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REDUCTION OF CODIMENSION OF ISOMETRIC IMMERSIONS BETWEEN
INDEFINITE RIEMANNIAN MANIFOLDS

Marcos Dajczer

1. INTRODUCTION,

Let f: M: — Q2+P(c) be an isometric immersion of a connected in-

definite Riemannian manifold of dimension n and signature (s,n-s)
into an indefinite manifold of constant curvature c. If s=1 or

s = n-1, we say that Mz is a Lorentz manifold. By changing the sign
in the inner products we may assume that s=1, We say that the immer
sion f is m-regular if the kP normal space of the immersion Nk sa-

tisfies: dim Ny = constant for k = 1,...,m (see Section 2 for fur-
ther definitions). The aim of this paper is to extend the main re-
sult of [1] to the indefinite Riemannian case. We prove the follo-
Wing result

1.1. THEOREM. Let f: MT — Q:+P(c) be an isometric immersion.
Assume that the curvature tensor of the normal connection satisfies

(Vl)m Rll 1 = 0 and that the mean curvature vector satisfies
N
m

(Vl)m H C Nm. Then there exists a totally geodesic submanifold Q* of

Q’t‘“‘P(c) of dimension n+k, where k = dim N_, such that £(M%) C Q*.

"2. PRELIMINARIES.

We denote by Mz a differentiable manifold whose tangent spaces have
a nondegenerate metric of signature (s,n-s). Let us consider an i-

ﬁn+2

sometric immersion, f: Mz — , of one indefinite Riemannian

manifold into another. Given p € M, we identify the tangent space
TPM to M at p with df(TpM). The normal space Tle is the subspace

of Tpﬁ consisting of all vectors £(p) € Tpﬁ which are normal to TpM

with respect to the metric < , > of M. Let V (resp. V) be the co-
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variant differentiation of the Levi-Civita connection in M (resp.M)
and Vl the covariant differentiation in the normal bundle of f.
Given £(p) € Tle, we define the second fundamental form of f rela-
tive to &(p)
: T M T
AE(p) pr pM

by the Weingarten equation:

- 1
VeE = -AX + ViE

€

where X € TpM and & is any normal extension of £(p).

We shall denote the curvature tensor of V by R and that of vt by Rl,
i.e.

ROGY) = Ty Ty - Ty Ty - Ty g
and

Lo oo L L 1 L 1

ROXGY) = Vg Ty - Wy Vg Vi o

We define the bilinear symmetric form
1
o: TMxTM — TM
P P P
by the Gauss equation:

VXY = VY + a(X,Y)

Then, the condition

<a(X,Y),€> = <A X,Y>

13
is satisfied.

If the ambient space has constant curvature, the following rela-
tions hold:

(VXA)E(Y) = (VYAJE(X) , Codazzi's equation
and

<Rl(X,Y)g,n> = <[A£,An]X,Y> , Ricci's equation

A basis Xl,...,Xn of an indefinite inner product space with signatu
re (s,n—sj is called orthonormal if <Xi,Xj> = -Sij 1<i,j <s,

<Xr,xt> = § s+l < r,t <n and <Xi,Xr> =0 1<i<s, st1<r<n.

rt
If the vector space is a Lorentz space, then.a pseudo-orthonormal
such that <Z,Z> =0

basis is one of the form Z,T}Xl,...,Xﬁ_z,

= <7,7>} <2,Z> =1, <Xi’Yj> = 5ij 1<1i,j <n-2and <Z,X;> =0 =
= <Z,xi> 1 <i<n-2.

We define the mean curvature vector as
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n
H = izl <X, Xp> alX;,Xg)

Bl

where Xl,...,Xn is an orthonormal basis of TéM.

We say that the immersion is totally geodesic if Ag = 0 for all
£ e Tt

Given p € M, ‘we define the first normal space as

N, (p) = Span {a(X,Y)(p): X,Y € T M)

We define the kP normal space as

1 1 1
N (p) = Span {a(X,Y)(p), Vo, 00,0V e Vo a(XY) (p))
for k = 2,3,..., where X,Y,wl,...,wk_1 are vector fields tangent to
M.

A normal subbundle of dimension k is a family L(p), for all p € M,
of vector subspaces of TPMl of dimension k with the property that,

for all q € M®, there are an open neighborhood U of q and k differen-
tiable fields gl,...,gk defined in U such that, for all p € U,

£,(0),...,&, (p) generate L(p).
An immersion is said to be m-regular if each Nk(p), for k =1,...,m

and for all p € M, has constant dimension. It is easily seen that if
an immersion is m-regular, then each Nk for k=1,...,m is a normal
subbundle.

If L is a normal subbundle, by (Vl)m RllL = 0 it is to be understood
that

()™ R (X)3Xp5 .05, ,) () = 0

for all Xl,...,X 2 € T™ and all £ €.L.

m+
Finally, if n is a section of the normal subbundle L, then
("1™ 1 € L means that
1 1 ;
VX e V n €L for all X.,,...,X € TM.
1 Xm m

1

3. PROOF OF THEOREM 1-1.

First, we recall the fdllowing indefinite version of a theorem of
Allendoerfer-Erbacher (see [2], [3]).

3-1 PROPOSITION. Let f: M: — Q2+p(c) be an isometric <mmersion of

a connected indefinite Riemannian manifold into a space form. If'thg
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re exiéts a k-dimensional parallel normal subbundle L(p) which con-
taiﬁ; the first normal space Nl(p) for all p € M:, then there exists
a (n+k)-dimensional totally geodesic submanifold (possible degenera

te) Q* of Q:+p(c) such that f(Mz) C Q*.
The following result is the main part of the proof of Theorem 1.1.

n+%

3-2. PROPOSITION. Let f: M‘l‘ — Q}

(c) be an Zsometric immersion

that <8 m-regular in an open neighborhood U of a point p of M?. Then

NL ) = g enfm: (RN @) =0, (vhHEHE) L& for

0 <k <m}.

The proof of the following four lemmas is the same as in the posi
tive definite case (see [1]1).

3-3. LEMMA. Let M be an indefinite Riemannian manifold and &,n vec-
tor fields defined im an open neighborhood U of a point p of M.
Then, we have that

i) <(\7)k gE,n> =0 for 0<k<m if and only <if
<E,(M ¥ n> =0 for 0<k<m
ii) | <M e,m>=0 for 0<k<n
1 <m®! £,05p) = 0. if and only if
0<k<m

{ <€, (M¥ > =0 for

<€, (W™ n>p) = 0.

3-4. LEMMA. Let f: M — M be an isometric immersion that is Mm-re-
gular in an open set U of M. Then, in U, we have that for r =1,...,m

(Vl)kE =0 for 0<k<r-1.

£ €N if and only if A
3-5. LEMMA. Let f£: M — M be an isometric immersion that is m-re-
gular in an open neighborhood U of a point p of M. Then,

np € Ni+1(p) Zf and only if there exists a local extension n of np

h that 1) A k. =0 0<k<m1 and ii) A =0
suc a ) (Vl) n for <k < ) (Vl)m n(p)

3-6. LEMMA. Let f: M +—— ﬁ be an isometric immersion and n a nor-
mal vector field defined in an open neighborhood U of a point p of
M. Then, we have that

i) (WH* R M) =0 for 0 <k <nm- if and only if



ﬁ(wﬂkn)=o for 0 <k<m1,

ii) { ((vl)k R;)(n) =0 0 <k <m-1

lim L =
((v?)" R )(n(p)) = 0. if and only <f

{ RECevD®  n) =0 for 0 <k <m-1
RY(evhH™ np)) = 0

PROOF OF PROPOSITION 3-2. First of all, we note that if £ € Nﬁ(p),
then Rl(z) = 0 and H(p) 1 &. The proof will be divided in two parts,

each of them showing one of the inclusions.

i) Let np € Ni+1(p). By Lemma 3-5, there exists a local extension
n of n, such that

A

k. =0 for 0<%k < m-1  and A 1 0.

whm H™ n(p)
By the Ricci equation, we may write
RUE(vh* 1) =0 for 0 <k <m-1 and RE((VH® n(p)) = 0.

By Lemma 3-6 it follows that

3-7 ((vhHk Rl)(np) =0 for 0<k<m.

By definition, one has that H € Nl' Therefore, it is immediate that
3-8 (whH® H(p) L n, for 0<k<m.

Then, the first inclusion follows from (3-7) and (3-8).

ii) For this part of the proof we shall use induction. Using i), we
‘may suppose that the proposition holds for Ng for 1 < j <h. Let

np € Nt(p), which satisfies

3-9 ((vhHk Rl)(np) =0 for 0<k<h
and
3-10 vhHE Hp) L n, for 0<k<h

By the induction hypothesis together with (3-9) and (3-10), we thus

have n € Ni(p). Let n be a local extension of n, in Ni. Then,

3-11 (vH* Ry (M) =0 for 0 <k <h-1
and

Lok
3-12 (V') H1ln for 0 <k<h-1.

From Lemma 3-6, (3-9) and (3-11), it follows that
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RE(vH® np)) = 0.

But this means that
1

RN v n),E> = 0 for all X,Y,Z,...,Z, € M,
R zh z]. 1 h
1
€T .
11 pM
By Ricci's equation
<[A 1. N A£] X,Y> =0
Vzh.. Vz n(p)
In particular,
3-13 [A , A ] =0 for all
Vi ;..Vi n(p) Vt ...Vt nip)
h 1 h 1
ZyseeesZysYysees,Y, € TM,

On the other hand, by Lemma 3-4

3-14 A =0 for 0<r<h-1

V; VX n , we obtain
h-1
3-14 A 1L 1 Y = A I 1 Z for all
VZ VX VX n VY VX . VX n
h-1 1 h-1 1

Z,Y,X;,...,X, € TM.

From Lemma 3-3 together with (3-10) and (3-12), it is clear that
- 1
3-15 <H(p) , (V)" n(p)> = 0.

We shall show that (3-13), (3-15) and (3-16) imply that

A L = 0. Then, from (3-14) and Lemma 3-5, we obtain that

vH! )

np S Nt+1(p) and the proposition follows.

Let Zl,...,Zn be an orthonormal basis and iO a fixed index. From

Codazzi's equation appiied to the normal vector field

§ = Vi v Vi n-, we obtain
h-1 1
A Z, = A Z,
v, &3 vos i
i, j

so that
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n n
<Z.,Z.><A Z.,L.> = <Z.,L.><A Z Z.>
jzl N j=z=1 3773 el g i
z; z,
o J
Then
n ..L n
<Z.,2.><a(Z.,2.),V, &>= <Z.,L.><A Z.,2. >
jgl f3093 a( J’ J)’ Zio JZ:[ j*%; V'IZ'.(S j? 10
J
Thus
1 n
n<H,v, &> =< 7§ <Z.,2.>A Z.,2, >
Z. . 1 j’ri
i, j=1 v 8 o
7.
1o

From (3-16), we obtain that, at p

(3-17) . z <Z.,Z.> A Z, =0
L i’"j 1 j -
j=1 VZjG

If Yl,...,Yn is a pseudo-orthonormal basis, put in (3-17):

1°Y, _ Y, +Y

z, = , Z,=—=2 and Z =Y for 3<j <n. Then, it
V2 V2 J J
follows that
| )
(3-18) 2 A Y, + A Z. =0 .
s 2 23 vt 4
Yl Zj

By Theorem 0.4 and Proposition 0.5 of [3], we need to consider four
cases.

CASE 1. There exists a pseudo-orthonormal basis Yl""’Yn such that

( ) ( . B

1 j j J k|
Ao 1 Ao b c3- .cko
0o o A o0...0
[e) o
1 j
Ay - Yoo T, ;AL =10 <3
$ § o
Y. . . -
YI ‘. h| . . _Aj
.. ’ 0 ¢
. k0 1
L Aj
Al .
Lky A
L J

An easy computation shows that [A;,A?] =0 for 1 <i,j <n. Let us

consider the positive definite subspace V = épan’{Y3,...,Yk } and
(]

the symmetric linear transformations Ki =V —>YV fori-=3,...,n,

defined by
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Since Ag = Ki for 1 < i < n, thus there exists an orthonormal basis

Y3,...,Yk of V which diagonalizes simultaneously the matrices Ki
[o]

for 1 < i <n. The matrix A L does not change for the new basis
vV, ¢
Y
1

Yl’YZ’Yé""’Yk ,Yk +1,...,Yn, and for the other matrices, we have
o o

(dropping the bar)

( s : \
R k| j J
Ao bo az . ako
0 Ao 0
o
j k|
0 a3 3
AVJ. = :
Y5 ] j
0 a Y
kO k0
Al
k|
At
h|
From (3-15), we obtain
i) for Z = Y1 and Y = Y2
A2 =
o
ii) for Z =Y, and Y = Y;, 3<i<kg,
k
A= L =2%=0
o] o
iii) for Z = Y, and Y = YJ , 3<j< kO ,
i =
4G T
From (3-18), we obtain
iv) y§ =0 , 3<j<k,
kO .
v) z+ J al =0
j=3
From (3-16), we have that
A A = A A 3<j<n
1 1 1 1 ’
Ve 8 Vg8 Ve 8 vy 8
2 3 3j 2

In particular, comparing the jtB element of the first line of both
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matrix products, we obtain

2 _j 2 _j j .2 2 3 . ‘
ay + a. y: = AJ al + vy, al 3 < < k
j i3 o5 T Y5 ® SIS %

vi) A
From i), ii), iii), iv) and vi), it follows that
J o (3727
ay = (a3)”

which is a contradiction to v). So case 1 is not possible.

CASE 2. There exists a pseudo-orthonormal basis Yl""’Yn such that
(41 (3 i G )
A, 0 1 W u b Cl"'cko+1
o Al o o W 0.0
o 1 A o
A = A =
Vl 1 ’ Vl . . j
§ A1 8 : : A
Y1 o'k, Yj . . o
) 0 G+l
L1 1
Aklkz Aj
) .
AY
J

From (3-15), we have

Thus
1 -
Ao Y2 + Y3 = u" Y

which is not possible. So Case 2 can not occur.

CASE 3. There exists an orthonormal basis Yl""’Yn such that

r . '4
o By 1 % B 1
-Bl oy —Bj a5
o
o,I A-
A = 17k, s A = ] )
Vy 8 At vy 6 Ag
1 17k k|
.. .
1 A
AZIRQ s

where B1 # 0.
From (3-15), we obtain

i) for Z =Y and Y =Y

1 2
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From (3-17), we obtain
ii) ‘ By = -9,
Then Bl = 0, which is a contradiction. So case 3 is not possible.

CASE 4. There exists an orthonormal basis Yl""’Yn such that

N

It is easy to see that the basis can be chosen in such a way that

A | ‘

N

Yk +1
[e]

A 1 = . for 2

A
N
=]

L n
where Al = (ag ) is a k0>(k0 matrix.
2 .

From (3-15), it follow$ that

yz =0 if s #t and k0+1 <s,t <n

Then (3-17) implies that

Y: =0 for k+1 <s<n.

Using (3-15) for Z = YJ. , 1 <3 <ko , and Y = Yt , k°+1 <t<n,
we obtain

Ay = 0 and Yi =0

Thus



kO
<Y.,Y.><A Y.,Y.> =0
-Z i’ L i’
j=1 \Y
Y
1
So we obtain -Xo + (ko-1) Ao =0
Therefore, Ao =0 or ko = 2.
If Ao = 0, from (3-15) for Z =‘Y1 and Y = Yk , 1 <k<x k0 ,
we obtain
k_ _ ko
ay; = ... =2 0= 0

But then, all the matrices can be simultaneously diagonalized and
the same argument as in the beginning of this case shows that they
must vanish.

If k =2 , we have

[o]

. 12
A = ° A =
“s lo a ’ ws o |-a

From (3-15), we obtain

Ao = 783, > 3, =0
From (3-17), we obtain
Ao = 25 s 85, = 0.
Thus
A =0=A
vs 8 vy 6
1 2

which concludes the proof.

PROOF OF THEOREM 1-1. From Proposition 3-2, we have
N ) = e e Nt (WD RY)(E) = 0 and (VO™ H(p) L &)

Thus
(vl)m RJ. L= 0

N;(P) = Nt+1(p) if and only if L No
(VO HCN_ .

It follows that N, is a parallel normal subbundle and we can apply
Proposition 3.2 to complete the proof.

REMARK. In fact, we proved that
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(vl)m Rl L - 0
Nm is parallel if and only if Vo

l.m
(V') HC Nm .

REMARK. The Theorem 1-1 remains valid if the immersion is m-regular

. . n
in an open connected and dense subset of MS.
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