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A NOTE ON THE EXTENSION OF LIPSCHITZ FUNCTIONS

Telma Caputti

1. INTRODUCTION.

In many areas including optimization problems as well as some impor
tant questions of analysis, we have to deal with functions F satis-
fying a Lipschitz property only on a subset S of the whole space E.
It is important to know whether F can be extended to E preserving
such a property, that is whether there exists a function Fg, defi-
ned and possessing a Lipschitz property on all of E, which coinci-
des with F on S. For such a problem, an explicit formula for the ex
tension was given forty - five years ago by E.J.McShane [1] but one
can propose here an alternative extension obtained by performing
the infimal convolution of two functions associated with the data
of the problem. Although conceptually identical to McShane's proce-
dure, the extension by infimal convolution is more suitable for mi-
nimization problems. The difference will also appear to be relevant
when comparing generalized gradients of the respective functions.

The first section is introductory; the second section deals with
the definition and basic properties of the space of Lipschitz func-
tions on a subset. In Section III we introduce the extension pro-
cess. Section IV is devoted to comparison results between the gene-
ralized gradient of the extended function and that of the initial
function. In view of applications, we consider in Section V pro-
blems dealing with optimization of the extended function. In parti-
cular, it will be proved that the search for a global or local mini
ma of F on S is equivalent to the same problem on E with the exten-

sion as objective function.

2. LIPSCHITZ FUNCTIONS.

Let E be a real Banach space and let l|.ll denote the norm of E.

Given a nonempty subset S of E, F: E — R (the extended reals) is
said to be Lipschitz on S with Lipschitz constant r > 0 if F is fi-
nite on S and if '

|[F(x) - F(y)| <r lIx-yll for all x,y in S (2.1)



123

The class of all such functions is denoted by Lip(S). The class of
all Lip(s) for r 2 0 is the class of Lipschitz functions on S and

is denoted by Lip(S). It is evident that F € Lip(S) only in the ca-
se where

IIEM =mm{lF$)$;)l; y,x in S ; x££y}l <= ©(2.2)
X-y

WENl is the least number r such that (1.1) holds for F.

Suppose that x € S and define
WEl_ = |F(X)| + WFl for all F € L*P(S).

Then (Lip(S),INJHY) is a Banach space [2].
Since only the values of F on S are relevant for our‘purpose, we
will make a constant use of F defined on E by

F(x) = F(x) if x €S ; +« if not . (2.3)
In particular, the Lipschitz property of F on S may be expressed in
terms of the infimal convolution FS . which appears as the result of a
sort of regularization as follows:

Let F be non identically (+ «) or (- ») on S; then F € Lip(S) if
and only if

Forlldl =F on S (2.4)
which is, furthermore, equivalent to
Forll.dl >F on S (2.5)

where the symbol 0 denotes infimal convolution defined by: Let g
and h be two functions from E into R, the infimal convolution of g
and h is a function, denoted by g o h, which assigns to x € E the‘
value )

inf {g(u) + h(x-u)}

ueE
The general properties of this binary operation, particularly tho-
se related to convex analysis are developed in [3].

3. EXTENSION OF THE RANGE OF A LIPSCHITZ FUNCTION.

Let S be a nonempty subset of E.and let F € Lip(S). In 1934,
McShane showed that such a function F could be extended to the who-
le space E by preserving a Lipschitz condition. Actually, his pro-

cedure yielded an explicit formula for the extension FS»T which was-
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FS2 P (x) = sup {F(u) - r llx-ull} (3.1)
ues

FSoT turns out to be Lipschitz on E with r as Lipschitz constant
and coincides with F on S.
We define another extension which is conceptually related to

McShane's one [1] . The definition of the extended function FS ¢ CO-

mes naturally from paragraph 2 as
Fs,r =Forl.l (3.2)

In more explicit way

Fg (x) = inf {F(u) + r lix-ull} for all x in E
’ ues :

Clearly if F € LIP(S) then F, _ € LIP(S) and coincides with F on S.
’

L. THE GENERALIZED GRADIENT OF THE EXTENDED FUNCTION.

Given a function F Lipschitz in a neighborhood of x, € E, the gene-

ralized gradient of F at x, in Clarke's sense [5] is a subset of E*
(topological dual space of E) denoted by 3F(x,) and defined as fol-

lows:
9F(x ) = {x* € B*: <«x*,d> < F°(x°;d) for all d € E} (4.1)
where
F°(x,;d) = Lim sup E(X*2d) - F(x) (4.2)
XX X

A0

The definition of the generalized gradient for an arbitrary function
requires some preliminary definitions. Let E be a real Banach space,
let A be a subset of E and let u € cl1(A) (closure of A).

DEFINITION 4.3. § is tangent direction to A at u, if and only if for every se-

quence'fun} C A converging to u and for every sequence {An} C R%*
converg{hg to 0, there exists a sequence {Gn} converging to § such
that u_+ A, 8 € A for all n.

n nn
The cone of all tangent directions to A at u  is the tangent cone to
A at u and will be denoted by TA(uo). Its polar cone, i.e. the set
of n in E* such that <n,8> < 0 for all § € TA(uo) is called the nor
mal cone to A at u and will be denoted by NA(uo).

Let F: E — R be finite at X, and Lipschitz around X - Starting from
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the geometric concept of tangent cone, the generalized directional de
rivative of F at x_ is defined by '

d — F°(x_;d) = inf {“,é R () € T (g PGl (4.0)

The relationship with the normal cone is given as follows:

aF(x_) = {x*le E*: (x*,-1) €N, (x ,F(x,))} (4.5)
For the indicatorifunétién_of a subsetvé'

§(x/S) =0 if xe€§ 6(x/éfi= so if X €S
one has G(XO/S) = N(S;xo). Fbr.morg details on what has been reﬁal-
led above, see [3]. :

Concerning the generalized gfadients of F and Fg . such as defined

in the previous paragraph 3, we have a general comparison result:

THEOREM 4.6. Let x_ in S. Then, » _
a) for all r > lIFll, 3F(x ) C 8Fg L (x,) + N(S;x,) .
b) for aill r = llEN, 3FS r(xo) CYBF(XO) N rB* where B* denotes the

closed unit ball in E*:

Proof. a) Since Fg » coincides with F on S, we have that
’ 9
F = Fg . * 6(./S). Then the announced result follows from the calcu-
s .

lus rule giving an estimate of the generalized gradient of the sum
of two functions [6, Theorem 2] .

b) Fg _ is Lipschitz with constant r, therefore
Fg’r(xo;d) < rlldl for all d and an,r(xo) C rB*
If x, is in int(S), Fg , = F = F in a neighborhood of x,; thus

BFS,r(xo) = 3F(x,) = 3F(x,)

Let now, x, in S N bd(S); we have Fs,r(xo) = F(x,) = F(x,); the in-
clusion
' 9Fg ,(xo) C 9F(x,)

is then equivalent to the following one

T —(xo,F(xo)) cT

epiF r(xo,F(xo)) ' | (4.7)

iF
epi s,
Let (d,u).in Tepii(xo,F(xo)). We consider a sequence {Xﬁ} converging
to x and a sequence {An} C R* converging to 0. With {xn} and {An}

' - - 2
we associate a sequence {xn} C S such that x € M(An,xn) for all n
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where M(.,.) is given as in Theorem 5.1.b).

Since r >IIFll’, {x_ } converges to X,» therefore the sequence
{(EA,F(E;))}converges to (x,,F(x;)) in epi F. Since (d,u) €

€ Tepif(xo,F(xo)), there exists a sequence {(dn,un)} converging to
(d,u) such that i; +A,d €S and

F(i; + 2 d) < F(iﬁ) + A u, for all n.
Due to the Lipschitz property of Fg ., we get that
. s
| Fs,r(xn + Andn) < F(xn) + r‘Hxn—an A My
Since i; € M(Ai,xn), we have that

Fs,r(xn + Audn) < Fs’r(xn) + An(un + An). Hence, since

(d,A +u)) — (d,0),(d,u) € TepiFs

(4.7) is proved. (q.e.d.)

(xo,F(xo)) and the inclusion
r

5. OPTIMIZATION OF LIPSCHITZ FUNCTIONS.

Given S a nonempty subset of E and F € Lip we consider the problem
of minimizing (at least locally) F on S:(P) minimize F on S.

A device for converting the constrained optimization problem (P)
into an unconstrained one is to consider

(P*) minimize F on E.

Of course, x, is a local minimum of F on S if and only if xo is a
local minimum of F.on E.

Similar properties hold for the extended function FS i, with the advan-

s

tage that FS r is finite and Lipschitz over all E.
s

THEOREM 5.1. Let S be closed in E.
a) x_ is a global minimum of F on S if and only if X is a global
minimum of Fs on E (r > 0).
, sT .
b) X, t8 a local minimum of F on S 2f and only <if X, i8 a local

minimum of Fg  on E whenever r > IEI .
. il

Proof. a) Let x, in S. such that F(u) > F(xb) for all u in S. Clear
1y, F_ (x) < inf {F(u) + T lIx-ull} = F(x_) for all x in E.
. S,r u€es o

Conversely, let X, be a global minimum of FS .

on E. The only thing



to prove is that X, -necessarily belongs to S. For that, we suppose
that ds(XQ) = a > 0 (distance from X to S).

Let X in S be such that

' X X- Jra
Fg,p (%) > F(x) + 1 lix-x 3 | (5.2)

Since FS r

égrees with F on S and x € S, we have that
F(x) > Fs’r(xo) and Hx-xon = a

That is inconsistent with inequality (5.2); hence a=0 and since S
is closed x €S.

b).Let-x0 in S be a'ldcal minimum of F on S. So, there exists p > 0
such that F(u) > F(x_ ) whenever u € S and ju-x Il < p,
There exists Py > 0 and €, > 0- such ‘that

Ix-x_l <p_ ; €<e, =IX-x| <p for all X in M(e,x) , where

M(e,x) = {u € S/F(u) + 1 lx-ul <F _(x) + eb™

with ¢ > 0 and x in E and M(x) = M(0,x).

Clearly, M(e,x) is nonempty for all x in E and all e > 0. Further-
more, if x € S, M(x) contains.x and is reduced to {x} whenever.
r > IF-. '

Genérally speaking, computing FS r(x) gives rise to an abstract op-
N : 2 .

timizatjon problem. It is important to know the behaviour of the
set of solutions or of approximate solutions. '
Conséquently, FS r(x) > F(xo) whenever Hx—xon < Py Conversely, let
> .
us prove that xo local minimum of Fé’r on E is in S. Then exists
’
. > i - .
p > 0 such that Fs’r(x) > Fs,r(xo) if |Ix xou < p. Let us suppose

that ds(xo) = a >0; we set ¢ <r/2 min{p,a} and we choose X in S

satisfying Fs’r(xo) > F(x) +brux-xon~s.

X - X
Let 6 = 1/2 min {p,a} and x* = X, + 9 — ©_ . We have that
o , Cix - xgll
FS r(x*) >F(X) + 1 ||¥—x0|]-'e. Since x* ¢ S and ui-xon = |Ix-x*|| + 6

we deduce from (5.2) that r6 <‘e; hence the contradi;tion frém the
choice of ¢. . ' (q.e.d.)

REMARK. Let f: 0 — R be a ﬂxmtibn defined on an dpen subset 0 of R"
and Lipschitz in a neighborhood of X . Let B(xo,e) be a closed ball

around X of radius included in O.

We denote by r the Lipschitz constant of f on B(xo,e) and we set
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&) is the indicator function of B(xo{e)
defined by
0 if x is in B(xo,e)

6B(X°,€)(x) ) {+

®© otherwise.
Now, we perform the infimal convolution of f* and the function rll.ll,
that is ‘

f(x) = inf {£*(x)) + v lIx,ll : x; + x, = x}

It is easy to see that by performing this operation we produce :a
function f such that

i) f is Lipschitz on the whole space with Lipschitz constant r.
ii) f(x) = f(x) when x is in B(x_,e).

iii) 1im £(x) = + .

Il xll o0

Now, if x, is a local minimum of f on S, x, becomes a global minimum
of f* on S. In order to isolate X , we may substitute

X — f(x) + Hx-xoﬂz for %(x)

Hha

In a neighborhood of x,, f is differentiable at x whenever f is dif-
ferentiable at x. Thus, is no trouble in the calculation of the ge-

neralized jacobian matrix and if F = (f,f,,...,f)" and

o t
F = (f,fl,...,fm) then

JS(F;xo) = JS(F,xo) [4]

So, one can safely regard X, as a unique and strong global minimum
of f on S and suppose that 1im f(x) = +o,

Il -+
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