfera y el horodisco determinado por v. Si n=1, las horoesferas se llaman horociclos.

Si w,v \in SM con $\mathbb{I}(w)$ = q, w se dice asintótico a v, si los gradientes grad $b_{s_i,v}\big|_q$ convergen a w para alguna sucesión $s_i \to \infty$.

La siguiente proposición reune resultados conocidos que aplicaremos en la próxima sección.

PROPOSICION 1.3. Para todo v ∈ SM se verifica

- i) b_v es de clase C^2 y concava
- ii) Para todo $q \in M$, grad $b_v \Big|_{q} = \lim_{s \to \infty} |grad b_{s,v}|_{q}$ (convergencia en M_q)
- iii) Si $w \in SM$, w es asintótico a v si y sólo si b_v - b_w es constante sobre M.
 - iv) Sea N: $H_v \to SM$ el campo unitario de vectores definido por $N(q) = grad \left. b_v \right|_q$.

Si ∇ denota la conexión de Levi-Civita, para cada vector u tangente a H_v en $q\in H_v$ se satisface $\nabla_u N=D_{N\,(q)}\,(u)$.

Demostración. Ver [2] o [4].

OBSERVACION. Debido a la proposición anterior, las horoesferas con la métrica inducida por M son hipersuperficies de clase C^2 y los horodiscos son conjuntos convexos. Además, si N es el campo unitario normal a $H_{\mathbf{v}}$ definido según iv) y w = N(p) con p \in H_v, entonces H_v = H_w y el campo de vectores q \longrightarrow grad $b_{\mathbf{w}} |_{\mathbf{q}}$ (q \in H_v) coincide con N.

El campo de vectores N apunta debido a ii) al horodisco $B_{\mathbf{v}}$; es decir, si $\mathbf{w} = N(p)$ con $\mathbf{p} \in H_{\mathbf{v}}$, el rayo geodésico $\mathbf{c}_{\mathbf{w}} \colon [\,0\,,^\infty) \to M$ está contenido en $B_{\mathbf{v}}$. Al campo N (respect. V = -N) lo llamaremos el campo normal unitario interior (respect. exterior) a la horoesfera $H_{\mathbf{v}}$.

2. COMPARACION DE CAMPOS DE JACOBI Y ALGUNAS CONSECUENCIAS.

En esta sección asumimos que la curvatura seccional K de M satisface la acotación $-b^2 \leqslant K \leqslant -a^2$ para ciertas constantes $0 < a \leqslant b$.

PROPOSICION 2.1. Sea Y un campo de Jacobi a lo largo de una geodésica c parametrizada por su longitud de arco tal que Y(0) = 0 e $Y'(0) \perp \dot{c}(0)$. Entonces para t>0 se cumple

- i) $a.Coth(a.t).|Y(t)|^2 \leq \langle Y'(t),Y(t) \rangle \leq b.Coth(b.t).|Y(t)|^2$
- ii) a.Coth(a.t). $|Y(t)| \le |Y'(t)| \le b.Coth(b.t).|Y(t)|$

Demostración. Sea $E_1(t), \dots, E_{n+1}(t)$ una base ortonormal de campos para lelos a lo largo de c, con $E_{n+1}(t) = \dot{c}(t)$ para todo $t \in R$. Sea B(t) == $(b_{ij}(t))$ la matriz simétrica de orden nxn, definida por $b_{ij}(t)$ = = $\langle E_{j}(t), R(E_{i}(t), \dot{c}(t))\dot{c}(t) \rangle$ con $1 \leq i, j \leq n$ y donde R es el tensor de curvatura. A efecto de simplificar notación, denotemos también con (,) al producto usual de R^n y para cada $(x,t) \in R^{n+1}$ con |x| = 1 y $x = (x_1, ..., x_n)$, sea $\sigma(x,t)$ el plano contenido en $M_{c(t)}$ generado por c(t) y $\sum_{i=1}^{n} x_i.E_i(t)$. Si K(x,t) representa la curvatura seccional de M en la dirección $\sigma(x,t)$, por construcción de B(t) se cumple $\langle x.B(t),x\rangle =$ = K(x,t); luego $-b^2 \le \langle x.B(t),x \rangle \le -a^2$. En consecuencia, B(t) es definida negativa para todo $t \in R$ y satisface $-b^2 \cdot I \leq B(t) \leq -a^2 \cdot I$, donde I es la matriz identidad de orden nxn y (≼) la relación de orden usual entre las matrices simétricas. Para cada i = 1,...,n sea Y; el único campo de Jacobi a lo largo de c con $Y_i(0) = 0$ e $Y_i(0) = E_i(0)$. Como Y_i resulta perpendicular a c, entonces $Y_i(t) = \sum_{j=1}^{n} a_{ij}(t).E_j(t)$. Denotan do con $A(t) = (a_{ij}(t))$, la matriz satisface la ecuación matricial de Jacobi A''(t) + A(t).B(t) = 0, con A(0) = 0 y A'(0) = I. Por (2) y (3) es A(t) inversible si t > 0 y $U(t) = A^{-1}(t).A'(t)$ simétrico y definido positivo (ver también apéndice). Sea ahora Y un campo de Jacobi a lo largo de c tal que Y(0) = 0 e Y'(0) = u \downarrow c(0). Por unicidad en las so luciones de la ecuación (1), si $u = \sum_{i=1}^{n} u_i E_i(0)$, se tiene $Y(t) = \sum_{i=1}^{n} u_i Y_i(t)$ para todo $t \in R$. Luego, representando con $u = (u_1, \dots, u_n)$ es |Y(t)| = |u.A(t)|, |Y'(t)| = |u.A'(t)| y $\langle Y'(t), Y(t) \rangle = \langle u.A'(t), u.A(t) \rangle$ para todo $t \in R$. Para t > 0 fijo, sea z = u.A(t); luego $\langle Y'(t), Y(t) \rangle = \langle z.U(t), z \rangle$. Debido a la proposición del apéndice, es a.Coth(a.t). $|z|^2 \le \langle z.U(t), z \rangle \le b.Coth(b.t).|z|^2$ 10 que prueba i) por ser |z| = |Y(t)|. Debido a i), para mostrar ii) es sufficiente mostrar que $|Y'(t)| \le b.Coth(b.t).|Y(t)|$. En efecto, por

ser U(t) simétrico y definido positivo, la norma $\|U(t)\| = \max\{\langle x.U(t),x\rangle \text{ con } |x| = 1\} \leq b.\text{Coth}(b.t)$.

Luego, $|Y'(t)| = |u.A'(t)| = |z.U(t)| \le |z|.||U(t)|| \le |Y(t)|.b.Coth(b.t)$ y la proposición queda demostrada.

COROLARIO 2.2. Para todo $v \in SM$ el endomorfismo estable D_v satisface $a.|u|^2 \leqslant -\langle D_v(u),u \rangle \leqslant b.|u|^2$ para todo $u \in v^{\perp}$.

Demostración. Como en el lema 1.2, para s>0 sea Z_s el único campo de Jacobi a lo largo de la geodésica $g(t)=c_v(s-t)$ que satisface $Z_s(0)=0$ y $Z_s(s)=u$.

Como $Z_s'(0)$ 1 g(0), entonces a.Coth(a.s). $|u|^2 \le \langle Z_s'(s), u \rangle \le$ \le b.Coth(b.s). $|u|^2$. La desigualdad es ahora consecuencia del hecho que $Z_s'(s)$ converge a $-D_v(u)$ para $s \to \infty$.

LEMA (previo). Sea (V,\langle , \rangle) un espacio euclideano de dimensión $n \ (n \ge 2)$ y $f \colon V \to V$ un endomorfismo simétrico que satisface $a \cdot |v|^2 \le \langle f(v),v \rangle \le b \cdot |v|^2$ para ciertas constantes $0 < a \le b$ y todo $v \in V$. Si $\sigma \subset V$ es un subespacio de dimensión 2 generado por dos vectores ortonormales $u \not v$ y, sea $\Delta_{\sigma} = \langle f(u),u \rangle \cdot \langle f(w),w \rangle - \langle f(u),w \rangle^2$. Entonces $a^2 \le \Delta_{\sigma} \le b^2$.

Demostración. Sea $\Delta = \Delta_{\sigma}$, $\alpha = \langle f(u), u \rangle$, $\beta = \langle f(w), w \rangle$ y $\delta = \langle f(u), w \rangle$. Si $v = -\delta.u + \alpha.w$, la desigualdad $a.|v|^2 \leq \langle f(v), v \rangle$ implica $a.(\delta^2 + \alpha^2) \leq \alpha.\Delta$; con lo cual $a.\alpha \leq \Delta$. Luego, por ser $a \leq \alpha$ resulta $a^2 \leq \Delta$; la otra desigualdad es inmediata.

COROLARIO 2.3. Sea H una horoesfera de M con curvatura seccional \overline{K} y curvatura media \aleph respecto al campo unitario normal exterior V si $n \ge 2$.

Si n = 1, sea ρ la curvatura geodésica en valor absoluto del horociclo H.

Si f es una función de Busemann, sea Af el laplaciano de f. Entonces

- i) $a \le \aleph \le b$ y $a \le \rho \le b$
- ii) $|\overline{K}| \leq b^2 a^2$
- iii) $n.a \leq -\Delta f \leq n.b$

Demostración. Sea $v \in SM$ tal que $H = b_v^{-1}(0)$; $N(q) = grad b_v |_q (q \in H)$ y V = -N el campo normal exterior a H. Si S_V es el segundo tensor fundamental de H respecto a V, S_V evaluado en $q \in H$ es por definición el endomorfismo $S_{V(q)}$ de $H_q = N(q)^{\perp}$ (espacio tangente a H en q) definido por $S_{V(q)}(u) = \nabla_u V = -\nabla_u N$. La curvatura media \aleph evaluada en q es por definición $\Re(q) = \frac{1}{n} \cdot Tr(S_{V(q)})$ y $\sin = 1$, $\rho(q) = |\langle \nabla_u N, u \rangle|$ con $u \in H_q$ y

|u| = 1. Debido a la proposición 1.3 parte iv) y al lema 1.2, resulta $\Re(q) = \frac{1}{n} \cdot \operatorname{Tr}(-D_{N(q)})$ y $\rho(q) = -\langle D_{N(q)}(u), u \rangle$.

La parte i) es ahora consecuencia inmediata del corolario 2.2, por ser q un punto arbitrario de H. A efecto de mostrar ii), para $q \in H$ sea $\ell_{V(q)}$ la forma bilineal definida por $\ell_{V(q)}(u,w) = \langle S_{V(q)}(u),w \rangle$ para todo $u,w \in H_q$.

Si σ es un plano tangencial a H contenido en H_q , denotemos con \overline{K}_σ y K_σ la curvatura seccional de H y de M en la dirección σ . Debido a la ecuación de Gauss se tiene $\overline{K}_\sigma = K_\sigma + \Delta_\sigma$, donde $\Delta_\sigma = \ell_{V(q)}(u,u) \cdot \ell_{V(q)}(w,w) - \ell_{V(q)}^2(u,w)$ y u,w son dos vectores ortonormales que generan σ . Debido al corolario 2.2 y al lema previo aplicado al endomorfismo $S_{(q)} = -D_{N(q)}$, resulta $a^2 \leq \Delta_\sigma \leq b^2$. Por ser $-b^2 \leq K_\sigma \leq -a^2$ se obtiene $|\overline{K}_\sigma| \leq b^2 - a^2$ lo cual prueba ii).

Finalmente probemos iii). Sea f = b_w para algún w \in SM; luego si p \in M, $\Delta f(p)$ = traza del endomorfismo u $\rightarrow \nabla_u grad$ f de M_p. Si v = grad f $\Big|_p$ y g = b_v, por la proposición 1.3 parte iii) es g-f constante sobre M; luego grad f = grad g. Siendo $|grad\ g|$ = 1 en todo punto de M, entonces ∇_u grad g \bot v para todo u \in M_p; luego $\Delta f(p)$ = traza de u \rightarrow \rightarrow ∇_u grad g de v $^{\bot}$.

Debido a la misma proposición parte iv), el endomorfismo $u \to \nabla_u$ grad g de v^\perp coincide con el endomorfismo estable D_v ; luego $\Delta f(p)$ = Tr D_v . La desigualdad iii) es ahora consecuencia inmediata del corolario 2.2.

OBSERVACION. Si M tiene curvatura constante $K = -a^2$, la desigualdad ii) implica el hecho conocido que las horoesferas con la métrica inducida son espacios euclideanos.

APENDICE.

Sea $n \ge 1$ y $B(t) \in R^{n \times n}$ una matriz simétrica y definida negativa que depende diferenciablemente de $t \in R$. Sea A: $R \to R^{n \times n}$ la única solución de la ecuación matricial de Jacobi (J).

(J)
$$A''(t) + A(t).B(t) = 0$$

con A(o) = 0 y A'(o) = I (identidad). Por ser B(t) simétrico y definido negativo, para todo t > 0 es A(t) inversible y la matriz U(t) = $A^{-1}(t) \cdot A'(t)$ es simétrica y definida positiva. Como A satisface (J), entonces U satisface para t > 0, la ecuación matricial de Riccati (R).

(R)
$$U'(t) + U^2(t) + B(t) = 0$$

NOTACION. Si A es una matriz de orden nxn, denotamos con $\|A\|$ a la norma de A; luego $\|A\| = \max\{|x.A| \text{ con } |x| = 1\}$ y si A es simétrico y defido positivo $\|A\| = \max\{\langle x.A,x \rangle \text{ con } |x| = 1\}$. Si A y B son simétricos, escribimos A < B (respect. A \leq B) si A-B es definido (respect. semi-definido) negativo.

Para t > 0, sea $\lambda(t)$ el menor autovalor de U(t); luego por ser U(t) simétrico y definido positivo es $\lambda(t) = \|U(t)^{-1}\|^{-1}$ y por lo tanto $\lambda(t) \ge \|A'(t)^{-1}\|^{-1}.\|A(t)\|^{-1}$. Dado A(o) = 0 y A'(o) = I, resulta lím $\lambda(t) = +\infty$.

LEMA. Sean $B_i(t) \in R^{n \times n}$ (i = 1,2) matrices simétricas y definidas negativas que dependen diferenciablemente de t \in R, tales que $B_1(t) < B_2(t)$ para todo t \in R. Sean U_i soluciones simétricas de la ecuación (R) correspondientes a B_i , definidas para todo t \in R con t \geqslant s \geqslant 0. Si $U_2(s) < U_1(s)$ entonces $U_2(t) < U_1(t)$ para todo t \geqslant s.

Demostración. Sea $f(t) = U_2(t) - U_1(t)$ para $t \ge s$; debemos mostrar que f(t) < 0 para todo $t \ge s$. Por continuidad de f existe un $\varepsilon > 0$ tal que f(t) < 0 si $t \in [s,s+\varepsilon)$; sea entonces ℓ el supremo de todos los $\varepsilon > 0$ con dicha propiedad. Si $\ell = +\infty$, nada hay que probar; supongamos entonces que $\ell < +\infty$ y sea $\overline{s} = s+\ell$. Por continuidad es $f(\overline{s}) \le 0$ y por definición de \overline{s} debe existir un vector unitario $x \in R^n$ tal que $x.f(\overline{s}) = 0$. Por otro lado, como las U_i satisfacen (R) se tiene

 $f'(t) = U_2'(t) - U_1'(t) = -f(t) \cdot (U_1(t) + U_2(t)) + B_1(t) - B_2(t)$ Luego $x.f'(\overline{s}) = x.(B_1(\overline{s}) - B_2(\overline{s}))$ y por 10 tanto $\langle x.f'(\overline{s}), x \rangle < 0$. Si $g(t) = \langle x.f(t), x \rangle$, entonces g(t) < 0 si $t \in [s, \overline{s})$, $g(\overline{s}) = 0$ y $g'(\overline{s}) = \langle x.f'(\overline{s}), x \rangle < 0$; esto es una contradicción y en consecuencia debe ser $\ell = +\infty$.

PROPOSICION. Con las hipótesis y notaciones introducidas, sean $a,b \in R$ con $0 < a \le b$. Si para todo $t \in R$ se verifica $-b^2 \cdot I \le B(t) \le -a^2 \cdot I$, entonces $a.Coth(a.t) \cdot I \le U(t) \le b.Coth(b.t)$ si t > 0.

Demostración. Dado que 0 < a, es suficiente demostrar la proposición suponiendo que $-b^2.I < B(t) < -a^2.I$ para todo $t \in R$. Como $\lim_{t \to 0} \lambda(t) = +\infty$, para cada natural n existe un $s_n > 0$ con $s_n < \frac{1}{n}$ tal que a.Coth(a. $\frac{1}{n}$).I < 0

Sea $\varepsilon_n = \frac{1}{n} - s_n$ y para todo $t \in R$ sea $B_1(t) = B(t - \varepsilon_n)$ y $B_2(t) = -a^2.I$. Si para t > 0 es $U_2(t) = a.Coth(a.t)$ y para $t > \frac{1}{n}$ es $U_1(t) = U(t - \varepsilon_n)$, entonces $U_2(\frac{1}{n}) < U_1(\frac{1}{n})$.

Luego por el lema anterior resulta $U_2(t) < U_1(t) = U(t-\epsilon_n)$ para todo $t \ge \frac{1}{n}$.

Sea ahora t > 0 fijo y m natural con t > $\frac{1}{m}$; dado que para n > m es $U_2(t) < U(t-\varepsilon_n) \text{ y } \varepsilon_n \to 0, \text{ resulta } U_2(t) \leqslant U(t). \text{ La otra designaldad se demuestra de manera análoga, usando el hecho que lim b.Coth(b.t) = <math>+\infty$.

REFERENCIAS

- [1] P.EBERLEIN, When is a geodesic flow of Anosov type? I. J. Differential Geometry 8, 437-463 (1973).
- [2] J.H.ESCHENBURG, Horospheres and the stable part of the geodesic flow. Math. Z. 153, 237-251 (1977).
- [3] J.H.ESCHENBURG and J.J.O'SULLIVAN, Jacobi tensors and Ricci curvature. Math. Ann. 252, 1-26 (1980).
- [4] E.HEINTZE and H.C. IM HOF, Geometry of horospheres. J. Differential Geometry 12, 481-491 (1977).

Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Argentina.