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SUMMARY. 

lMPLICIT PREDICTOR CORRECTOR METHODS 

FOR PDE'S WITH CONVECTION AND DIFFUSION 
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A modified diagonally implicit Runge-Kutta method for solving PDE's 
with convection, diffusion and chemical kirietic interaction terms 
is presented. We obtain stability and second order accuracy in both 
space and time." An application to the numerical solution of a non­
linear system of equations is also illustrated. 

1. I NTRODUCT I ON. 

In this paper we do a Fourier stability analysis on a hybrid scheme 
based upon Miller's second order diagonally implicit Runge-Kutta m~ 
thod DIRK2 (see [1], [2]), for solving certain PDE's with convection, 
diffusion and chemical kinetic interaction terms. 

In this scheme, we treat implicitly only the "stiff" terms in the e­
quations. We obtain stability and second order accuracy in both sp~ 
ce and time by means of a first order "upwind" predictor followed 
by a second order centered corrector. 

, A typical equation, written for brevity in its one-dimensional form 
is 

(1 .1) av 
IT 

2 
w av + ~ + f(v) 

ax· E ax2 

where v = (v1 ,v2 , ..• ,vn )T describes the n chemical concentrations 

convected with velocity wand diffusing according to the "diffusion 
. coefficient" E. The nonlinear term f(v) models the chemical reactions. 

The spatially semi-discretized approximation to equation (1.1) is 
of the form 

(1 .2) 
. du:'"",, 
at = Au + B(u) 

where Au involves the first two terms of (1.1) 'and has long time 
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constants since the grid spacing in the x direction is long, and 

B(u) is stiff due to the presence of the chemical kinetics. 

In §2, the modified 2nd order DIRK method is presented and discus­
sed. 

In §3, using von Neumann's method (see e.g. [3]), a region of stabi 
1ity is obtained for a certain simplified model of (1.1) with coef­
ficients frozen constant and with the nonlinear operator B(u) rep1~ 
ced by a linear operator with large negative eigenvalues which com­
mutes with A. We also do not bother about boundary conditions, ima­
gining the equation to hold on the entire real line. 

In §4 we discuss the error analysis assuming that the nonlinear o­
perator B has an appropriate Lipschitz constant on the order of uni 
ty. 

Finally, in section 5 we present some numerical results of interest. 

2. NUMERICAL METHOD. 

The modified 2nd order DIRK method when applied to (1.2) is given 
by 

Predictor 

(2.1 a) 

Extrapolation 

(2.1b) 

Corrector 

(2.1c) 

+ ~t Au(n+l)* + ~t Bun+1 
4 4 

The finite difference operator A indicates the 2nd order eentered 

approximations to the convection and diffusion terms in the PDE. 

However, for the sake of stability we have had to replace A by A* 
in the explicit A*un term of the predictor formula (2.1a); this in 
dicates that the wVx convection term has been approximated by the 
1st order noncentered upwind difference approximation. The predic­
tor-corrector result however, is 2nd order correct in both space 
and time. 
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2.1. PRELIMINARIES. 

Given the function fk = f(kh) , k integer, defined at the points 
x = kh on the whole discrete line, we will use the operators 

(5+f) k f k+1 (forward shift) 

(D+f)k 
1 

(fk+l f k) (forward difference) Ii -

(D _ f) k 1 (fk f k_1) (backward difference) Ii -

and 
1 2h (fk+l - fk_1) (centered di fference) 

If we let u = {uk} and assume that u = e ikhe . i = 1-=1 setting k ' , 

a = he , we can define the discrete Fourrer transform of u, U, by 

o ..; a ..; 21f • 

It follows that 

If we have a difference operator L, linear with constant coeffi­

cients, 

n+l 
u 

after applying Fourier transform, we get 

A A 
un+1(a) = pea) un(a) 

If pea), the amplification factor, satisfies the vo~ Neumann condi­

tion 

Ip(a) I ";1 + CAt, C constant, 

then 

and we have stability [4]. 

3. STABILITY ANALYSIS. 

We consider first the equation 
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(3.1) £ constant. 

Using the modified DIRK method (2.1), we obtain 

(3.2) 
2 

un+1 = (I + ~t A + ~~ AA*) un 

where A* = D+ + £ D+D_ and A = Do + E D+D_. The method is explicit, 

and we use D+ as an approximation for Vx in the predictor and Db in 

the corrector. We use the second difference D+D_ approximation for 

vxx in both predictor and corrector. 

Setting k ~t, h = ~x , \ = klu , y 

transform in (3;2), we get 
k/h 2 and taking Fourier 

(3.3) \ 2 sl'n2a. p(a.) = 1 - """2 + (cos a. - 1)£y (2 + (cos a - 1)(\ + 2£y)) + 

+ i \ sina. ((cos a. - 1)(1 + 2£Y) + 1) 

The area in the (£y,\) plane in which Ip(a.) I ,;;; 1, the region of sta 
bility (RS), has been determined experimentally and it is shown in 

Figure 1. In the purely convective case £=0, we have stability if 
\ ,;;; 2. 

If we plot p(a.) for a typical value of \, for example \ = 0.5 and 

several values of Ey we can see how increasing the diffusion affects 

the amplification factor. We notice that small diffusion helps pea) 

to remain inside the unit circle (Figures 2 and 3). If we increase 

the diffusion term, the second loop approaches the boundary again 

for a = TI (Figure 4) and finally, if we still increase the diffusion 

term, the inner loop crosses the boundary and we reach the region 

of instability (Figure 5). 

3.1. THE GENERAL CASE. 

We study now the equation 

(3.4) 

This is of the form au at = Au + B(u) after space discretization. 

The st~ucture of the nO,nlinear B(u) is well set up for the Newton IS 

method type of solution of our implicit part of the DIRK method. 

The Jacobian matrix for the nonlinear term is negative definite and 
with low profile since the chemical kinetic interaction is sparse. 
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Figure 1 

Region of Stapility in the (Ey,A) plane 
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Magnification factor for ~ = 0.5 and gy 0.3 

In what follows we will instead assume (for the purposes of stabili 
ty analysis only) that B. is linear, commutes with A and A* and has 
full real negative eigenvalues b, some of which might be expected 
to be quite large since the chemical kinetic terms may be quite 
stiff. We want to show that we have stability for all. negative b. 

USing the modified DIRK method (2.1), we obtain 

(3.5) n+l k 1 k 3 3 u = (I - 4"B)- [(I - ZA) + (Z kA + 4" kB). 

(I - ~ B)-1 (I + ~ A*)l un 

Using the fact that B has negative eigenvalues b and that it commu­
tes with A and A* and assuming that (gy,A) belongsto the region of 
stability (RS), after taking Fourier transform in (3.5) we get 

(3.6) 
1 + kb 15 + (cosa - 1)(3), + 10q) + i SA sina 

I p (a) I ..;; _--=-1,::..2 ----------------

For (gy,).) in the region of stability 

o ..;; 3), + lOgy";; 5 

and if 
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(3.7) ). ..;; (24/25)1/2 , 

it follows that 

(3.8) 115 + (cosa - 1)(3), + lOgy) + i 5A sinal..;; 7 

Using (3.6) and (3.8) we obtain stability for all b ..;; 0 if A satis­
fies (3.7) and (gy,).) belongs to the' region of stability. 

4. ERROR ANALYSIS. 

In this section we perform the error analysis for the equation 

(4.1) Clv 
at 

2 
Clv + Cl v~ + f( ) ax e: -:=z v 

ax 

where we assume that the solution v is sufficiently smooth in both 
space and time ~nd also that the nonlinear term f has an appropria­
te Lipschitz constant on the order of unity. 

The modified DIRK method is given by 

Predictor 

(4.2a) 

Extrapolation 

(4.2b) 

Corrector 

(4.2c) 

+ ~ (D +' D D) (n+l)* + ~ B n+l . $ 0 e: + _ u 4 u 

The restriction of the smooth true solution v(x,t) to the grid do­

main will be noted by v~ = .v(nk,jh). We now try to write v itself as. 
J 

a solution of the difference equations plus a uniformly small local 

truncation error.' 

Predictor 

(4.3) 

Since 

v n = D v n + O(u) x + 

and 
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After replacing these terms in (4.3) we get 

(4.4) vn + ~ (D+ + E D+D_)vn + ~ Bvn+1/ 3 + 

+ O(k 2 + kh + kh 2 ) 

From (4.4) and (4.2a) we have 

(4.5) 

Extrapolation: 

(4.6) 3vn +1 / 3 

From (4.2b) and (4.6), we have 

(4.7) v(n+l) * = u(n+l)* + O(k2 + kh + kh 2 ). 

Corrector: 

(4.8) vn+1 vn + ~ k(vn+1I3 + E vn+1/ 3 + Bvn+1 /3) 
4 x xx 

+ k (v(n+l)* + E v(n+l)*) + ~ Bvn+1 
4 x xx 4 

+ 

Using the smoothness of the solution, (4.5) and the fact that B has 

a Lipschitz constant on the order of unity, the second term in (4.8) 
can be replaced by 

(4.9) i k(Do + E D+D_)un+1/ 3 + i kBun+1/ 3 + 

Analogously, using (4.7), the third term in (4.8) can be replaced 
by 

(4.10) 

From (4.2c), (4.9) and (4.10), assuming k/h bounded, we have 

(4.11) 

n+l . In this equation, u denotes the approximate value that we would 
compute in one step of our method. We see that the method has local 

truncation error which is uniformly bounded by k times O(k 2 + h 2) . 
The method is 2nd order correct both in space~nd time. 
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5. A NUMERICAL EXAMPLE. 

A diffusion-convection reaction process involving three substances 

of concentrations vI' v 2 and v3 respectively, leading to the system 

aV I aV I a2v 4 I 
at - ax + e: --2 + V3 - 10 v I v 2 

ax 

aV2 aV 2 
2 a v 2 4 

at - ax + e: --2 + v3 10 v I v2 
ax 

aV3 aV3 
2 

a v3 4 
at - ax + e: 

ax 2 
- v3 + 10 v I v 2 

is integrated using the following boundary and initial conditions 

o , t>O , i=1,2,3 o , t>O. , i=1,2,3 

{"x , 0 <x .;;; 0.1 

. ~ox + 4 o . 1 <x .;;; 0.2 

0.2 <x < 

rx 
, 0 <x .;;; o . 1 

- ~ Ox + 2 o . 1 <x .;;; 0.2 

0.2 <x < 1 

o < x < 1 

and with the physical parameter e: = 10- 2 . We notice that the first 

order spatial derivatives are large in relation to the second order 

ones and, consequently, we expect the solution to behave like the 

solution of the limiting purely convective case. 

We use the modified DIRK method with fixed 6X = 1/20 and variable 

step size 6t. Because of the chemical kinetics and in order to save 

computer time, the initial step size is chosen fairly small (10- 6). 

We impose a rather conservative upper bound (2x10- 2) for the maxi­

mum size to which the step would be increased, satisfying the stabi 

lity conditions of section 3. To automatically adjust the step size, 

the difference between the solution after one step of size ~t and 

two steps of size 6t/2 is taken as an estimate of the local trunca­

tion error. If this difference is within the prescribed tolerance 

8, the step size is doubled. Otherwise the step size is halved. We 

use Newton's method for the solution of our implicit part of the mQ 

dified DIRK method, and a solution is accepted when two successive iterations 
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satisfy 

rances, show only the predictable changes in accuracy. However, for 

o = 10-4 , the average step size is about 4x10- 3 while for 0 = 10-2 , 

the average step size coincides with the maximum step size 2x10- 2 . 

The initial data and the solution at different times are shown in 
Figures 6 to 10. We notice the sharp, transition from the initial 
concentrations (Figure 6) to the state at time ~ 0.20 (Figure 8), 

due to the chemical reactions. In all the plots, the'solution for 
v 1 is represented by a solid curve, for v2 by a dashed curve and 

for v3 by a solid curve with a symbol. Figures 9 and 10 show the 

outgoing waves travelling with speed less than 1, as expected, due 

to the presence of diffusion. 
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Chemical concentrations at time 0.000 
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conceritrations at time 0.053 
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Chemical concentrations at time 0.203 
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Chemical conce'ntrations at time 0.608 vI: 
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Chemical concentrations at time 1.026 
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