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ON SCALAR CONCOMITANCE OPERATORS

R.J.Noriega and C.G.Schifini

INTRODUCTION.

The theory of concomitants had a great development during the last de-
cade, due to the systematic use of the invariance identitites [5].
Being its language the classical tensor analysis, sometimes there is a
lack of precision both in the results and in ‘the techniques of proof.
Following the current trends about the use of the language of jets for
every local problem in differential geometry [1], in this paper we stu
dy a possible setting of the concomitants in that context. We do not
consider the most general possible case, i.e., a geometric object con-
comitant of certain geometric objects, but the most commonly used, i.e.,
scalars concomitants of arbitrary tensors and their derivatives up to
a finite order.

In section 1, we give the preliminaries that we need in the following
sections (for further information see [4]). In section 2, we propose
the definition of the concomitance operators and the invariance identi
ties they must satisfy, and we show how classical statements of the ty
pe "Let L be a concomitant of ..." can be translated into this language.
Finally, in section 3, we show how the concepts developed in the pre-
vious section can be used to prove rigorously two particular results
of the theory not previously known.

1. PRELIMINAIRES.

Let M and P be differentiable manifolds with dimensions m and m+n res-
pectively, and let #: P — M be a surjective submersion (i.e., its
differential is everywhere surjective). A local section of 7 is a dif-
ferentiable function s: U — P, where U CM is an open set, such that
T os = id. We will denote T(U,P) the set of all local sections whose
domain is U.

For s, € F(Ul’P)’ s, € r(Uz,P) and X, € U1 n UZ’ we say that s, and s,
are equivalent if, in local coordinates, their partial derivatives up

to k-th order are the same at x.. Let Pk(xo) be the quotient and let

0
pk be the union of all Pk(xo) for X, € M. We define the projection
x%: PX — M the natural way, wk(y) =x iff y € Pk(x).
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For s € T(U,P) we define

Jk(s): U — pk

as the mapping whose value at x Jk(s)(xo), is the equivalence class

0’
of s for the relation defined above. We will say that Jk(s) is the k-

k.

jet of s. We also define, if k = h, LI pk . pP by

(I (s) () = IP(s) ()

° ~ p.

It is easy to see that P
An adapted chart is a 3-tuple (U,¢0,¢), where U C P is an open set and

9" T(U) — R®, ¢: U — Rmen_are diffeormisms commuting the diagram
U —% o+ R®xR®
”l' o lPl
n(Uu) —9— R"
(Plz
For an adapted chart (U,¢0,¢), let

projection onto the first factor).

_ o ky-1
vy = @)

h'=m+n +n izl c;’i m

where cé i is the number of combinations with repetition of m elements
taken i times.

If y €V, then it will be y = J%(s) (x®(y)) for some s € I'(W,U). We
define:
st = 9te s gt (1<i<n)

@0 a, (I<t<k , 1<o;<...<a <n)

...ut(si)
and ¢k: Vy — R° by
5 () = (¢o(x)’si(¢o(x))'---»Sil...ak(¢o(x)i) ,

where x = nk(y). The family of all (VU,¢k) is an atlas for Pk, and so
Pk is a differentiable manifold with dimension h given by (1).

2. CONCOMITANCE OPERATORS.

Let M be a differentiable manifold with dimension m and, for a natural

number c and non-negative integers rl,sl,...,rc,sc, let
1 Te
P= U (T " M)x....x T " (M)) (2
pPEM 81 P Sc P ’ )
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where TT (M) is the tensor product of M_. (r factors) and M* (s fac-
s P P P

tors). As in the case of tensor bundles, it is easy to see that P has
a natural differential structure with dimension:
r.+t.

m* *+m (3)
1

m+n =

Ih~>0

i
The natural projection m: P —> M is clearly a surjective submersion.
.-
To have a section s € I'(U,P) is to have c sections S5 € F(U,TSJ(M))
3
such that:

s(p) = (s;(P),...,s (p)) for all p €U

If A = {(x,U)} is an atlas for M with x(U) Rm, then we have an atlas

A' = {(tU,w'l(U))} for P, where tU(n_l(U)) = R™ xR™. Using the results
outlined at the previous section, we obtain an atlas

A* = {(¢k,("g)-1(ﬂ_1(U))} for P* such that ¢k((wg)_l @)y = rY,
where h is given by (1) and n is given by (3).

Let (x,U) be an arbitrary but fixed chart for M with x(U) = Rm, and

m

for each chart (x,U) with x(U) = R let
w‘;(E) . RP™ — D
be the map given by
k i i i T o pi,...,bt )
wp(x) (b ,bal,...,bal’...’ak) X ¢ (¢ ) (X(P), ’ ’ al""’ak

where b' are the last coordinates on P given by the adapted chart
(and so 1 < i < n, where n is given by (3)).

Let A be the set of all such functions w?(i) for (x,U) a chart on M
with X(U) = R®.

LEMMA. A ~ GL(m,R)x RY, where q = dim P**! - 2m - m®, and P = MxM

with the natural projection onto the first factor.

Proof. We define f: A — GL(m,R) xRY by

k.= i i i
£ = . BL . e.esBL . ,
w,(x)) = (B (), JlJZ(p), , JIJZ"'Jk+1(p))
where v
Bi - 3% x*
jye--3 _J _J
! s X 1...8x 8

and1§j1<j2<...<j;<mzfor all 1 <s < k+1.

Being X o x~! an invertible mapping, then it is clear that
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(BJ? (p)) € GL(m,R), and so £(A) C GL(m,R) xR%. Let
g: GL(m,R) xRY — A

be the mapping defined in the following way. For

(ci,ci . ...

el ) € GL(m,R) xRY, let (X,U) a chart on M with
172

,ci
Jpoe e Ik+1
X(U) = R™ such that:

Bli(p) = ¢
P (p) <3

i i

. . (p) = c: .
J1o 3k RN S|

(there is such a chart; just compose x with the polynomial of degree

< k+1 whose coefficients are all c§ j ). We define then:
103,
i i k —
g(cy,...,C3 . ) = v _(x)
J SESEREEIeS] P

and it follows at once that fog = id, go £ = id. ///

Each element of A is a (differentiable) function from Rh—m to Rh,
then the lemma allows us to define an action of GL(m,R)xRq over Rh_m.
Let

H*: GL(m,R) x RY x RP™® — RP°T

. be defined as
H*(B,b) = 7' (£ 1(B) (D)) ,

where 7': RP — RP™™® is the projection onto the last h-m coordinates.
From the transformation law for tensors and their derivatives, it is
clear that HX is a differentiable function.

We will say that an open set V C RP™® is invariant by HK if
HX (GL(m,R) xRIxV) C V.

Now we are ready to give the general definition of the concomitance
operators:

DEFINITION 1. An (r T ,sk)-scalar concomitance k-operator is

RLTEEE
a differentiable function

k

F: VC R — R,
where V is an invariant open set, such that
F(b) = F, H¥(B,b) 4
for all b € RP™™ and B € GL(m,R) x RY.
T

DEFINITION 2. If F: V c RB™® —» R is an (r »s, ) -scalar

12510 k
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concomitance k-operator, then,‘from (4) it follows that
- Kk _ '
X (Fo HYY =0 (5)

for all vector X tangent to GL(m,R) xRY C GL(m,R) x RY x RE"®. The iden
tities (5) are denoted invariance identities for F.

It is clear that for a differentiable mapping F: V C REE R, the
identities (5) are necessary and sufficient for F to be a concomitance

operator.

We are now in position, in each particular case, to say what it means
- for a scalar to be a concomitant of arbitrary tensors. For instance,
if G is a 2-covariant tensor and X is a vector field, then we say that a
scalar L (i.e., an element of C®(M)) is a concomitant of G and X up to
k-th order if there is a (0,2,1,0)-scalar concomitance k-operator

F: R®™™ _ R such that, for every chart (x,U) on M:

L(p) = F(gij(p);gij,hl(p);...;gij,hk(p);ai(p);...;af,l_”hk(p)) ,

where G = gi3 ax* eaxd and X = al — and a dot means partial deri-
b

vation. It is here n = m? + 2m and so h-m = n+n ) <

3. APPLICATIONS.

We are going now to study two cases of scalar concomitance. Let L be

a scalar and let w € DI(M), X € DI(M) be an 1-form and a vector field
respectively such that w(X) is nowhere null. We say that L is a conco
mitant of w and X if there is a (0,1,1,0)-scalar concomitance 0-opera

tor F: R®®™ — R such that, for every chart (x,U):

L(p) = F(¥ (P)se- sy (0,01 (0),- -, 0" (@)
i 9
9X

where w = wi dxi and X = ¢

i

THEOREM 1. If L s a scalar concomitant of the 1-form W and the vector
field X(with w(X) nowhere null), then there exists a function

g: R%O — R such that L = gow(X).

Proof. Now it is k=0, If H = HC:

viously defined, then it follows at once that

GL(m,R) x Rzm——+ R2m is the action pre

- i gyl Bl
H(B,a,b) = (Bj ai,(B )j.b )

where B = (B;) € GL(m,R) and (a,b) € R2®,

Being q=0, the invariance identities (5) are equivalents to the m?

identities
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3 -
— (FoH) =0

aBt

It is easy to see that these identities, evaluated at B = I, are
Fi(a,b)aj - Fj(a,b)bi =0 for all (a,b) € R*®

where F1 = D_F, F, = D__. F.
1 j m+j

If (xl,...,xm,yl,...,ym) is the usual coordinate system en Rzm, then

we may write the invariance identities as
F* x, = F, yt (1<i, j<mn)
Then,out of the coordinate axes, it is F /y* = Fj/xJ. Then there is a

2m

function c: R — R such that

Fl = ¢ yi , F. =c x. (6)
‘(everything being continuous, (6) is valid everywhere).
Fcr each t # 0, let
' St = {(x,y) e rR?®: x; yi = t}

Then St is an hypersurface of R%®. Let i: St — R?™ be the inclusion.

Then:
d(Fo i)

i* (dF) = i* (F' dx, + F, dy') = (using (6))
= i* (c yi dxi +cox; dyi) = i* (cd(yi xi)) =
= coi (A" x;01)) = 0
since yi X; 0 i is the function coﬂstantly t. Then Flst = const. =

= g(t), and so:

L) = F(v; (0),03 (P)) = g(v; () o2 (p)) = g(w (X)) = gw(X) (@),
and so the theorem is proved. ///

We now consider G € D;(M), a 2-covariant non-singular symmetric ten-
sor, and X € Dl(M), a vector field nowhere null. Let V = GL(m,R)x R:o.
We say that a scalar L is a concomitant of G and X if there is a

(0,2,1,0)-scalar concomitance 0-operator F: V —> R such that

- r . . m
i) FIGL(m,R) x{a} 1S symmetric for every a € R*o.

ii) if (x,U) is a chart on M, then L(p) = F(gij(P), ot () ,

where G = gij dxt edxd and X = ¢i —37 .

ax*

THEOREM 2. Let L be a. scalar concomitant of the symmetric, non-singu-
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lar 2-covariant tensor G and a vector field X nowhere null. Then there

i8 a function h: R#O — R such that
L = ho G(X,X)

Proof. Once again it is k=0 and H = H°: GL(m,R) x GL(m,R) xR® —>
— GL(m,R)me is the function:

L

- r
H(B,a,b) = (Bi Bj ap s

@ hHivh
J
The -invariance identities (5) are equivalent to the m2 identities:

—% (FoH) = 0
3B
t

and, evaluated at B = I, they are th(a,b)(asj+ajs) = Fs(a,b) bt ,

where Fti = ) s Fs = éE; , and (xij,ys) is the usual coordinate

thj oy

system on GL(m,R) xR™. If a is symmetric, then it is:

j t
2 F*J (a,b) ag; = Fg(a,b) b
or else:
th = % F yt xsj (7
Since F is symmetric, we get from (7):

= ]
Fz y xjs FS y le

and so we deduce, as in the previous theorem, that:

FL = C Xjp yd (8)

Now, for each t # 0, let
' S, = 1(x,y) € SGL(m,R) xR™: x, yiyl = &3
where SGL(m,R) stands for the symmetric matrices of GL(m,R).'If
i: St — SGL(m,R)Q<Rm stands for the inclusion map, then:
d(Fo i) = i* (dF) = i*(F] dx;, + F_ &y®) = (Using (7))
= i* (% F_ yi xsd dxij + F_ dy®) = (Using (8))

= i* (% C X, yh oyt x®3 dxij + F_ dy®) =

= i* (% [ yj Yi ?xij +C Xij yi dyj)
= i* (= 1,3 =
? (7 d(y. Y xij))
z . 1 J . =
7 Co i (dlyy .Xijo i)) 0

since x, y' yJ o i is the function constantly t. Then F|g const. =
t

= h(t), and so:
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L(p)

F(g;; ()07 (p)) = hig; (et (p)od (p)) =
h (G, (X,,X))) = h(G(X,X) (p))

and so the theorem is proved. ///

Finally, we remark that theorem A.1 from [2] and theorem 1 from [ 3]

can be equally translated into this language.
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