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CLIFFORD ISOMETRIES OF COMPACT
HOMOGENEOUS RIEMANNIAN MANIFOLDS

Oscar A. Campoli

ABSTRACT. Let G be a compact connected simple Lie group and H C G a
closed connected Lie subgroup.

Consider the manifold M = G/H with a G-invariant Riemannian metric.

Let T' be a maximal torus of H and let T be a maximal torus of G con-
taining T'. Assume the Lie algebra of T has an orthonormal basis B
that contains a basis for the Lie algebra of T' and such that the
Weyl group W(G,T) contains every transposition of B.

In this situation we give a necessary condition for an element g € G
to be a Clifford isometry of M which generalizes the eigenvalue con-
dition for the spheres.

We exemplify and give preliminary applications.
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INTRODUCTION AND NOTATION.

Let G be a compact connected Lie group and H C G a closed subgroup.
£(G) and L(H) C £(G) will denote the respective Lie algebras of G
and H.

Consider in G a G-invariant Riemannian metric and induce from it a
G-invariant Riemannian metric on the manifold M = G/H associated to

the decomposition £(G) = £(H) e L(M!.
A Clifford isometry of M is by definition an isometry f: M — M such
that if d is the distance function on M then the displacement func-
tion

d(x,£(x))
is a constant function for x € M.

A group of Clifford isometries is a group all of whose elements are
Clifford isometries of M.
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For the relation between homogeneity and finite groups of Clifford
isometries see for instance Wolf [1, page 230].

In the next section we give a necessary condition for an element

g € G to be a Clifford isometry of M for pairs (G,H) satisfying cer-
tain conditions .and in the last section we exemplify and we use the main
result to prove that if (G,H) is a pair to which the theorem applies,
then a finite subgroup T of G of Clifford isometries of M has the pro .
pérty that every abelian subgroup of T' included in a torus of G is
cyclic (c.f. Wolf [1, chapter 5] and also compare to Wolf [1, theorem
9.1.2. page 301]).

These conditions on the pair (G,H) include always the connectedness
of H. In relation to the conjecture (see Wolf [1, page 230]) that if
I is a finite group of Clifford isometries of M then M/T is homoge-
neous it would be interesting to look at the case H disconnected.

In this case if H is the identity component of M, the manifold M, =

= G/H0 is a covering manifold of M. In particular, when M is simply
connected we must have H connected.

It is clear that the elements of G are not all the possible candida-
tes to be Clifford isometries of M since in general the full group of
isometries of M is bigger than G.

In fact, since the metric of G is also right invariant, every element
of the normalizer of H in G acting on the right on M is an isometry
of M and it is immediately verified that it is always a Clifford iso-
metry of M.

In any case, in relation to the conjecture we mentioned these are the
least interesting of the Clifford isometries of M since they clearly
give a homogeneous quotient manifold.

When we have rk(G) = rk(H), H not necessarily connected, the theorem
of conjugation of maximal tori of a compact connected Lie group im-
plies that any g € G has a fixed point in M and therefore the only
possible Clifford isometry G may contain is the identity. This is the

case for the even dimensional sphéres S2n = S0(2n+1)/S0(2n).
Here rk(G) denotes the dimension of any maximal torus of G.

Finally, we should say that the necessary conditions we find for an
element g € G to be a Clifford isometry of M = G/H are sufficient in
the case of the spheres (c.f. Wolf [1, page 227]) but notin general (c.
f. Wolf [2, page 95]).

The sufficiency in the case of the spheres seems strongly related to
the property that equal chords imply equal arcs. In this sense it is
then no surprise what we find for the remaining Stiefel manifolds,
which are the subject of a coming paper. Neither it is a surprise
what Wolf finds in [2] for the remaining symmetric spaces since the
necessary condition it is always sufficient to obtain a Clifford iso-
metry in the chordal distance and therefore in order to be a Clifford
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isometry in the intrinsic distance the displacement must be between
points with the property that subtend equal 'chords' and equal "arcs'.
This is a very strong restriction for the isometry.

THE MAIN RESULT.

Let G be a compact connected Lie group and {e} # H C G a closed con-
nected subgroup.

Let T' be a maximal torus of H and let T be a maximal torus of G such
that T' g T.

Let {X ..,Xr} be an orthonormal basis of £(T') and {Xl,...,Xn} an or

1’°
thonormal basis for L(T) (therefore 1 < r < n).

Assume that the Weyl group W(G,T) of G with respect to T contains eve
Ty transposition of the set {Xl,...,Xn}. '

By changing the metric in G by an appropriate positive constant we
may assume the length of the geodesics R o t — exp(t Xi) is 2w for
i=1,2,...,n.

THEOREM. If g € G s a Clifford isometry of M then g can be conjugated
in G to an element of the form

exp(e(elx1 + ...t enxn)), o<e<m,

€. =*1 for i=1,2,...,n.

Proof. Let g € G be a Clifford isometry of M.

Since conjugation by an element of G preserves this property and also
the conclusion we want to reach, we may assume g € T.

For 91,92,...,en € R we write
t(el,...,en) = exp(elx1 + ... 4 enxn).
Say then that g = t(e?,...,ez), - < eg <w, i=1,2,...,n.

Let T1 = {t(0,...,0,6 .,en)/e c.es0 € R}.

_ r+1’°° r+l’
Then T1 is a closed torus of G of dimension n-r.

Since T' is a maximal torus of H and H is connected, it follows that
T' is maximal abelian in H. Therefore T, N H = {el}.
£(T1) is orthogonal to £(T') and since T' is a maximal torus of H,

this implies that £(T1) is orthogonal to L(H).
From this it follows that T1 is isometric, via the canonical projec-

tion, to a closed submanifold of M (injective application with isome-

tric derivative).
Let g, = t(eg,o,...,o), g, = t(O,e;,O,...,O),..., g = t(O,..UO,eZ).

Since g;,...,g, € H, we have that
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d(H,g-H) = d(H,g_, ;... g -H)

n
and since T1 is isometric to a closed submanifold of M containing H

and g gn-H, it follows that this last distance can be measured,

r+l1°°°

1n51de.T1, from the identity to Brp1v+* 8y-

o

By the election of © ,eg, this last distance is

SERRE
(692 + ... + 022 ie.,

2 _ o 2 0,2
m d(H,g-H)® = (6,07 * ... + (6 )".

Say now that x € G is such that Ad(x)Xr = Xr+1 and Ad(x)Xj = Xj for

all j # r,r+1, (possible by the hypothesis on the Weyl group).

-1 _ o a0 o o 0 o
Then xgx = t(el,...,er_l,er+1,er,er+2,...,en).
We use now the same procedure as before to compute d(x_l-H,g-x_l-H) =
= d(H,x-g-x'l-H) and we find that
: =112 2 2 2
(2) ad(H,g-H)% = a(l,xgx ') = (097 + (09,07 + ...+ (8D)

From (1) and (2) it follows that |e_| le 1

Repeating the argument with different elements of the Weyl group the
theorem follows. q.e.d.

EXAMPLES AND AN APPLICATION.

Let G S0 (2n).

Let X = {_? 8]. For i = 1,2,...,n we call Xi to the 2n x 2n real ma-
trix that has all entries equal to zero except for a 2 x 2 block equal

to X along the diagonal in the (2i-1,2i)-th place.

Then {Xl,Xz,...,Xn}js an orthogonal basis for .the Lie algebra of the
standard maximal torus T of G.

The Weyl group W(G,T) contains every transposition of the set
{Xl,Xz,...,Xn}.

We take a closed connected subgroup H' of G such that L(H') has a maxi
mal torus generated by a subset of {Xl,Xz,...,Xn} and we take as H any

subgroup conjugated in G to H'.

A similar construction gives examples when G = S0(2n+1).
This gives, in particular, all the (real) Stiefel manifolds.

In general, for any compact connected simple Lie group G we take T to
be a maximal torus.

Next we consider an orthogonal basis {Xl,X ..,Xn} for £(T) such that

2°°
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the Weyl group W(G,T) contains every transposition of the set

{Xl,...,Xn}.
When G = SU(n) one such basis for the standard maximal torus of diago
nal elements is given by

X, = diag(v-1T (1-v/n),/-1,...,/-1, -/-T(n-1-/n),/-T,...,/-1)
for j = 1,2,...,n-1. The entry -/-1(n-1-v/n) in X, appears in the
j+1-st place.

Similarly, for G = Sp(n) we may take the corresponding basis through
the inclusion SU(n) C Sp(n) given by

é SuU A AO el :
(SUMI> A — |7 7 € £(Sp(m)

Then we consider T' to be the connected subgroup of G, whose Lie al-
gebra is generated by a subset of'{Xl,...,Xn}.

Let H' be any closed connected subgroup of G having T' as a maximal
torus, and let H be any conjugate subgroup of H' in G.

Then the result applies to the pair (G,H).

As for an application of the result, consider (G,H) to be a pair whe-
re the theorem applies (in particular, 1 < rk(H) < rk(G)).

Let T C G be a finite group of Clifford isometries of M = G/H.
THEOREM. 4n abelian subgroup of T included in a torus of G is cyclic.

Proof. We show that a finite subgroup of the maximal torus of G gene-
rated by two elements g,,g, that generate a group of Clifford isome-

tries of M, is cyclic. We may take ord(gl) = pr , ord(gz) = p°,

p prime, T < s.

Using the notation and the conclusion of the main theorem we may take
the two elements to be

g - e [
1

A
i) X,
(1w J)
e (L, = )
= — X..
g, = exp lps izl e, (1) X
where el(i),ez(i) =*1 ,1i=1,2,...,n

Then

n
g8, = exp (T 1 07Te (D) ¢ e () X,
)

is a Clifford isometry of M.

Applying again the main theorem, it follows that

Ip°7Te (1) * e, ()] = [P°77e (3) + e, (D], v i,3.
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Therefore we have that if e (i) = e,(i), then e (j) = ez(j), v oJj.

Taking ggl in place of g, if necessary, we may assume 51(1) = 52(1).

Then el(i) = ez(i) , ¥V i=1,2,...,n.
sS—=T
Therefore gg = g, and the subgroup generated by {gl,gz}has to be
cyclic. q.e.d.
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