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ABSTRACT. In this paper we introduce the definition of removable 

discontinuity of mappings in a bitopological space and enquire when 
such mappings are continuous. 

INTRODUCTION. 

In this paper, we introduce the definition of removable discontinui 
ty of mappings from one bitopological space (X,P,Q) [2) into ano

ther such space and find out conditions when a mapping having at 

worst a removable discontinuity at a point becomes continuous at 
that point. A continuous mapping has clearly at worst a removable 

discontinuity at each point, but we show by an example that the co~ 

verse is not true. We introduce the definition of removable discon

tinuity in (X,P,Q) in such a way that when the two topologies P and 
Q coincide, our definition becomes the same as that of Halfer [1) 

who establishes various results on discontinuity of mappings in a 

single topological space. For our investigations in (X,P,Q) we re

quire the concepts of local connectedness and connected mappings in 

~ bitopological space, which also we introduce here. Connectedness 

in a bitopological space has been widely investigated by Pervin [4). 

1. KNOWN DEFINITIONS. 

DEFINITION 1.1 [2). A space X where two (arbitrary) topologies P and 

Q are defined is called a bitopological space and is denoted by 
(X,P,Q). 

DEFINITION 1.2 [4). A bitopological space (X,P,Q) is called connec

ted if and only if X cannot be expressed as the union of two non

empty disjoint sets A and B such that 

where cl p and cI Q denote the closures with respect to P and Q topo

logies respectively and 0 denotes the empty set. If X can be so ex-
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pressed, then'A and B are called separa~ed sets. 

NOTE 1.1. If X can be so expressed, ,we say that A and Bare (P,Q)
separated. Throughout the paper we shall follow this convention. 

DEFINITION 1.3 [4]. A subset E of (X,P,Q) is called connected if 

and only if the space (E,P/E,Q/E) i. connected. 

DEFINITION 1.4 [4]. A function f mapping a bitopological space 

(X,P,Q) into a bitopological space (X*,P*,Q*) is said to be conti

nuous if and only if the induced mappings f 1 : (X,P) --+ (X*,P*) and 

f 2 : (X,Q) --+ (X*,Q*) are continuous. , 

DEFINITION 1.S [2]. In a bitopological space (X,P,Q), P is said 
to be r~gular with respect to Q if, for each point x E X and each 
P-closed set C such that x fI. C , there i's a P-open set U and 
a Q-open set V such that x E U, C C V and U n V = 0. (X,P,Q) is, or 
P and 'Q are, pairwise regular if P is regular with respect to Q and 
vice-versa. 

DEFINITION 1.6 [2]. A bitopological space (X,P,Q) is said to be 

pair~ise Hausdorff if, for each two distinct points x and y of X, 
there are a P-open neighbouthood U of x and a Q-open neighbourhood V 
of y such that U n V = 0. 

2. NEW DEFINITIONS. 

DEFINITION 2.1. A bitopological space (X,P,Q) is said to be locally 

connected at a po~nt x E X if and only if for every pair of P-open 
set U and Q-open set Veach containing x, there exist connected Q
open set C and connected P-open set D such that x E C C U and 
xED C V. (X,P,Q) is said to be locally connected if and only if 
it is locally connected at every point of X. 

DEFINITION 2.2~ A function f mapping a bitopological space (X,P,Q) 
into a bitopological space (X*,P*,Q*) is said to be connected if 
and only if the image of every connected subset of (X,P,Q) is a con 

nected subset of (X*iP*,Q*). 

DEFINITION 2.3. A function f mapping a bitopological space (X,P,Q) 

into a bitopological space (X*,P*,Q*) is said to be (P --+ Q*) 
[resp. (Q --+ P*)J - closed if and only if the image of every P 
(resp. Q)-closed subset of (X,P,Q) is a Q* (resp. P*)-closed sub
set of (X*,P*,Q*). 
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DEFINITION 2.4. A function f mapping a bitopological space (X,P,Q) 

into a bitopological space (X*,P*,Q*) has at worst a removabZe dis

continuity at a point p E X if there exists a point y E X* such 

that for each P*-open neighbourhood Vp* and Q*-open neighbourhood 

VQ* of y, there are a P-open neighbourhood Up and Q-open neighbour

hood UQ of p such that 

and 

REMARK 2.1. If a function f is continuous at a point of (X,P,Q), 

then f has at worst a removable discontinuity at that point but the 

converse is not true as shown by the following example. 

EXAMPLE 2.1. Let (X,P,Q) and (X*,P*,Q*) be two bitopological spa
ces where X = {a,B,y} , X* = {a,b,c} , P = {X,0,{a,B}} , 

Q = {X,0,{a,y}} and P* = {X*,0,{a,b},{c}} = Q*. 

Let f: (X,P,Q) -+ (X*,P*,Q*) be given by f: a -+ c , B -+ band 
y -+ a. 

Here f has a removable discontlnuity at a, because there is a point 

in X*, viz., the point a such that for every P*-open neighbourhood 

Vp* and for every Q*-open.neighbourhood VQ* of a, there are P-open 

neighbourhood {a,B} and Q-open neighbourhood {a,y} of a such that 

f({a,B}-{a}) c Vp* and f({a,y}-{a}) C VQ* . 

But f is not continuous at a, because {c} is a P*-open neighbour

hood of f(a) and there is no P-open neighbourhood Upof a such that 

f(U p) C {c} and so the induced mapping of f from (X,P) to (X*,P*) 

is not continuous at a and consequently f: (X,P,Q) -+ (X*,P*,Q*) is 

not continuous at a. 

3. LEMMAS AND THEOREMS. 

LEMMA 3.1. Let A and B be respectiveZy two non-empty disjoint P
open and Q-open subsets of (X,P,Q). If D is a connected non-empty 

subset of (X,P,Q)such that DCA U B, then either DnA = 0 or 
D n B = 0. 

Proof. Since A n B = 0, A C CB. Also as B is Q-open, CB is Q-clo

sed and so clQ(A) C CB. Hence B n clQ(A) = 0. Similarly, 
A n clp(B) = 0. As D is a connected subset of (X,P,Q), the space 

(D,P/D,Q/D) is connected. Let P/D = p* and Q/D = Q*. We write 
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D= (Dn A) U (D n B) , then 

(D n A) n [D n clp (D n B)l c 

c (D n A) n clp(B) = 0 

Thus (D n A) n clp*(D n B) = 0. Similarly (D n B) n cIQ*(D n A) = 0. 

Hence if each of the sets DnA and D n B is non-empty, then the 
space (D,P*,Q*) i.e., the spate (D,P/D,Q/D) has a ~eparation.and 
consequently D cannot be a connected subset of (X,P,Q). Hence ei
ther DnA = 0 or D n B = 0. This proves the lemma. 

THEOREM 3.1. Let f be a aonneated mapping of a loaaZZy aonneated 

bifopoZogiaaZ spaae (X,P,Q) into a pairwise Hausdorff bitopologiaaZ 

spaae (X*, P*, Q*). Then if f has at worst a removabZedisaontinuity 

at P. f is aontinuous at p. 

Proof. Here the following cases come up for considerations: 

(a) 

(b) 

(c) 

(d) 

P 

P 
p 
p 

is 
is 
is 
is 

an isolated pO.int in (X,P) 

an isolated point in (X,P) 

an isolated point in (X,Q) 
neither an isolated point 

as well as in (X,Q) , 
but not in (X,Q) , 
but not in (X,P) and 

ill (X, P) nor in (X,Q). 

CASE (a). LetVp* be any P*-open neighbourhood of f(p) and let U1 

be any P-open neighbourhood of p. As P is an isolated point in 
(X,P), there is a P-open neighbourhood U2 of p such that 
U1 n U2 - {p} 0. 

Now.U 1 n U2 

f(Up - {p}) 

U , say, is a P-open neighbourhood of p. Also, 
p 

o c Vp* and as f(p) E Vp*,f(Up) C Vp*' Hence the 

induced mapping of f from (X,P) to (X*,P*) is continuous at p. 

As P is also an isolated point in (X,Q), we get similarly that the 

induced mapping of f from (X,Q) to (X*,Q*) is also continuous at p. 
Hence f: (X,P,Q) -+ (X*,P*,Q*) is continuous at p. 

CASE (b). Let y be the point in X* determined by the definition of 
removable discontinuity of f. If f is not continuous at p, y # f(p) 
and so as X* is pairwise Hausdorff, there exist P*-open set Vp* 

and Q*-open set VQ* such that f(p) E Vp*' Y E VQ* and Vp* n VQ* 
= 0. 

Because f has a removable discontinuity at p, there exists a Q-open 

neighbourhood UQ of p such that f(UQ - {p}) C VQ*. 

So f(UQ) C Vp * U VQ*. 

Now X is locally connected at p and since p belongs to theQ-open 
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set UQ, there is a'connected P-open set Cp such that p E Cp C UQ. 

Similarly as p belongsto the P-open set Cp , there is a connected 

Q-open set DQ such that p E DQ C Cpo So, P E DQ C UQ. 

As P is not isolated in (X,Q), DQ - {p} # 0 . Again, 

o # f(D Q - {p}) C f(U Q - {p}) C VQ*, which implies that 

f(D Q) n VQ* # 0. 

Also as f(p) E f(D Q) and f(p) E Vp*' f(D Q) n Vp* # 0. 

Now as f is connected, f(DQ) is a connected subset of (X*,P*,Q*). 

Thus as f(DQ) C Vp* u VQ* and as Vp* and VQ* are respectively dis

joint P*-open set and Q*-open set, by Lemma 3.1, either 

f(DQ) n Vp* = 0 or f(DQ) n VQ* = 0, which is a contradiction. Hence 

f is continuous at p. 

The cases (c) and (d) may be dealt with similarly. This proves the 

theorem. 

LEMMA 3.2. The following three properties are equivalent: 

(1) (X,P,Q) is a bitopological ~pace such that P is regular with 

respect to Q. 

(2) For each x E (X,P,Q) and for each P-open neighbourhood Up of x, 

there is a P-open neighbourhood Vp of x such that x E Vp C 

C clQ(Vp) CUp. 

(3) For each x E (X,P,Q) and each P-closed set A not containing x, 
there is a P-open neighbourhood Vp of x with clQ(Vp) n A = 0. 

Proof. (1) ~ (2). Let Up b.e given. Then the P-closed set C U does 
p 

not contain x. As in (X,P,Q), P is regular with respect to Q, the

re is a P-open set Vp and a Q-open set VQ such that x E Vp and 

CUp CVQ and Vp n VQ = 0. Thus Vp C CVQ and so clQ(Vp) C CVQ CUp. 

Hence x E Vp C clQ(Vp) CUp. 

(2) ~ (3). Using x and its P-open neighbourhood CA, we can find a 

P-open neighbourhood Vp of x such that x E Vp C clQ(Vp) C CA. Thus 

ClQ(Vp) n A = 0. 

(3) ~ (1). Let A be P-closed and x ~ A. We choose a P-open neigh

bourhood Vp of x such that clQ(Vp) n A = 0. Thus A C C[ClQ(Vp)] 

and C[CIQ(Vp)] n Vp = 0. This proves the lemma. 

LEMMA 3.3. The foZlowing properties are equivalent: 
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(1) (X,P,Q) is a bitopoZogicaZ space such that Q is reguZar with 

respect to P. 

(2) For each x E (X,P,Q) and for each Q-open neighbourhood UQ of 

x. there is a Q-open neighbour~Qod VQ of x such that x E VQ C 

C Clp(VQ) C UQ. 

(3) For each x E (X,P,Q) and for each Q-cZosed set Anot containing 

x. there is a Q-open neighbourhood VQ of x with clp(VQ) n A = 0. 

Proof. The proof runs parallel to Lemma 3.2. 

THEOREM 3.2. Let f be a function that maps a pairwise reguZar bito

poZogicaZ space (X,P,Q) into a bitopoZogicaZ space (X*,P*,Q*) such 

that f is (P ~ Q*)-cZosed and (Q ~ P*)-cZosed,and aZso for every 

y E X*. f-l(y) is P-cZosed and Q-cZosed subset of X. Then if f has 

at worst a removabZe discontinuity at p E X. f is continuous at p. 

Proof. We should consider the following cases: 

(a) p is an isolated point in (X,P) as well as in (X,Q); (b) p is 
not an isolated point in (X,P) but is an isolated point in (X,Q); 
(c) p is an isolated point in (X,P) but not an isolated point in 
(X,Q) and (d) p is neither an isolated point in (X,P) nor an isola 
ted point in (X,Q). 

We prove the theorem for the 'case (b). The other cases are similar. 

Let y be the point in X* determined by the definition of removable 
discontinuity of f. If f is not continuous at p, f(p) # y and so 

p ~ f-l(y). But f-l(y) is a P-closed set in X and as P is regular 

with respect to Q, there exists, by Lemma 3.2, a P-open neighbour
hood Up of p such that 

As f is (Q ~ P*)-closed, f(CIQ(Up)) is P*-closed and as 

y ~ f(CIQ(Up))' there is a P*-open neighbourhood Vp* of y such that 

Vp* n f(cIQ(U p)) = 0, 

From the definition of removable discontinuity, there exists a P

open neighbourhood Wp of p such that 

f(Wp - {p}) C Vp* 

Since p is not isolated in (X,P), Up n Wp - {p} # 0. 

Hence 0 # f(Wp - {p}) n f(~IQ(Up)) C Vp* n f(cIQ(Up)) 

tradiction. Hence f is continuous at p. 

0, a con-
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