Revista de la Unión Matemática Argentina Volumen 31, 1984.

DISCONTINUITY OF MAPPINGS IN BITOPOLOGICAL SPACES

H. Dasgupta and B.K. Lahiri

ABSTRACT. In this paper we introduce the definition of removable discontinuity of mappings in a bitopological space and enquire when such mappings are continuous.

INTRODUCTION.

In this paper, we introduce the definition of removable discontinuity of mappings from one bitopological space (X,P,Q) [2] into another such space and find out conditions when a mapping having at worst a removable discontinuity at a point becomes continuous at that point. A continuous mapping has clearly at worst a removable discontinuity at each point, but we show by an example that the converse is not true. We introduce the definition of removable discontinuity in (X,P,Q) in such a way that when the two topologies P and Q coincide, our definition becomes the same as that of Halfer [1] who establishes various results on discontinuity of mappings in a single topological space. For our investigations in (X,P,Q) we require the concepts of local connectedness and connected mappings in a bitopological space, which also we introduce here. Connectedness in a bitopological space has been widely investigated by Pervin [4].

1. KNOWN DEFINITIONS.

DEFINITION 1.1 [2]. A space X where two (arbitrary) topologies P and Q are defined is called a bitopological space and is denoted by (X,P,Q).

DEFINITION 1.2 [4]. A bitopological space (X,P,Q) is called *connected* if and only if X cannot be expressed as the union of two nonempty disjoint sets A and B such that

 $[A \cap cl_{P}(B)] \cap [cl_{O}(A) \cap B] = \emptyset$

where cl_p and cl_q denote the closures with respect to P and Q topologies respectively and \emptyset denotes the empty set. If X can be so expressed, then A and B are called separated sets.

NOTE 1.1. If X can be so expressed, we say that A and B are (P,Q)-separated. Throughout the paper we shall follow this convention.

DEFINITION 1.3 [4]. A subset E of (X,P,Q) is called connected if and only if the space (E,P/E,Q/E) is connected.

DEFINITION 1.4 [4]. A function f mapping a bitopological space (X,P,Q) into a bitopological space (X^*,P^*,Q^*) is said to be *continuous* if and only if the induced mappings $f_1: (X,P) \longrightarrow (X^*,P^*)$ and $f_2: (X,Q) \longrightarrow (X^*,Q^*)$ are continuous.

DEFINITION 1.5 [2]. In a bitopological space (X,P,Q), P is said to be *regular* with respect to Q if, for each point $x \in X$ and each P-closed set C such that $x \notin C$, there is a P-open set U and a Q-open set V such that $x \in U$, $C \subset V$ and $U \cap V = \emptyset$. (X,P,Q) is, or P and Q are, pairwise regular if P is regular with respect to Q and vice-versa.

DEFINITION 1.6 [2]. A bitopological space (X, P, Q) is said to be *pairwise Hausdorff* if, for each two distinct points x and y of X, there are a P-open neighbourhood U of x and a Q-open neighbourhood V of y such that $U \cap V = \emptyset$.

2. NEW DEFINITIONS.

DEFINITION 2.1. A bitopological space (X,P,Q) is said to be *locally* connected at a point $x \in X$ if and only if for every pair of P-open set U and Q-open set V each containing x, there exist connected Qopen set C and connected P-open set D such that $x \in C \subset U$ and $x \in D \subset V$. (X,P,Q) is said to be locally connected if and only if it is locally connected at every point of X.

DEFINITION 2.2. A function f mapping a bitopological space (X,P,Q) into a bitopological space (X^*,P^*,Q^*) is said to be *connected* if and only if the image of every connected subset of (X,P,Q) is a connected subset of (X^*,P^*,Q^*) .

DEFINITION 2.3. A function f mapping a bitopological space (X,P,Q)into a bitopological space (X^*,P^*,Q^*) is said to be $(P \longrightarrow Q^*)$ [resp. $(Q \longrightarrow P^*)$] - closed if and only if the image of every P (resp. Q)-closed subset of (X,P,Q) is a Q* (resp. P*)-closed subset of (X^*,P^*,Q^*) . DEFINITION 2.4. A function f mapping a bitopological space (X,P,Q) into a bitopological space (X*,P*,Q*) has at worst a *removable discontinuity* at a point $p \in X$ if there exists a point $y \in X^*$ such that for each P*-open neighbourhood V_{p*} and Q*-open neighbourhood V_{q*} of y, there are a P-open neighbourhood U_p and Q-open neighbourhood U_0 of p such that

 $f(U_p - \{p\}) \subset V_{p*}$ and $f(U_q - \{p\}) \subset V_{q*}$.

REMARK 2.1. If a function f is continuous at a point of (X,P,Q), then f has at worst a removable discontinuity at that point but the converse is not true as shown by the following example.

EXAMPLE 2.1. Let (X, P, Q) and (X^*, P^*, Q^*) be two bitopological spaces where $X = \{\alpha, \beta, \gamma\}$, $X^* = \{a, b, c\}$, $P = \{X, \emptyset, \{\alpha, \beta\}\}$, $Q = \{X, \emptyset, \{\alpha, \gamma\}\}$ and $P^* = \{X^*, \emptyset, \{a, b\}, \{c\}\} = Q^*$.

Let f: (X,P,Q) \to (X*,P*,Q*) be given by f: α \to c , β \to b and γ \to a.

Here f has a removable discontinuity at α , because there is a point in X*, viz., the point a such that for every P*-open neighbourhood V_{p*} and for every Q*-open neighbourhood V_{Q*} of a, there are P-open neighbourhood { α,β } and Q-open neighbourhood { α,γ } of α such that

 $f(\{\alpha,\beta\}-\{\alpha\}) \subset V_{p*}$ and $f(\{\alpha,\gamma\}-\{\alpha\}) \subset V_{0*}$.

But f is not continuous at α , because {c} is a P*-open neighbourhood of f(α) and there is no P-open neighbourhood U_P of α such that f(U_P) \subset {c} and so the induced mapping of f from (X,P) to (X*,P*) is not continuous at α and consequently f: (X,P,Q) \rightarrow (X*,P*,Q*) is not continuous at α .

3. LEMMAS AND THEOREMS.

LEMMA 3.1. Let A and B be respectively two non-empty disjoint Popen and Q-open subsets of (X, P, Q). If D is a connected non-empty subset of (X, P, Q) such that $D \subset A \cup B$, then either $D \cap A = \emptyset$ or $D \cap B = \emptyset$.

Proof. Since $A \cap B = \emptyset$, $A \subset CB$. Also as B is Q-open, CB is Q-closed and so $cl_Q(A) \subset CB$. Hence $B \cap cl_Q(A) = \emptyset$. Similarly, $A \cap cl_P(B) = \emptyset$. As D is a connected subset of (X,P,Q), the space (D,P/D,Q/D) is connected. Let $P/D = P^*$ and $Q/D = Q^*$. We write

 $D = (D \cap A) \cup (D \cap B) , \text{ then}$ $(D \cap A) \cap cl_{p*}(D \cap B) = (D \cap A) \cap [D \cap cl_{p} (D \cap B)] \subset$ $\subset (D \cap A) \cap cl_{p}(B) = \emptyset .$

Thus $(D \cap A) \cap cl_{P*}(D \cap B) = \emptyset$. Similarly $(D \cap B) \cap cl_{Q*}(D \cap A) = \emptyset$. Hence if each of the sets $D \cap A$ and $D \cap B$ is non-empty, then the space (D,P^*,Q^*) i.e., the space (D,P/D,Q/D) has a separation and consequently D cannot be a connected subset of (X,P,Q). Hence either $D \cap A = \emptyset$ or $D \cap B = \emptyset$. This proves the lemma.

THEOREM 3.1. Let f be a connected mapping of a locally connected bitopological space (X,P,Q) into a pairwise Hausdorff bitopological space (X^*,P^*,Q^*) . Then if f has at worst a removable discontinuity at p, f is continuous at p.

Proof. Here the following cases come up for considerations:

(a) p is an isolated point in (X,P) as well as in (X,Q),
(b) p is an isolated point in (X,P) but not in (X,Q),
(c) p is an isolated point in (X,Q) but not in (X,P) and
(d) p is neither an isolated point in (X,P) nor in (X,Q).

CASE (a). Let V_{p*} be any P*-open neighbourhood of f(p) and let U_1 be any P-open neighbourhood of p. As p is an isolated point in (X,P), there is a P-open neighbourhood U_2 of p such that $U_1 \cap U_2 - \{p\} = \emptyset$.

Now $U_1 \cap U_2 = U_p$, say, is a P-open neighbourhood of p. Also, $f(U_p - \{p\}) = \emptyset \subset V_{p*}$ and as $f(p) \in V_{p*}$, $f(U_p) \subset V_{p*}$. Hence the induced mapping of f from (X,P) to (X*,P*) is continuous at p.

As p is also an isolated point in (X,Q), we get similarly that the induced mapping of f from (X,Q) to (X^*,Q^*) is also continuous at p. Hence f: $(X,P,Q) \rightarrow (X^*,P^*,Q^*)$ is continuous at p.

CASE (b). Let y be the point in X* determined by the definition of removable discontinuity of f. If f is not continuous at p, $y \neq f(p)$ and so as X* is pairwise Hausdorff, there exist P*-open set V_{p*} and Q*-open set V_{Q*} such that $f(p) \in V_{p*}$, $y \in V_{Q*}$ and $V_{p*} \cap V_{Q*} = \emptyset$.

Because f has a removable discontinuity at p, there exists a Q-open neighbourhood U_0 of p such that $f(U_0 - \{p\}) \subset V_{0*}$.

So $f(U_Q) \subset V_{P*} \cup V_{O*}$.

Now X is locally connected at p and since p belongs to the Q-open

set U_Q , there is a connected P-open set C_P such that $p \in C_P \subset U_Q$. Similarly as p belongs to the P-open set C_P , there is a connected Q-open set D_Q such that $p \in D_Q \subset C_P$. So, $p \in D_Q \subset U_Q$. As p is not isolated in (X,Q), $D_Q - \{p\} \neq \emptyset$. Again, $\emptyset \neq f(D_Q - \{p\}) \subset f(U_Q - \{p\}) \subset V_{Q*}$, which implies that $f(D_Q) \cap V_{Q*} \neq \emptyset$. Also as $f(p) \in f(D_Q)$ and $f(p) \in V_{P*}$, $f(D_Q) \cap V_{P*} \neq \emptyset$. Now as f is connected, $f(D_Q)$ is a connected subset of (X^*, P^*, Q^*) . Thus as $f(D_Q) \subset V_{P*} \cup V_{Q*}$ and as V_{P*} and V_{Q*} are respectively disjoint P*-open set and Q*-open set, by Lemma 3.1, either $f(D_Q) \cap V_{P*} = \emptyset$ or $f(D_Q) \cap V_{Q*} = \emptyset$, which is a contradiction. Hence f is continuous at p. The cases (c) and (d) may be dealt with similarly. This proves the theorem.

LEMMA 3.2. The following three properties are equivalent: (1) (X,P,Q) is a bitopological space such that P is regular with respect to Q.

(2) For each $x \in (X, P, Q)$ and for each P-open neighbourhood U_P of x, there is a P-open neighbourhood V_P of x such that $x \in V_P \subset C \operatorname{cl}_O(V_P) \subset U_P$.

(3) For each $x \in (X, P, Q)$ and each P-closed set A not containing x, there is a P-open neighbourhood V_P of x with $cl_0(V_P) \cap A = \emptyset$.

Proof. (1) \rightarrow (2). Let U_p be given. Then the P-closed set CU_p does not contain x. As in (X,P,Q), P is regular with respect to Q, there is a P-open set V_p and a Q-open set V_q such that $x \in V_p$ and $CU_p \subset V_q$ and $V_p \cap V_q = \emptyset$. Thus $V_p \subset CV_q$ and so $cl_q(V_p) \subset CV_q \subset U_p$. Hence $x \in V_p \subset cl_0(V_p) \subset U_p$.

(2) \rightarrow (3). Using x and its P-open neighbourhood CA, we can find a P-open neighbourhood V_p of x such that $x \in V_p \subset cl_Q(V_p) \subset CA$. Thus $cl_Q(V_p) \cap A = \emptyset$.

(3) → (1). Let A be P-closed and $x \notin A$. We choose a P-open neighbourhood V_p of x such that $cl_Q(V_p) \cap A = \emptyset$. Thus $A \subset C[cl_Q(V_p)]$ and $C[cl_Q(V_p)] \cap V_p = \emptyset$. This proves the lemma.

LEMMA 3.3. The following properties are equivalent:

(1) (X,P,Q) is a bitopological space such that Q is regular with respect to P.

(2) For each $x \in (X, P, Q)$ and for each Q-open neighbourhood U_Q of x, there is a Q-open neighbourhood V_Q of x such that $x \in V_Q \subset C \operatorname{cl}_P(V_Q) \subset U_Q$.

(3) For each $x \in (X, P, Q)$ and for each Q-closed set A not containing x, there is a Q-open neighbourhood V_0 of x with $cl_P(V_0) \cap A = \emptyset$.

Proof. The proof runs parallel to Lemma 3.2.

THEOREM 3.2. Let f be a function that maps a pairwise regular bitopological space (X,P,Q) into a bitopological space (X^*,P^*,Q^*) such that f is $(P \rightarrow Q^*)$ -closed and $(Q \rightarrow P^*)$ -closed and also for every $y \in X^*$, $f^{-1}(y)$ is P-closed and Q-closed subset of X. Then if f has at worst a removable discontinuity at $p \in X$, f is continuous at p.

Proof. We should consider the following cases:

(a) p is an isolated point in (X,P) as well as in (X,Q); (b) p is not an isolated point in (X,P) but is an isolated point in (X,Q); (c) p is an isolated point in (X,P) but not an isolated point in (X,Q) and (d) p is neither an isolated point in (X,P) nor an isola ted point in (X,Q).

We prove the theorem for the case (b). The other cases are similar. Let y be the point in X* determined by the definition of removable discontinuity of f. If f is not continuous at p, $f(p) \neq y$ and so $p \notin f^{-1}(y)$. But $f^{-1}(y)$ is a P-closed set in X and as P is regular with respect to Q, there exists, by Lemma 3.2, a P-open neighbourhood U_p of p such that

$$f^{-1}(y) \cap c1_0(U_p) = \emptyset.$$

As f is $(Q \rightarrow P^*)$ -closed, $f(cl_Q(U_P))$ is P*-closed and as y $\notin f(cl_Q(U_P))$, there is a P*-open neighbourhood V_{P^*} of y such that $V_{P^*} \cap f(cl_Q(U_P)) = \emptyset$.

From the definition of removable discontinuity, there exists a P-open neighbourhood $W_{\rm p}$ of p such that

$$f(W_{p} - \{p\}) \subset V_{p*}$$

Since p is not isolated in (X,P), $U_p \cap W_p - \{p\} \neq \emptyset$. Hence $\emptyset \neq f(W_p - \{p\}) \cap f(cl_Q(U_p)) \subset V_{p*} \cap f(cl_Q(U_p)) = \emptyset$, a contradiction. Hence f is continuous at p.

REFERENCES

- [1] E.HALFER, Conditions implying continuity of functions, Proc. Amer.Math.Soc., Vol.11, p.688-691, 1960.
- J.C.KELLY, Bitopological spaces, Proc. London Math.Soc., Vol. 13, p.71-89, 1963.
- [3] W.J.PERVIN and N.LEVINE, Connected mappings of Hausdorff spaces, Proc.Amer.Math.Soc., Vol.9, p.488-496, 1958.
- [4] W.J.PERVIN, Connectedness in bitopological spaces, Indagations Mathematicae, Vol.29, p.369-372, 1967.

H. Dasgupta, Department of Mathematics, Rishi Bankim College, Naihati, West Bengal, India.

B. K. Lahiri, Department of Mathematics, University of Kalyani, West Bengal, India.

Recibido en setiembre de 1982.