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INTRODUCTION. 

1~ 

Some of the most important recent advances in optimatization have co

me about as a result of a systematic replacement of smoothness assum£ 
tions by convexity. This is exemplified by the work of Rockafellar 

[2]. It is natural to ask whether analogous results can be proven 

without either smoothness or convexity. A general theory of necessary 

conditions for such problems has been obtained [3]. The conditions 
are expressed, in part, by means of generalized gradients. 

The classical inverse function theorem gives conditions under which a 

Cr function admits (locally) a Cr inverse. The purpose of this arti

cle is to give conditions under which a lipschitzian (not necessari
ly differentiable) function admits (locally) a lipschitzian inverse by 

means the characterization of the plenary hull of the generalized ja
cobian matrix. 

1. LOCALLY LIPSCHITZ FUNCTIONS. 

Let F: Rn --+ R be locally Lipschitz on B a bounded subset of Rn. 

That is, for each bounded subset B of Rn there exists a constant K 
such that 

It is known [1] that such function has at almost all points x a deri

vative (gradient), which we denote Vf(x). It is easily verified that 
the function Vf is bounded on bounded subsetsof its domain of defini
tion. 

Let now F be locally Lipschitz on 0 a nomempty open subset of Rn and 
taking values in Rm. One could be tempted to define the generalized 

t derivative of F = (f 1 , ... ,fm) at Xo EO by simply considering 

[af1(xO), ... ,afm(xO)] t where this set consists of matrices whose ith 

row belongsto afi(xO). 

The usual mxn jacobian matrix of partial derivatives, when it exists, 
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is denoted JF(x). We topologize the vector space of mxn matrices with 

the norm 

IIMII = maxlm .. 1 where M = (m .. ) 
1J 1J 

1 .;;; i .;;; m 1 .;;; .;;; n 

A mathematical tool is what Clarke, F.H. called the generalized jaco

bian matrix defined in the following way: 

DEFINITION 1.1. The generalized jacobian matrix of F at Xo E 0, deno

ted by JF(XO), is the convex hull of all matrices M of the form 

M = Lim JF(xn) wherexn converges to Xo in domF'. 
n->-OO 

In this definition, domF' denotes the subset of full measure of 0 whe

re F is differentiable. 

In doing so, JF(Xo) is nonempty compact convex subset of the vector 
space of mxn matrices, which is reduced to {JF(xo)} whenever F is 

strictly differentiable at xO' 

DEFINITION 1.2. JF(xo) is said to be of maximal rank if every M in 

JF(xo) is of maximal rank. 

2. PLENARY HULL OF THE GENERALIZED JACOBIAN MATRIX. 

Let us denote <, ~ the inner product on the vector space of mxn rna tri

ces defined by <M,U~ = Trace of MoU t ; it comes from Definition 1.1. 

that for all U E Rmxn : 

~ax <M,U~ 
MEJF(X O) 

Lim sup <JF (x) ,U ~ 
x ->- Xo 

xEdomF' 

(2.1) 

We turn our attention to those U E Rmxn of the form u®v: x -> (U,x)v, 

where u E Rn and v E Rm. In such a way, <M , u ® V ~ reduces to ( Mu, v) 

and (2.1) can be rephrased as: 

max ( Mu, V) 

MEJF(X O) 
Lim sup (JF(x)u,v) 

X..,. X 

xEdomFP 

(2.2) 

We can use results on chain rules so that the l~ft-hand of (2.2) ap

pears as the generalized gradient of a particular real-valued func

tion. Given v E Rm, the generalized gradient of Fv: x --+ (F(x) ,v) at 

-t 
Xo can be exactly described as: 3Fv (xo) = J F(xo)v, ([6]). 

Therefore, for all u ERn, we have that: 



max (u,Mtv) 
Me:JF(xO) 
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(2.3) 

Although JF(Xo) is convex and compact, one generally cannot separate 

an Mo from JF(xo) by using only linear mappings (on Rmxn) of the form 

u ® v, u E Rn , v E Rm. This state of affairs led Sweetser [5] to. intr~ 
duce the following definition: 

a subset A C Rmxn is pZenapy if and only if it includes every M in 

Rmxn satisfying Mu E Au for all u E Rn -

Since the intersection of plenary sets is plenary, Sweetser defined 
the pZenapy huZZ of A, denoted pZen A, as 

- a smallest plenary set containing A -

Namely, when min(m,n) > 1, plen JF(XO) is a convex compact (plenary) 
set of· m1rtX..ices containing JF(Xo)' 

Since JF(Xo)U = [plen JF(Xo)]u for all u ERn, Hiriart-Urruty [8], 
fOl1mulated the following theorem: 

THEOREM 2.1. Let u E Rn and v E Rm Then, 

max (Mu,v) = FO(xo;u,v) 
Me: plenJF(xo) 

In another setting, M E plen JF(Xo) if and only if 

(Mu,v) ..; FO(xo;U'v) for all (u,v) E Rn x Rm. 

(2.4) 

To summarize, let's say that plen JF(Xo) is the convex compact (plen!!. 
ry) set of matrices satisfying 

[plen JF(xo)]U = JF(Xo)U for all u ERn. When F 

ve that: 

JF(XO) C plen JF(Xo) c [afl(xO), ..• ,afm(xo)]t 

The set [af l (xo) '.' •. ,afm (xo) J t is obviously convex, compact and ple

nary. It actually yields the same image set as JF(xo) does when the 
considered vectors u are the elements e i of the canonical basis in Rn. 
In other words," 

3. THE PLENARY HULL OF JF(xo) AND THE INVERSE FUNCTION THEOREM. 

THEOREJ 3.1. If evepy matpix M in plen JF(Xo) is of maximaZ pank. then 

exist neighbophoods U and V of Xo and F(xO) pespeativeZy. and. a Zips

ahit3ia\ funation G: V -- Rn: at/oh that: 
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for aLL u E U is F(u) = v if and onLy if for aLL v E V is G(v) = u. 

When F is C1 , JF(xo) reduces to JF(xo) and the function G above is ne 

cessarily C1 as well. Thus we recover the classical theorem. 

REMARK 1. This theorem remains true (without modifications in proof) 
if we impose the maximality of a rank for all M E JAF(xo) where 

A C domF' be such that its complementary set in 0 is of null measure 
and let JAF(Xo) be defined as in (1.1) except that in this definition 

the points xn are constrained in A. 

REMARK 2. Due to the definitions themselves, we have that 

([ 61 ) 

It is known that the generalized gradient of real-valued functions is 
blind to sets of null measure [3, Proposition 1. 111. The desire to rna 
ke the generalized derivative blind to sets of null measure led Por- " 
ciau, B.H. [71 to alter Clarke's original definition by considering 
the Lebesgue set the LebF' of F', instead of domF', in the definition 

of JF(Xo) but, since F' is locally in Loo(O,Rm), almost every x in 

domF' belongs to LebF'. 

REMARK 3. Let A and JAF(Xo) be as in Remark 1. Then 

So, plen JF(Xo) is blind to sets of measure zero. 

Proof of the theorem 3.1. 

LEMMA 1. An exact chain ruLe in finite-dimensionaL case [61 . 

Let F be a LocaZZy Lipschitz function and g be co"ntinuousLy differen

tiabLe. Then 

LEMMA 2. Let S be a positive number. Then for aLL x sufficientLy near 

xo' plen JF(x) C [plen JF(xo) + SM(O,1)1 where M(O,1) denotes the unit 

baLL in the vector space of mxn matrices. 

This is adirect consequence of definition of the plenary hull of the g~ 
neralized jacobian matrix. 
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LEMMA 3. There are positive numbers rand A. with the following proper

ty: given any unit vector v in Rn, there is a unit vector u in Rn such 

that, whenever x lies in (xO + rB) and M E plen JF(xo), then (Mv,u) ~ 
~ A for all M, where B denotes the open unit ball in Rn. 

Proof. Let ~l denote the unit sphere in Rn. The subset plen JF(xo) ~l 

of Rn is compact and does not contain 0 since plen JF(xo) is of maxi

mal rank. 

Hence for some A > 0, plen JF(Xo) ~l is distance at least 2 A from O. 

For positive 13 sufficiently small, [plen JF(xo) + 13M(O,l)1 ~l is dis

tance at least A from O. 

By Lemma 2, it follows that for some positive r, 

We may suppose r chosen so that F satisfies Lipschitz condition on 
(xo + rB). 

Now let any unit vector vbe given.It follows from above that the convex 

set [plen JF(xo) + 13Mlv = [JF(XO) + BMlv , for all v in Rn , is distan-

ce at least A from~. By the usual separation theorem for convex sets, 

there is a unit vector u such that: (u,Mv) ~ A for all M E plen JF(xo)' 

LEMMA 4. If xl and x2 lie in (xO + rB) ,then 

Proof. We may suppose xl # x2 and by the continuity of F that x l ,x 2 E 

E (xo + rB). 

Let 11" be the plane perpendicular to v and passing through xl' The set 
P of points x in (xo + rB) where F' fails to exist is of measure zero, 

and hence by Fubini's theorem, for almost every x in 11", the ray x+tv, 

t ~ 0 meets P in a set of null one-dimensional measure. Choose an x 
with the above property and sufficiently close to xl so that x+tv lies 
in (xO + rB) for every t in [O,cd. Then the function t -->- F(x+tv) is 

Lipschitzian for t in [O,al and has a.e. on this interval the deriva

tive JF(x+tv)v. Thus 

F(x+av) - F(x) J: JF(x+tv)vdt 

Let u be as in Lemma 3. We deduce, 

(u, (F((x+av) -F(x))) (u, J: JF(x+tv)v dt) ~ J: A dt 



195 

Recalling the definition of a, we arrive at: 

This may be done for x arbitrarily close to xl. Since F is continuous, 
the lemma ensues. 

LEMMA 5. F(xo + rB) contains F(xO) + (r ;I./2)B. 

Proof. Let y be any point in F(xo) + (r ;I./2)B, and let the minimum of 

lIy - F(x)1I 2 over (xo + rB) be attained at x. We claim x belongs to 

(xo + rB). 

r ;1./2 > lIy - F(xo) II ~ IIF(x) - F(xo) II - Ily - F(x) II ~ 

~ ;l.lIx - xoll - lIy - F(x)1I ~ 

~ ;l.r - lIy - F(xo)1I > ;l.r - r ;1./2 = r ;1./2 

whi\ch is a contradiction. Thus x yields a local minimum for the func

tion lIy - F(X)1I 2 , and consequently [3, Corollary 1.10], 

! E ally - F(X)1I 2 

We now use Lemma 1 to conclude that ~ belongs to the set 

JtF(x)(y - F(x)) ([6]) 

that coincides with [plen JtF(x)] (y - F(x)) for all vector in Rm by 
Theorem 2.1. But Lemma 3 implies that every matrix in plen JF(x) is 
non singular, hence the above is possible only if F(x) = y. 

We now set V = F(xo) + (r ;I./2)B, and we define G on V as follows: 

G(v) is the unique x in (xo + rB) such that F(x) = v. We choose U as 
any neighborhood of Xo satisfying F(U) ~ V. The theorem is now seen 
to follow, since Lemma 4 implies that G is Lipschitz with constant 

;I.-I. 
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