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MAPPING THEOREMS IN PARANORMED SPACES

Mihai Turinici

0. INTRODUCTION.

Let X be a metrizable topological space, Y a linear space, Xo a sub
set of X and T an application from X, to Y. By a mapping theorem in
volving these elements we mean the problem of determining sufficient
metric-linear conditions in order that the equation

(E) Tx = 0

should have a solution in X, The prototype of all mapping results
of this kind must be considered the 1971 Browder's theorem [6] pro-
ved by a specific asymptotic direction technique. As refinements of
Browder's original result we quote the 1976 Altman's contribution
[1] obtained by a transfinite induction argument combined with a
contractor direction technique, as well as the 1977 Downing-Kirk
result [10] proved by a Caristi fixed point procedure (see also
Kirk and Caristi [14]). Finally, as further developments in this
direction, we must quote those of Altman [2] and, respectively,
Cramer and Ray [9] based, essentially, on Ekeland's variational
principle [11] and, respectively, Brézis-Browder ordering principle
[3]. A basic assumption of all these contributions is that the ran-
ge of the application is a Banach spacé with respect to a suitable
norm; it's therefore natural to ask whether this condition cannot
be removed. The main aim of the present note is to give a positive
answer to this question - more exactly,to state and prove a mapping
theorem. for applications taking values in a paranormed space - the
basic instrument of our investigations‘being a maximality principle
on (partially) ordered metric spaces appearing (under its quasi-or-
dered semi-metrical version) as a generalization of the Brézis-

- Browder ordering principle we quoted before. As useful particular
cases, a couble of mapping theorems for applications whose .range is
a normed (respectively, a Fréchet) space is given, extending in
this way the similar Cramer-Ray result (see the above reference)
and, respectively, completing, under this perspective, the result
of Turinici {21] obtained by a specific variable drop technique.
Some further extensions of this last result to non-metrizable uni-
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form spaces will be given elsewhere.

1. PRELIMINARIES.

Let Y be a linear space (over the real or complex numbers). A func-
tion x +— [|Ix|l from Y to [0,») will be called a paranorm on Y when
(a) Ixll = 0 if and only if x = 0, (b) [x+yll < IxI+Iyl, x,y € Y,

(c) N-x0 = Ixll, x € Y; correspondingly, the couple (Y,|-||) will be
termed a paranormed spacé. Evidently, | ‘|| induces a metric structu-
re on Y by the standard construction d(x,y) = |x-y|, X,y € Y. An
important class of paranorms - largely used in the sequel - is that
introduced by the following convention. Letting r > 0 and Z C Y, we
shall say the paranorm ||-]| is r-superadditive on Z when

(M rlex + 1(1-e)x) <qyx) , 0<e<1, x€Ll.

Note that (1) necessarily implies r < 1 because, when r > 1, we ha-
ve (for x#0 in Z and €#0 in [0,1]) by the triangle inequality (b)
rllexi+Il (1-e)xl = (r-1)lexi+lex|+| (T-e)x| > lex|+| (1-e)x| > x| ,

a contradiction with respect to (1). Afirst example of such para-
norms is contained in the evident

LEMMA 1. Every norm is 1 - superadditive on every subset of Y.

As another specific example of r-superadditive paranorms, let
S ='{|'|i; i € N} be a (denumerable) sufficient family of seminorms
on Y (]x]i = 0, all i € N imply x=0), L = (A

of strict positive numbers and A = (a;5 i € N) a summable family of

;3 1 € N) a sequence

strict positive numbers (al+a2+...<:w). Define a function

it =10N-0(S,L,A) from Y to [0,=) by
(2) hxll = iEN“i""i’“i +1xl;)) , xEVY.

LEMMA 2. The function x +— |Ixll defined by (2) <s a paranorm on Y.
Moreover, (Y,l-ll) and (Y,S) are equivalent as (metrizable) topologi
cal spaces (i.e., a sequence (y,; n € N) in Y converges (modulo

H<ll) toy in Y Zf and only <if it converges (modulo S) to y).

Proof. The first part of the statement is clear if we observe that,
for any i € N,

Ixey ] 7O+ Iyl ) < Ix| 7O+ Ix] D +1y ]/ Og+ 1yl ) 5 x,y €Y.
To prove the second part, let ¢ > 0 be arbitrary fixed. As A = (o3

i € N) is a summable family, there exists m = m(e) € N such that

O pr YOt e < e/2
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in which case, denoting

§ =¢€/2 } ag /A
is<m
we have at once

|x|:.L <6, i <m implies |Ix|| <€ ;

conversely, given any i € N, and putting

n; = aie/(li + g)

one clearly obtains

ixl <n; implies |x|i <€

proving our assertion. Q.E.D.

LEMMA 3. Let r in (0,1) be arbitrary fized. Then, the paranorm || ||
given by (2) Zs v - superadditive on

Y(L,r) = {y eY; |yl, <A, "H2- 1), i €N}

Proof. Evidently, in order that (1) be valid it suffices that, for
any i €N,

(m: relxli(ki+elx|i) + (1-e)|x|i/()\i + (1—e)|x|i) <

-1z g

< x| /700 +Ix]) , 0<e <1, |x|; <)(r

or equivalently (denoting |[x|. = & and A; = A ) that
i 1

(3) re/(A+eg) + (1-e)/(A+(1-€)E) < 1/(A+E) ,
0<e<l,0<i<Aa(xt2-1).

Let f(e) denote the left member of this inequality. A simple compu-
tation yields

£f'(e) = (-&(s+1)e + s& - A(1-s))g(e) , 0 <e<1,

where g(e) is strictly positive and s = rl/2

so that, a sufficient
condition for (3) (equivalent - under the above notation - with

f(e) <f(0) , 0 <e < 1) to be valid is that
s - A(1-s) < 0 (or, equivalently, & < A(s—1 - 1)

which is just condition appearing in the final part of (3), proving
" our assertion. Q.E.D.

Let (X,d,<) be a (partially) ordered metric space. A sequence

(x,; n € N) in X will be said to be (a)' monotone, when x; < X

for i < j, (b)' asymptotic, when 1lim inf d(xn, 0, (c)' boun-

n->oo Xn+l) =
ded above, in case X; <Y, all n € N, for some y in X. Also, the
element z in X will be termed maximal, provided that z < y implies
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z=y. Concerning these notions, the following maximality principle
established by the author in [24] will play a central role in the
sequel.

LEMMA 4. Let the ordered metric space (X,d,<) be such that
(1) any monotone sequence is asymptotic
(ii) any monotone Cauchy sequence is bounded above.

Then, to any x in X there corresponds a mazimal element z in X with
X < z.

As already pointed out by the author in [20], the above lemma can
be formulated in the larger context of quasi-ordered semi-metric
spaces, in which case, it may be viewed as a straightforward exten-
sion of the "abstract" Brézis-Browder ordering principle [3] as
well as the "uniform" Brdndsted's maximality principle [4]. Moreo-
ver, under a pattern discovered by Brgndsted [5] (see also Ekeland
[11]) it's possible to formulate this lemma as a fixed point sta-
tement, in which situation it appears as an abstract counterpart of
the so-called Caristi's fixéd point theorem [8,13,16,19]. Finally,
an extension of this maximality principle to metrizable uniform spa
ces may be found in Turinici [21].

2. THE MAIN RESULT.

In what follows, a precise statement of the considerations exposed
in the introductory part of the note will be performed. Let (X,d)
be a metric space and (Y,|l-||) a paranormed space. Given a subset
X, of X, let X, (xg,1) denote (for x, € X, and r > 0) the X, - clo-
sed sphere with center X, and radius r (the subset of all x in X,
with d(x,x ) <71); also, given the application T: X, — Y we
shall say it is closed [10] when (xn; n € N) in X,» X, — x and
Tx, — y imply x € X, and Tx = y. Suppose henceforward (X,d) and
(Y,ll-l) are complete in the usual sense and T: X, — Y is closed
in the above sense. Then, as the main result of the present note,
the following '"local" mapping theorem can be stated and proved.

THEOREM 1. Let the element x, in X, with Tx, # 0 be such that, a
couple of functions b,f: (0,o) —> (0,) satisfying

(4) (t-s)b(t) < f(t)-f(s) , 0<s <t
and a couple of numbers q,r satisfying.0<q <71 <1 as well as
(iii) -l Zs T - superadditive on T(X,')

where
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(5) Xo' = Xy (xo, £(ITX )/ (T-9q))

may be found with the property: for any X in X,' with Tx # 0 there
exist X' in X, and € <n (0,1] with

(6) ITx'-(1-e)Txll < qlleTxl s d(x,x") < |leTxib(ITxI).

Then, necessarily, (E) has at least a solution in X;'.

Proof. Assume by contradiction Tx # 0 for all x in X,'; so, given
any x in X ' there exist x' in X, and ¢ in (0,1] such that (6)
holds. By the first part of this relation

ITx-Tx'll < (1+q)lleTx|
as well as (if we take (iii) into account)
NTx'll < qlleTx+Il (1-e)TxIl < (q-T) | eTx|{+TleTx|+| (1-e) Tx|| <
< (q-T) I eTx|+ITx|

or, equivalently,

(7) leTx|l < (ITx|-ITx"[)/(r-q)

so that, by a combination of them

(8) ITx-Tx' < (1+q) (NTxN-NTx'll) (r-q)

(note at this moment that, again by the first part of (6), Tx#Tx'
(hence, x#x') because, otherwise, Tx=Tx' would imply 1<gq, a con-
tradiction). On the other hand, the second part of this relation
yields, in combination with a consequence of (1) (tb(t) < f(t),

t > 0) and a consequence of (7) (leTx| < ||Tx||/(r-q))

d(x,x') < ITxibUITxI)/(r-q) < £UITx)/(r-q).

Now, let us denote
(' X" = Ay eX '; dlx ,y) < (EUTx 1D-£UTyN))/(r-a)}

and observe that x € X " plus the above inequality implies x' € X'
(whence Tx' # 0) so that, again by the second part of (6), in com-
bination with (4) + (7)

(9) d(x,x") < (£(NTxN)-£UNTx"11))/(r-q)
a relation that evidently implies x' € X,)". Let e denote the '"pro-
duct" metric on X,
e(x,y) = max (d(x,y),ITx-Tyll) , x,y € X|
and let < indicate the ordering on XO' defined as
x <y if and only <if d(x,y) < (£(TxI)-£(ITyN))/(r-q) and
ITx-Tyll < (1+q) (T -I Tyl )/ (r-q) .



We claim conditions (i)+(ii) are fulfilled in (X,",e,<) and this
will lead us to the desired contradiction. (Indeed, it will follow
then by Lemma 4 that, for the element Xo in X,'" a maximal element z
in X " may be found with X, < z; on the other hand, by the above
developments, a z' € X," may be chosen with z < z' and z # z', con-
tradicting the maximality of z in (Xo",sg). To this end, let (x,;
n € N) be a monotone sequence in Xo", that is

(10) dlx ,x ) < ENMTx D)-£UTx 1)) /(r-q)  and

ITx -Tx I < (1+Q)(HTXnH'HTXmH)/(T'Q) » I < m.

As (f(NTXnH); n € N) and (HTXnH; n € N) are descending (hence Cau-
chy) sequences on (0,») it immediately follows (xn; n € N) and
(Txn; n € N) are Cauchy sequences in X and Y respectively. By the
completeness - closedness hypothesis, x, — Xx and Tx, — Tx for
some X in Xo and this establishes (i) (module e). Moreover, as Xo'
is relatively closed in Xo, it also follows x € X' (whence Tx#0)
in which situation, observing that, as a consequence of (10) (the
first part)

dlx ,x ) < (£QITx_1)-£ITxI))/(r-q) , n <m
one immediately derives (letting m tend to infinity)
d(x ,x) < (£UTx 1) -£UTxI))/(r-q) , n € N,

and consequently, x € X,"; in the same time, by an argument similar
to the above one, (10) (the second part) gives

ITx, -Txl < (1+a@) (NTx N -N1Tx) /(r-q) , n €N

proving x, < x, n € N, and establishing (ii). Therefore, the proof
is complete. Q.E.D.

3. SOME PARTICULAR CASES.

The main result we established in the preceding paragraph appears,
at this stage of our exposition, as an "abstract" mapping theorem
only, so that, for a number of practical reasons, some "concrete"
realizations of it (based on the considerations of §1) were welco-
med. As a first step in this direction, let (X,d) be a complete me-

tric space, (Y,ll-ll) a Banach space, X, a subset of X and T: X, — Y
" a closed application then, the following '"normed" variant of the
main result may be formulated.

THEOREM 2. Let the element X, tn X, with Tx, # 0 be such that, a
number q € [0,1)and a couple of functions b,f: (0,®) — (0,)
satisfying



(4)! (1-s/t)b(t) < f(t)-f(s) , t,s >0 , qt <s <t
may be found with the property: for any X in Xo', where
(5)" . X,' = X, (x ,E£UTx_I1)/(1-q))

with Tx # 0 there exist x' in X, and € in (0,1] with
(6)' ITx'-(1-e)Txll < qellTxll , d(x,x') <eb(ITx|l).

Then, (E) has at least a solution in X '.

Proof. It suffices to observe that, putting t = |ITxll, s = (1-(1-q)e)t,
one easily obtains qt < s < t and (by (7)) ITx'll < s, in which ca-
se, taking into account (4)', we established (9). The remaining
part of the argument follows from the main result with r=1 and

this ends the proof. Q.E.D.

Concerning condition (4)' (essentially involved in the above the-
orem) let us observe it is fulfilled in case t +— b(t) is increa-

sing and c(t) = J; (b(s)/s)ds <=, t >0 for, letting £(t) =
c(t/q),t > 0, we have, for any couple t,s >0 , qt < s <t
(1-s/t)b(t) < (b(u)/u)(t/q-s/q) , s/q <u < t/q

in which case, the above statement reduces to Theorem 2.1 of Cramer
and Ray [9] proved by a Brézis-Browder ordering procedure. Moreo-
ver, it was demohstrated by the above quoted authors their contri-
bution represents a considerable refinement of some "abstract" (me-
trical) mapping theorems established by Browder [6,7], Kirk and
Caristi [14], Downing and Kirk [10], Altman [1,2] (see also Turinici
[22]) as well as of some "concrete" (differential) mapping theorems
established by Pohozhayev [17], Ka¥urovskii [12], Krasnoselskii
[15], Rosenholtz and Ray [18], so that our theorem also extends
these results.

Passing to the second particularization, suppose further X is a
complete metrizable uniform space under the (denumerable) suffi-
cient family of semi-metrics D = (d;; i € N), Y is a complete Fré-
chet space under the sufficient family of seminorms S = (l-[i;
ieN)and T: X, — Y (X, a subset of X) is a closed application,
then, the following 'global' version of the main result can be
derived.

THEOREM 3. Suppose there exist a sequence L = (A;; i € N) Zn (0,x),
a couple of numbers q,r with 0 < q <r < 1 and

-1/2 .
(iii)! ITx|; <A (r /2 . 1), 1 €N, x € X,
a summable family A = (a;; i € N) in (0,») as well as a number

b > 0 with the property: for any X in X, with Tx # 0 there exist X'
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in X,, € in (0,1] and a couple of injections ¢,V from N to itself,
with
(iv) q“w(i)IETxlw(i) < ai(lw(i)+|eTx|w(i)) implies
|Tx'-(1-e)Tx|; < Aiqaw(i)|€Tx|¢(i)/(ai(xw(i) +
* leTxly (5)) 7% 4y [Txly (5))

V) baw(i)|eTx|w(i) < ai(kw(i)+|eTx|w(i)) implies
/(ai(A

di(x,x') < Aiba +

vy leTxly )
* leTxly 4y by 5y [eTxly (450

v(i)

Then, (E) has at least a solution in Xo.

Proof. It suffices to observe that (iv)‘plus (v) give

ag [Tx'-(1-e)Tx|;/(A+|Tx' - (1-e)Tx | ;) <

R i €

< A%y [eTx g 1)/ O iyt [eTxy(5y) » 1€ N

and respectively, '
uidi(x,x')/(Ai+di(x,x')) <

< Doy [Ty o)/ Oy oy letxly qy) 2 1 €N
so that, if we introduce a metric (paranormed)'structure on X (Y)
by the convention

dix,y) = T a;d;(x,y)/(3;+d;(x,y)) , x,y €X

ieN
(and, respectively,
x| = Z ailxli/(}‘i"' lxli) » X €Y) ,
ieN
conditions of the main result are fulfilled with X,' = X5, b(t)=b,

t >0, and £(t) = bt, t > 0, so that by the conclusion of that sta
tement, the proof is complete. Q.E.D.

Cohcerning the elements involved in this result , a special mention
must be made about the functions ¢ and ¥ appearing in (iv) and (v)
respectively. Namely, suppose, in particular that ¢ = y = the iden-
tity, then, the above conditions become

(iv) , |Tx'-(1-e)Txli < XiqleTx|i/(Ai+(1—q)|eTx|i) , i €N
() bleTx|; < A;j*leTx|;  implies
d, (x,x') < AibleTxli/(Ai+(1-b)]sTxli)

and the corresponding version of Theorem 3 may be compared with a
similar one due to the author [21] and proved by a "variable drop"
technique. Regarding this last aspect, it's not without importance
to ask whether a direct treatment of the problem - based on the ini
tial metrizable (Fréchet) structure of the ambient spaces - may not
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be given. A partial answer to this question may be found in Turinici

[23];

some further extensions to non-metrizable uniform spaces will

be given elsewhere.
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