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Let X be a metrizable topological space, Y a linear space, Xo a su~ 

set of X and T an application from Xo to Y. By a mapping theorem i~ 

volving these elements we mean the problem of determining sufficient 
metric-linear conditions in order that the equation 

(E) Tx = 0 

should have a solution in Xo' The prototype of all mapping results 
of this kind must be considered the 1971 Browder's theorem [6) pro

ved by a specific asymptotia direation technique. As refinements of 
Browder's original result we quote the 1976 Altman's contribution 

[1) obtained by a transfinite induation argument combined with a 

aontraator direation technique, as well as the 1977 Downing-Kirk 

result [10) proved by a Caristi fixed point procedure (see also 
Kirk and Caristi [14)). Finally, as further developments in this 

direction, we must quote those of Altman [2) and, respectively, 

Cramer and Ray [9) based, essentially, on Ekeland's variational 

principle [11) and, respectively, Brezis-Browder ordering principle 
(3). A basic assumption of all these contributions is that the ran

ge of the application is a Banach space with respect to a suitable 
norm; it's therefore natural to ask whether this condition cannot 
be remove<l-. T-he main aim of the present note is to give a positive 

answer to~his question-more.exactlY,to state and prove a mapping 
theorem~ .foT- applications taking values in a paranormed spaae - the 

basic instrument of our investigations being a maximality prinaiple 

on (partially) ordered metric spaces appearing (under its quasi-or
dered semi-metrical version) as a generalization of the Brezis

Browder ordering principle we quoted before. As useful particular 

cases, a couple of mapping theorems for applications whose range is 
a normed (respectively, a Frechet) space is given, extending in 

this way the similar Cramer-Ray result (see the above reference) 
and, respectively, completing, under this perspective, the result 

of Turinici {21) obtained by a specific variable drop technique. 

Some further extensions of this last result to non-metrifwble uni-
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form spaces will be giv.en elsewhere. 

1. PRELIMINARIES. 

Let Y be a lineaz> spaae (over the real or complex numbers). A func
tion x I-- IIxll from Y to [0, ... ) will be called a paz>ano!'m on Y when 
(a) II xII = 0 if and only if x = 0, (b) IIx+YII 0;;; IIxll+llyll, x,y E Y, 
(c) II-xII = IIxll, x E Y; correspondingly, the couple (Y,II'II) will be 
termed a paranormed space. Evidently, 11'11 induces a metz>ia structu
re on Y by the standard construction d(x,y) = IIx-yll, X,y E Y .. An 
important class of paranorms - largely used in the sequel - is that 
introduced by the following convention~ Letting r > 0 and Z C Y,we 
shall say the paranorm 11'11 is r-supez>additive Qn Z when 

(1) o o;;;e 0;;; 1 , x E Z. 

Note that (1) necessarily implies r 0;;; 1 because, when r > 1, we ha
ve (for x~O in Z and e~O in 10,1]) by the triangle inequality (b) 

rllexll+II(1-e)xll 

a contradiction with respect to (1). Afirst example of such para
norms is contained in the evident 

LEMMA 1. Evez>y noz>m is 1 - supe!'additive on evez>y subset of Y. 

As another specific example of r-superadditive paranorms, let 
S = {I' Ii; i E N} be a (denumerable) suffiaient family of seminoz>ms 

on Y (Ixli = 0, all i EN imply x=O), L = (Ai; i EN) a sequence 

of strict positive numbers and A = (ai; i E N) a summabZe family of 
strict positive numbers (al +a2+'" <00). Define a function 
11·11 11·11 (S,L,A) from Y to [0,00) by 

(2) IIxll = r a·lxl·/(L + Ixl·) ieN 1 1 1 1 
x E Y. 

LEMMA 2. The funation x I-- IIxll defined by (2) is apaz>ano!'m on Y. 
Mo!'eovez>, (Y,II·II) and (Y,S) az>e equivaZent as (metz>izabZe)topOZogi 

aaZ spaaes (i.e., a sequenae (Yn; n E N) in Y aonvez>ges (moduZo 

II-II) to y in Y if and onZy if it aonve!'ges (moduZo S) to y). 

PZ>oof. The first part of the statement is clear if we obser.ve that, 
for any i E N, 

To prove the second part, let e > 0 be arbitrary fixed. As A = (ai; 
i E N) is a summable family, there exists m = m(E) E N such that 

am+l + a m+2 + ••• < e/2 
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in which case,-denoting 

6 = &/2 r 
i~m 

a../A. 
1 .1 

we have ·at once 

Ixli < 6, i < m implies UxU < & 

conversely, given any i E N, and putting 

ni = a.i&/(A i + &) 

one clearly obtains 

UxU < ni implies Ixli < & 

proving our assertion. Q.E.D. 

LEMMA 3. Let r in (0,1) be arbitrary fillJed. Then, the paranorm U'U 
given by (2) is r - superadditive on 

Y(L,r) = {y E Y; Iyl. < A. (r- 1/2 - 1), i E N}. 
1 1 

Proof. Evidently, in order that (1) be valid it suffices that, for 
any i E N, 

(1) , n:lxl.(A.+&lxl.) + (1-E)lxl./(A. + (l-E)lxl.) < 11111 1 

< Ixl·/(A. + Ixl·) ,0 < & < 1, Ix11. < A1·(r- 1/2 - 1) 1 1 1 

or equivalently (denoting Ixli = ~ and Ai = A ) that 

(3) r&/(A+&~) + (1-&)/(A+(1-E)~) < 1/(A+~) , 

0<& < 1 , 0 < ~ < A(r- 1/2 - 1). 

Let feE) denote the left member of this inequality. A simple compu
tation yields 

f' (E) = (-f;(s+l)& + sf; - A(l-s))g(&) 

where geE) is strictly positive and s = rl/2 so that, a sufficient 
condition for (3) (equivalent - under the above notation - with 
feE) < f(O) , 0 < & < 1) to be valid is that 

s~ - A(l-s) < 0 (or, equivalently, f; < A(s-l - 1)) 

which is just condition appearing in the final part of (3), proving 
our assertion. Q.E.D. 

Let (X,d,<) be a (partially) ordered metric space. A sequence 
(xn ; n E N) in X will be said to be (a)' monotone, when Xi < Xj 
for i < j, (b)' asymptotia, when lim inf d(x ,X +1) = 0, (c)' boun-

n+= n n 

ded above, in case xn <y, all n EN, for some y in X. Also, the 
element z in X will be termed mallJimal, provided that z < y implies 
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z=y. Concerning these notions, the following maximality principle 

established by the author in [24] will playa central role in the 

sequel. 

LEMMA 4. Let the ordered metric space (X,d,~) be such that 

(i) any monotone sequence is asymptotic 

(ii) any monotone Cauchy sequence is bounded above. 

Then, to any x in X there corresponds a maximal element z in X with 

x ~ z. 

As already pointed out by the author in [20], the above lemma can 
be formulated in the larger context of quasi-ordered semi-metric 

spaces, in which case, it may be vie~ed as a straightforward exten
sion of the "abstract" Brezis-Browder ordering- principle [3] as 
well as the "uniform" Br\1lndsted's maximality principle [4]. Moreo

ver, under a pattern discovered by Br¢ndsted [S] (see also Ekeland 

[11]) it's possible to formulate this lemma as a fixed point sta-
tement, in which situation it appears as an abstract counterpart of 

the so-called Caristi's fixed point theorem [8,13,16,19]. Finally, 
an extension of this maximalityprinciple to metrizable uniform sp~ 

ces may be found in Turinici [21]. 

2. THE MAIN RESULT. 

In what follows, a precise statement of the considerations exposed 

in the introductory part of the note will be performed. Let (X,d) 

be a metric space and (Y,"'") a paranormed space. Given a subset 

Xo of X, let Xo(xo,r) denote (for Xo E Xo and r > 0) the Xo - clo

sed sphere with center Xo and radius r (the subset of all x in Xo 

with d(x,xo) ~ r); also, given the application T: Xo --+ Y we 

shall say it is closed [10] when (xn ; n E N) in Xo' xn --+ x and 
TXn --+ y imply x E Xo and Tx = y. Suppose henceforward (X,d) and 
(y,".1I) are complete in the usual sense and T: Xo --+ Y is closed 

in the above sense. Then, as the main result of the present note, 
the following "local" mapping theorem can be stated and proved. 

THEOREM 1. Let the element Xo in Xo with Txo ¥ 0 be such that, a 

couple of functions b,f: (O,~) --+ (0,00) satisfying 

(4) (t-s)b(t) ~ f(t)-f(s) o < s < t 

and a coup le of numbers q, r satisfying 0 --~ q < r ~ 1 as we II as 

(iii) "." is r - superadditive on T(Xo ') 

where 
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( 5) 

may be found with the property: for any x in Xo' with Tx # ° there 

exist x' in Xo and E in (0,1] with 

(6) II Tx' - (l-E)Txll .;;; qll ETxll d(x,x') .;;; IIETxllb(IITxll). 

Then, neaessarily, (E) has at least a solution in Xo'. 

Proof. Assume by contradiction Tx # ° for all x in Xo'; so, given 
any x in Xo' there exist x' in Xo and E in (0,1] such that (6) 
holds. By the first part of this relation 

IITx-Tx'll .;;; (l+q)IIETxll 

as well as (if we take (iii) into account) 

IITx'll .;;; qll ETxll +11 (l-E)Txll .;;; (q-r)1I ETxl! +rll ETxll +11 (l-E)Txll .;;; 

.;;; (q-r)IIETxll+IITxll 

or, equivalently, 

(7) IIETxll .;;; (IITxlI-IITx'lI)/(r-q) 

so that, by a combination of them 

(8) IITx-Tx'll .;;; (l+q) (IITxll-IITx'lI) (r-q) 

(note at this moment that; again by the first part of (6), Tx#Tx' 
(hence, x#x') because, otherwise, Tx=Tx' would imply 1 .;;; q, a con
tradiction). On the other hand, the second part of this relation 
yields, in combination with a consequence of (1) (tb(t) .;;; f(t), 
t > 0) and a consequence of (7) (IIETxll .;;; IITxII/(r-q)) 

d(x,x') .;;; IITxllb(IITxll)/(r-q) .;;; f(IITxll)/(r-q). 

Now, let us denote 

and observe that x E Xo" plus the above inequality implies x' E Xo' 
(whence Tx' # 0) so that, again by the second part of (6), in com
bination with (4) + (7) 

(9) d(x,x') .;;; (f(IITxll)-f(IITx'II))/(r-q) 

a relation that evidently implies x' E Xo". Let e denote the "pro
duct" metric on Xo 

e(x,y) = max (d(x,y) ,II Tx-Tyll) , X,y E Xo 

and let.;;; indicate the ordering on Xo' defined as 

x .;;; y if and only if d(x,y) .;;; (f(IITxll)-f(IITYII))/(r-q) and 

IITx-TYII-';;; (l+q) (IITxll-IiTyll)/(r-q). 
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We claim conditions (i)+(ii) are fulfilled in (Xo",e,';;;) and this 

will lead us to the desired contradiction. (Indeed, it will follow 

then by Lemma 4 that, for the element Xo in Xo" a maximal element z 

in Xo" may be found with Xo .;;; z; on the other hand, by the above 

developments, a z' E Xo" may be chosen with z .;;; z' and z -I z', con

tradicting the maximality of z in (Xo",.;;;)). To this end, let (xn ; 

n E N) be a monotone sequence in Xo", that is 

(10) d(x ,x ) .;;; (f(UTx U)-f(UTx U))/(r-q) n m n m 
and 

UTx -Tx U .;;; (l+q) (UTx U-UTx U)/(r-q) , n .;;; m. 
n m n m 

As (f(UTxnU); n E N) and (UTxnU; n EN) are descending (hence Cau
chy) sequences on (0,00) it immediately follows (xn ; n E N) and 

(Txn ; n E N) are Cauchy sequences in X and Y respectively. By the 

completeness - closedness hypothesis, xn ~ x and TXn ~ Tx for 

some x in Xo and this establishes (i) (module e). Moreover, as Xo' 

is relatively closed in Xo ' it also follows x E Xo' (whence Tx-lO) 

in which situation, observing that, as a consequence of (10) (the 

first part) 

d(x ,x ) .;;; (f(iiTx U)-f(UTxu))/(r-q) , n .;;; m 
n m n 

one immediately derives (letting m tend to infinity) 

d(xn,x) .;;; (f(UTxnU)-f(UTxU))/(r-q) , n EN, 

and consequently, x E Xo"; in the same time, by an argument similar 

to the above one, (10) (the second part) gives 

n E N 

proving xn .;;; x, n EN, and establishing (ii). Therefore, the proof 

is complete. Q.E.D. 

3. SOME PARTICULAR CASES. 

The main result we established in the preceding paragraph appears, 

at this stage of our exposition, as an "abstract" mapping theorem 

only, so that, for a number of practical reasons, some "concrete" 

realizations of it (based on the considerations of §1) were welco

med. As a first step in this direction, let (X,d) be a complete me

tric space, (Y,U·U) a Banach space, Xo a subset of X and T: Xo -+ Y 

a closed application then, the following "normed" variant of the 

main result may be formulated. 

THEOREM 2. Let the element Xo in Xo with Txo -lObe sueh that, a 

number q E [0,1) and a eouple of funetions b,f: (0,00) --+ (0,00) 
satisfying 
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(4)' (l-s/t)b(t) ..;;; f(t) -f(s) , t,s > 0 , qt ..;;; s < t 

may be found with the property: for any x inXo'. where 

(5) , 

with Tx ~ 0 there exist x' in Xo and e in (0,1] with 

(6)'. IITx'-(l-e)Txll ..;;; qellTxll d(x,x') ..;;; eb(IITxll). 

Then. (E) has at least a solution in Xo'. 

Proof. It suffices to observe that, putting t '" IITxll, s '" (l-(l-q)e)t, 
one easily obtains qt..;;; s < t and (by (7)) II Tx' II ..;;; s, in which ca
se, taking into account (4)', we established ·(9). The remaining 
part of the argument follows from the main result with r"'l and 
this ends the proof. Q.E.D. 

Concerning condition (4)' (essentially involved in the above the
orem) let us observe it is fulfilled in case t ~ bet) is increa-

sing and c(t) '" f~ (b(s)/s)ds <~, t > 0 for, letting f(t) 

c(t/q),t > 0, we have, for any couple t,s > 0 , qt ..;;; s < t 

(l-s/t)b(t) ..;;; (b(u)/u) (t/q-s/q) , s/q..;;; u..;;; t/q 

in which case, the above statement reduces to Theorem 2.1 of Cramer 
and Ray [9] proved by a B~ezis-Browder ordering procedure. Moreo
ver, it was demonstrated by the above quoted authors their contri

bution represents a considerable refinement of some "abstract" (me
trical) mapping theorems established by Browder [6,7], Kirk and 
Caristi [14], Downing and Kirk [1 0], Altman [1,2] (see also Turinici 
[22]) as well as of some "concrete" (differential) mapping theorems 
established by Pohozhayev [17], Ka~urovskii [12], Krasnoselskii 
[15], Rosenholtz and Ray [18], so that our theorem also extends 
these results. 

Passing to the second particularization, suppoSe further X is a 
complete metrizable uniform space under the (denumerable) suffi
cient family of semi-metrics D '" (di;i EN), Y is a complete Fre
chet space under the sufficient family of seminorms S '" (I· Ii; 
i E N) and T: Xo --+ Y (Xo a subset of X) is a closed application, 
then, the following "global" version of the main result can be 
derived. 

THEOREM 3. Suppose there exist a sequenae L '" (Ai; i E N) in (O,~). 

a aouple of numbers q,r with 0 ..;;; q < r ..;;; 1 and 

(iii) , ITxl . ..;;; A.(r- 1/ 2 - 1), i EN, x EX 
11· 0 

a summable family A '" (Cl. i ; i E N) in (O,~) as well as a number 

·b > 0 with the property: for any x in Xo with Tx ~ 0 there exist x' 
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in Xo,'E in (0',1] and a aouple of injeations CP,1/J from N to itself, 

with 

(iv) ~Bcp(i)IETxlcp(i) < Bi(Acp(i)+leTxlcp(i») implies 

ITx'-(l-E) Tx l i .;;; AiqBcp(i)IETxlcp(i)/(Bi(Acp(i) + 

+ IETxlcp(i»)-qBcp(i)IETxlcp(i») 

(v) bB1/J(i)IETx l1/J(i) < Bi(A1/J(i)+IETx11/J(i») implies 

di(x,x') .;;; Ai bB1/J(i)Ie:Tx l1/J(i)/(B i (A1/J(i) + 

+ IETx!1/J(i»)-bB1/J(i)I ETx l1/J(i»)' 

Then, (E) has. at least a solution in Xo' 

Proof. It suffices to observe that (iv) plus (v) give 

Bi I'tx ' - (1- E)Tx I /(Ai+ ITx' - (1- E)Tx I i) .;;; 

.;;; qBcp(i)IETxlcp(i/(Acp(i)+IETxlcp(i») , i E N 

and respectively, 

Bidi(x,x')/(Ai+di(x,x')) .;;; 

.;;; bB1/J(i)IETxl1/J(i)/(A1/J'(i)+Ie:Txl1/J(i»)', i EN, 

so that, if we introduce a mdtric (paranormed) ~tructure on X (Y) 

by the convention 

d(x,y) r B.d.(x,y)IO •. +d.(x,y)) ,x,y EX iEN 1 1 . 1 1 . 

(and, respectively, 

x E Y) , 

conditions of the main result are fulfilled with Xo' = Xo' b(t)=b, 
t > 0, arid fet) = b t, t > 0, so that by the conclusion of that sta 
tement, the proof is complete. Q.E.D. 

Concerning the elements involved in this result , a special mention 
must be made about the functions CP. and 1/J appearing in (iv) and (v) 
respectively. Namely, suppose, in particular that cP 1/J = the iden
tity, then, the above conditions become 

(iv)' ITx'-(l-E)Txl . .;;; LQIETxl./(L+(l-q) Ie:Txl.) , i EN 
1 1 1 1 . 1 

. (v)' blETxl i < Ai+IETxli implies 

d.(x,x').;;; LbIETxl.l(L+(l-b)leTxl.) 
1 1 1 1 .1' 

and the corresponding version of Theorem 3 may be compared with a 
similar one due to the author [21] and proved by a "variable drop" 
technique. Regarding this 'last aspect, it's not without importance 
to ask whether a direct treatment of the problem - based on the ini 
tial metrizable (Frechet) structure of the ambient spaces - may not 
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be given. A partial answer to this question may be found in Turinici 
[23]; some further extensions to non-llietrizable uniform spaces will 
be given elsewhere. 
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