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A NOTE ON THE EXTENSION OF LIPSCHITZ FUNCTIONS 

Telma Caputti 

1. I NTRODUCT ION. 
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In many areas including optimization problems as well as some impo£ 
tant questions of analysis, we have to deal with functions F satis­
fying a Lipschitz property only on a subset S. of the whole space E. 
It is important to know whether F can be extended to E preserving 
such a property, that is whether there exists a function Fs ' defi­
ned and possessing a Lipschitz property on all of E, which coinci­

des with F on S. For such a problem, an explicit formula for the e~ 
tension was given forty - five years ago by E.J .McShane [11 but one 
can propose here an alternative extension obtained by performing 
the infima I convolution of two functions associated with the data 
of the problem. Although conceptually identical to McShane's proce­
dure, the extension by infimai convolution is more suitable for mi­
nimization problems. The difference will also appear to be relevant 
when comparing generalized gradients of the respective functions. 

The first section is introductory; the second section deals with 
the definition and basic properties of the space of Lipschitz func­
tions on a subset. In Section III we introduce the extension pro­
cess. Section IV is devoted to comparison results between the gene­
ralized gradient of th.e extended function and that of the initial 
function. I~ view of applications, we consider in Section V pro­
blems dealing with optimization of the extended function. In parti­
cular, it will be proved that the search for a global or local mini 
ma of F on S is equivalent to the same problem on E with the exten­

sion as objective function. 

2. LIPSCHITZ FUNCTIONS. 

Let E be a real Banach space and let 11.11 denote the norm of E. 

Given a nonempty subset S of E, F: E -+R (the extended reals) is 
said to be Lipschitz on S with Lipschitz constant r ~ 0 if F is fi­
nite on S and if 

IF(x) - F(y) I < r IIx-yO for all x,y in S (2.1) 
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The class of all such functions is denoted by Lip(S). The class of 
r 

all Lip(s) for r ~ 0 is the class of Lipschitz functions on Sand 
r 

is denoted by Lip(S). It is evident that FE LiP(S) only in the ca­

se where 

IIIFIll = sup{ ·1 F (x) -F (y) 1 
IIx-yll 

y,x in S x -F y} < a> 

III Fill is the least number r such that (1.1) holds for F. 

Suppose that xES and define 

IIIFIII- = IF(x) 1 + IIIFIll for all F E Lip(S). 
x 

Then (Lip (S) ,111.111_) is a Banach space [2]. 
x 

(2.2) 

Sinte only the values of F on S are relevant for our purpose, we 
will make a constant use of F defined on E by 

F(x) = F(x) if xES +00 if not (2.3) 

In particular, the Lipschitz property of F on S may be expressed in 

tenns of the infimal convolution Fs which appears as the result of a 
, r 

sort of regularization as follows: 

Let F be non identically (+ 00) or (- 00) on S; then F E LiP(S) if 
r 

and only if 

fer 11.11 = F on S (2.4) 

which is, furthermore, equivalent to 

F IJ r 11.11 ~F on S (2.5) 

where the symbol IJ denotes infimal convolution defined by: Let g 
and h be two functions from E into R, the infimal convolution of g 
and h is a function, denoted by g IJ h, which assigns to x E E the 
value 

inf {g(u) + h(x-u)} . 
ue:E 

The general properties of this binary operation, particularly tho­
se related to convex analysis are dev.eloped in [3]. 

3. EXTENSION OF THE RANGE OF A LIPSCHITZ FUNCTION. 

Let S be a nonempty subset of & and letF E L~P(S). In 1934, 

McShane showed that such a function F could be extended to the who­
le space E by preserving a Li~schitz condition. Actually, his pro-

cedure yielded an explicit formula for the extension FS ' r which was' 
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FS,r(x) = sup {F(u) - r IIx-ull} 
UES 

(3.1) 

S r F' turns out to be Lipschitz on E with r as Lipschitz constant 
and coincides with F on S. 

We define another extension which is conceptually related to 
McShane's one [1]. The definition of the extended function F co-S,r 
mes na~vtally from paragraph 2 as 

F = For II .11 S,r 

In more explicit way 

inf {F (u) + r lIx-ull} for all x in E . 
UES 

(3.2) 

Clearly if F E Lip(S) then F E LiPCS) arid ~oincides with F on S. r S,r r 

4. THE GENERALIZED GRADIENT OF THE EXTENDED FUNCTION. 

Given a function F Lipschitz in a neighborhood of Xo E E, the gene­

ralized gradient of F at Xo in Clarke's sense [5] is a subset of E* 
(topological dual space of E) denoted by aF(xo) and defined as fol­
lows: 

where 

{x* E E*: <x*,d> < FO(xo;d) for all dEE} 

Lim sup F(x+Ad) - F(x) 
A 

(4.1) 

(4.2) 

The definition of the generalized gradient for an arbitrary function 
requires some preliminary definitions. Let E be a real Banach space, 
let A be a subset of E and let u E cl(A) (closure of A) . 

a 

DEFINITION 4.3. 15 is tangent direction to A at Uo if arid only if for every se­

quencetu } c A converging to u and for every sequence {A } C R: 
", non 

converging to 0, there exists a sequence {on} converging to 0 such 

that u + A,O E A for all n. n n n 
Th~ cone of all tangent directions to A at Uo is the tangent cone to 

A at u and will be denoted by TA(uo)' Its polar cone, i.e. the set 
a 

of n in E* such that <n,o> < 0 for all o E TA(uo) is called the nor 

mal- cone to A at u and will be denoted by NA(uo)' 
a 

Let F: E ...,..... R be finite at x and Lipschitz around x Starting from 
a a 
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the geometric concept of tangent cone, the generalized directional de 

rivative of F at Xo is defined by 

(4.4) 

The relationship with the normal cone is given as follows: 

(4.5) 

For the indicator function of a. subse.t 5 . 

c(x/5) = 0 if x E 5 15 (x/5) = +00 if x fl. 5 

one has c(xo/5) N(5;xo)' For more details on what has been recal­

led above, see [3). 

Concerning the generalized gradients of f and FS,r such as defined 

in the previous paragraph 3, we have a general comparison result: 

THEOREM 4.6. Let x in 5. Then, 
o 

a) for aZZ r ~ mFW, af(x )c aFs (x) + N(5;xo)' o ,r 0 

b) for aZZ r ~ III F III , aFs (x) caf(x ) n rB* where B* denotes the ,r 0 0 

aZosed unit baZZ in E*: 

Proof. a) 5ince.FS,r coincides with F on S, we have that 

f = Fs r + 15(./5). Then the announced result follows from thecalcu-, 
Ius rule giving an estimate of the generalized gradient of the sum 

of two functions [6, Theorem 2) . 

b) FS,r is Lipschitz with constant r, therefore 

FS,r(xo;d) ..; rll dll for all d and aFs,r(xo) 

If Xo is in int(5) , FS,r = Ii" =. F in a neighborhood 

Let now, Xo in 5 nbd(5); we have Fs,r(Xo);" f(xo) 

clusion 

is then equivalent to the following one 

T 'r(x ,F(x )) c T OF (x ,F(x )) 
ep1 0 0 ep1 S,r 0 0 

c rB* 

of xo; thus 

(4.7) 

Let (d,~) in T o-F(x ,F(x )). We consider a sequence {xn·} converging 
ep1 0 0 . 

to x and a sequence {).} c R*+ converging to O. With {x } and {A } 
on· n n 

we associate a sequence {x} c 5 such that X E M().2,x ) for all n 
n n. n 



.126 

where M(.,.) is gliven as in Theorem 5.1. b) . 

Since r > III Fill , , fiC } converges to x , therefore the sequence 
n· 0 

{(xn,F(xn))}converges to (xo,F(xo )) in epiF. Since (d,].!) E 

E T .-F(x ,F(x )), there exists a sequence {(dn'].!n).} converging to 
ep~ 0 . 0 

(d,].!) such that xn + Andxi E Sand 

F(x • Ad)' < F(x ) + A].! for all n. n n- n n n n 

Due to the Lipschitz property of FS,r' we .get that 

FS (x + Ad) < F(x ) + r IIxn-xnll + An].!n ,r n n n n 

Since x E M(A 2 ,x ), we have that 
n n n. " 

FS (x + Ad) < Fs (x) + A (].! + An)' Hence, since ,r n n n . ,r n n n 

(dn,An+].!n) -+ .cd,].!), (d,].!) ETepiFs (xo,F(xo)) and the inclusion 
,r 

(4.7) is proved. (q.e.d.) 

5. OPTIMIZATION OF LIPSCHITZ FUNCTIONS. 

Given S a nonempty subset of E and F E L!P we consider the problem 

of minimizing (at least locally) F on S,: (P) minimize F on S. 

A device for converting the constrained optimization problem (P) 

into an unconstrained one is to consider 

(P*) minimize F on E. 

Of course, Xo is a local minimum of F on S if and only if Xo is a 

local minimum of Fon E. 

Similar properties hold for the extended ftm.ction F with the advan-S,r 
tage that Fs is finite and Lipschitz over all E. ,r 

THEOREM 5.1. Let S be aZose.d in E. 

a) Xo is a gZobaZ minimum of F on S if and onZy ifxo is agZobaZ 

minimum of Fs on E (r > 0). ,r 
b) Xo is a ZoaaZ minimum of F on S if and onZy if Xo is a ZoaaZ 

minimum of Fs on E bJhenever r > IUPId. ,r 

Proof· a) Let x in S such that F(u) ;;;. F(x. ) for all u in S. Clear 
0 0 

ly, Fs (x) = 
, 

inf {F(u) + r IIx-ull} = F(x ) for all x in E. 
,r ue:S 0 

Conve;r:sely, let x be a global minimum of F on E. The only thing 
0 S,r 
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to prove is that Xo ,necessarily belongs to 5. For that, we suppose 
that ds(x~) ~> 0 (distance from Xo to 5). 

Let ~ in 5 be such that 

FS' '(x ) > F (~) ,r 0 
+ r 

-5ince F ,agrees with F on 5 .nd x E 5, we have ~h*t S,r 

F (~) ~ F, (x) and II ~-x II ;;;0 a 
S,r. 0 0 

(S.2) 

That is inconsistent with inequality (5.2); hence' a=O and since 5 

is dosed x e: 5. 
o 

b), Let·xo in 5 be a'local minimum of Fan 5. 50, there exists P > 0 

such that F(u) ~ F(x ) whenever u E 5 and lIu-x II.;; P .. 
o "0 

There existS Po > 0 and Eo > 0 such that 

II x-xcII .;; Po ; E .;; Eo .. "~-xo" .;; p for all x in M(E ,x) , where 

M(E,X). ~u E 5/F (u) + r il x-ull .;; Fs (x) ,r 

~ith £ ~ 0 afi~ x ift E and M(x) ~ M(O,x) . 

Clearly; M(E~x)is"nonempty fOT all x in'E and all E > O. Fur,ther­
more, if x E 5, M(x} contains x and is reduced to {x} whenever 

r >IIIFIII. 

Generally speaking, ,computing Fs,r(x) gives rise to an abstract op­

timization problem. It is important to know the behaviour of the 
set of solutions or of approximate solutions. 

Consequently, F (x) ~ F(x ) whenever IIx-xo" .;; p . Conversely, let s, r ,0 ' 0, 

us prove that x local minimum 0, f Fs' on E is in 5. Then exists 
o jr 

p > 0 such that F (x) ~ Fs (x) if Ux-x II .;; p. Let us suppose S,r ,r 0 0 

that ds(x o) = a > 0; we set E < r/2 mln{p,a} and We choose ~ in 5 

satisfying Fs (x) > F(x) t rll~-x II-E. 
,r 0 0 

Sf - x 
Let 9 = 1/2 min '{p,a} andx* = x 

o 
+ 9' --:,-__ -",0",-, . We have that 

FS (x*) > F(~) + r II~-x II-E. 5ince x* e 5 and II~-x II '" 1I~-x*1I :! 9 
,r 0, 0 

we deduce from (5.2) that r9 < E ; hence the contradictionfroni the 
choice of E. (q.e.d.) 

REMARK. Let f: 0 -+ R be aftmction defined on an open subset 0 of Rn 

and Lipschitz in a ne'ighborhood of x . Let B(x , E) be a closed ball 
o ' 0 

around Xo of' radius included in O. 

We denote by r the ~ipschitz constant of f on B(Xo,E) and we set 
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f*= f .j. 0 where 0 is the indicator function of B(x ,E) 
B(xO'£) B(XO'£) 0 . 

defined by 

{
Oif x is in B(xo '£) 

0B x £ (x) = 
( 0' ) + 00 otherwise. 

Now, we perform the infimal convolution of f* and the function rll.II. 
that is 

f(x) . 

It is easy to see that by performing this operation we produce a 
function f such that 

i) f is 

ii) f(x) 

Lipschitz on the whole space with Lipschitz constant r~ 

f(x) when x is in B(xo '£)' 

iii) lim f(x) +00. 

II xll .... oo 

Now, if Xo is a local minimum of f on S, Xo becomes a global minimum 
of f* on S. In order to isolate xo' we may substitute 

"'" f(x) lIx-x 112 f(x) f: x --+- + for 
0 

"'" In a neighborhood of xo ' f is differentiable at x whenever f is dif-
ferentiable at x. Thus, is no trouble in the calculation of the ge-

neralized jacobian matrix and if F = (f,f1, .. ~,fm)t and 

"'" "'" t F = (f,f1, ... ,fm) then 

[4] 

So, one can safely regard Xo as a unique and strong global minimum 
of f on S and suppose that lim f(x) + 00 • 

II xll .... oo 
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