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1. INTRODUCTION. 
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Let f: Mn I---->- Qn+p(c) be an isometric immersion of a connected in-
s t 

definite Riemannian manifold of dimension n and signature (s,n-s) 
into an indefinite manifold of constant curvature c. If 5=1 or 

5 = n-l, we say that Mn is a Lorentz manifold. By changing the sign 
s 

in the inner products we may assume that 5=1. We say that the imme£ 

sion f is m-pegular if the kth normal space of the immersion Nk sa­

tisfies: dim Nk = constant for k = 1, ... ,m (see Section 2 for fur­
ther definitions). The aim of this paper is to extend the main re­
sult of [1] to the indefinite Riemannian case. We prove the follo­
wing result 

1.1. THEOREM. Let f: M~ ~ Q~+P(c) be an isometpic immersion. 

Assume that the curvature tensop of the nOPlnal connection satisfies 

o and that the mean cupvatupe vectop satisfies 

Then thepe exists a totaZ ly geodesic submanifold Q* of 

Qn+p(c) of dimension n+k, where k = dim N , such that f(Mn) C Q*. 
t m 

-2. PRELIMINARIES. 

We denote by Mn a differentiable manifold whose tangent spaces have 
s 

a nondegenerate metric of signature (s,n-s). Let us consider an i-

sometric immersion, f: Mn ~ ~+t of one indefinite Riemannian 
s t' 

manifold into another. Given p E M, we 
T M to M atp with df(T M). The normal 

p p 

of T M consisting of all vectors ~(p) 
p 

identify the tangent space 
space T Ml is the subspace 

p 

E T M which are normal to T M 
p p 

with respect to the metric < , > of M. Let V (resp. V) be the co-
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variant differentiation of the Levi-Civita connection in M (r~sp.M) 

and VI the covariant differentiation in the normal bundle of f. 

Given ~(p) E TpMI, we define the second fundamental form of f rela­

tive to ~(p) 

by the Weingarten equation: 

where X E T M and ~ is any normal extension of ~(p). 
p 

We shall denote the curvature tensor 0 f V by Rand that of vI by RI, 

i.e. 

R(X,Y) v lx, y] 

and 

We define the bilinear symmetric form 

a.: TMxTM-----+TMI p p p 

by the Gauss equation: 

Then, the condition 

<a.(X,Y),~> 

is satisfied. 

If the ambient space has constant curvature, the following rela­
tions hold: 

(VyA)~(X) , Codazzi's equation 

and 

I <R (X,YH,n> = < IA~,An]X,y>, Ricci's equation. 

A basis X1"",Xn of an indefinite inner product space with signat~ 

re (s,n-s) is called orthonormal if <X.,X.> = -0 1 ~ i,j ~ s, 
~ J ij 

~ i, ~ s, s+1 ~ r ~ n. 

If the vector space is a Lorentz space, then ,a pseudo-orthonormal 

basis is one of the form Z,Z,X 1 , ... ,Xn_2 , such that <Z,Z> = 0 = 

<Z,Z>, <Z,Z> = 1, <X.,Y.> 
~ J 

<Z,X.> 1 ~ i ~ n-2. 
~ 

0.. 1 ~ i, j ~ n - 2 and < Z , X.; > = 0 = 
~J ~ 

We define the mean curvature vector as 
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where X1"",Xn is an orthonormal basis of TpM. 

We say that the immersion is totally geodesia if As 

s E TM1. 

Given p E M, we define the first normal spaae as 

N1(p) = Span {a(X,Y)(p) :X,Y E TpM} 

We define the kth normal spaae as 

o for all 

{ Vl 1 1 } Span a(X,Y)(p), a(X,Y)(p), ... ,V ... V a(X,Y)(p) 
wI wk-l wI 

for k 
M. 

2,3, ... , where X,Y,wl, ... ,wk_1 are vector fields tangent to 

A normal subbundle of dimension k is a family L(p), for all p EM, 

of vector subspaces of T Ml of dimension k with the property that, 
p 

for all q E Mn, there are an open neighborhood U of q and k differen­

tiable fields sl"",sk defined in U such that, for all p E u, 

sl(P)"",sk(P) generate L(p). 

An immersion is said to be m-regular if each Nk(p), for k = 1, ... ,m 

and for all p E M, has constant dimension. It is easily seen that if 
an immersion is m-regular. then each Nk for k = 1 •.•• ,m is a normal 
subbundle. 

If L is a normal subbundle, by eVl}m RllL = 0 it is to be understood 
that 

for all Xl"" ,Xm+2 E TM and all s EL. 

Finally, if n is a section of the normal subbundle L, then 

evl)m n E L means that 

Vi n E L for all Xl •... 'Xm E TM. 
m 

3. PROOF OF THEOREM 1-1. 

First, we recall the following indefinite version of a theorem of 
Allendoerfer- Erbacher (see [2J, [3]). 

3-1 PROPOSITION. Let f: M: 1---+ Q~+P(c) be an isometriC; 1:mmersion of 

a aonneated indefinite Riemannian manifold into a spaae form. If the 
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re exf~~s a k-dimensional parallel normal subbundle L(p) which con­

tairls the first normal space N1 (p) for all p E M~, then there exists 

a (n+k)-dimensional totally geodesic submanifold (possible degenerE. 

tel Q* of Q~+p(c) such that f(M~) C Q*. 

The following result i~ the main part of the proof of Theorem 1.1. 

3-2. PROPOSITION. Let f: M~ ~ Q~+t(c) be an isometric immersion 

that is m-regular in an open neighborhood U of a point p of M~. Then 

N;+l(P) {I; E N~(p): (C'Vl)k R1(O) = 0, (V1)k H(p) 1 I; for 

o .0;;; k .0;;; m}. 

The proof of the following four lemmas is the same as in the posi 
tive definite case (see [1]). 

3-3. LEMMA. Let M be an indefinite Riemannian manifold and en Vec­

tor fields defined in an open neighborhood U of a point p of M. 
Then, we have that 

i) «V)k I;,n> 

<1;,(V)k n> 

o for 0.0;;; k .0;;; m 

o for 0.0;;; k .0;;; m. 

ii) J «V)k I;,n> 0 for 0.0;;; k .0;;; m 

1 «V)m+l I;,n>(p) = o. 

{ 
<1;,(V)k n> = 0 for 

<1;,(V)m+l n>(p) = o. 
o .0;;; k .0;;; m 

if and only if 

if and only if 

3-4. LEMMA. Let f: M ~ M be an isometric immersion that is m-re-

gular in an open set U of M. Then, in U, we have that for r = 1, ••• ,m 

I; E N: if ahd only if A(V1)kl; = 0 for 0.0;;; k.o;;; r-1. 

3-5. LEMMA. Let f: M --+ M be an isometric immersion that is m-re­

gular in an open neighborhood U of a point p of M. Then, 

np E ~+l(P) if and only if there exists a local extension n of np 

such that i) A 1 k = 0 for 0 .0;;; k .0;;; m-l and ii) A 1 m = O. 
(V ) n ('V) n(p) 

3-6. LEMMA. Let f: M ~ M be an isometric immersion and n a nor­

mal vector field defined in an open neighborhood U of a point p of 

M. Then, we have that 

i) if and only if 
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Rl ((1/) k 11) = 0 for 0 .;;; k .;;; m-1 . 

ii) { ( (Vl ) k Rl) (n) 0 0';;;k';;;m-1 

CCV1)m Rl) (n(p)) o . 
if and only if 

{ Rl ( (Vl ) k 11 ) = 0 for 0';;;k';;;m-1 

Rl ( (Vl ) m 11 (p n = 0 

PROOF OF PROPOSITION 3-2. First of all, we note that if s E ~(p), 
then Rl(s) = 0 and H(p) 1 s. The proof will be divided in two parts, 

each of them showing one of the inclusions. 

i) Let 11 E ~ l(P). By Lemma 3-5, there exists a local extension p m+ 

n of 11 such that 
p 

A k = 0 for 0"'; k ...; m-1 
(Vl ) 11 

and A 1 O. 
(V )m n (p) 

By the Ricci equation, we may write 

RICCV1)k 11) = 0 for 0...; k.;;; m-1 and RICCvl)m n(p)) O. 

By Lemma 3-6 it follows that 

3-7 o for 0.;;; k .;;; m . 

By definition, one has that H E N1 • Therefore, it is immediate that 

3-8 (Vl)k H(p) 1 11p for 0.;;; k ...; m 

Then, the first inclusion follows from (3-7) and (3-8). 

ii) For this part of the proof we shall use induction. Using i), we 

may suppose that the proposition holds for Nl for 1 ...; j .;;; h. Let 
j 

11p E N~(p), which satisfies 

3-9 CC vl ) k Rl) (11 p ) 0 for o ...; k .;;; h 

and 

3-10 (V1 ) k H(p) 1 n for 0 ...;k.;;;h 
p 

By the induction hypothesis together with (3-9) and (3-10), we thus 

have 11p E ~(p). Let 11 be a local extension of 11p in ~. Then, 

3-11 

and 

3-12 

From Lemma 3-6, (3-9) and (3-11), it follows that 
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But this means that 

<R1 (X, Y) (Il 
zh 

o for all X,y,Zl, ... ,Zh E TM, 

i; E T M1. 
p 

By Ricci's equation 

In particular, 

3-13 1 
1/(p) 

o for all 

On the other hand, by Lemma 3-4 

3-14 A 1 = 0 for 0 ~ r ~ h-1 . 
(V ) r 1/ 

By Codazzi's equation applied to the normal vector field 

V1 V'1 1/, we obtain 
Xh _ l xl 

3-14 A 1 V'1 1 Y A 1 
v1 1 Z for all 

V'z V'x n V'y V'x 1/ Xh_l 1 
Xh_l 1 

Z,y,Xl,···,Xh E TM. 

From Lemma 3-3 together with (3-10) and (3-12) , it is clear that 

3-15 

We shall show that (3-13), (3-15) and (3~16) imply that 

A = O. Then, from (3-14) and Lemma 3-5, we obtain that 
(V1 )h 1/(p) 

np E ~+l(P) and the proposition follows. 

Let Zl, ..• ,Zn be an orthonormal basis and io a fixed index. From 

Codazzi's 

o = V'1 Xh _ l 

so that 

equation applied to the normal vector field 

V'1 1/, we obtain 
xl 

Z. 
l. 

o 
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L 

j=1 

Then 
n 
l 

j=1 

Thus 
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n 
<Z.,Z.><A 1 Zj ,Zj> ~ <Z . , Z. ><A 1 Z. ,Z. > 

J J V 15 j=1 J J V 15 10 J 
Z. Z. 

10 J 

n 1 
<~,Zj><a(Zj ,Zj) ,VZi 15> = ~ <Z.,Z .><A 1 Zj,Zio> 

j -1 J J V 15 
Zj 

1 n<H,Vz. 15> 
10 

0 

n 
.: ~ <Z.,Z.> A 1 Z.,Z. > 

j=1 J J V 15 J 10 
Z. 

10 

From (3-16), we obtain that, at p 

(3 -17) o 

If Yl' ... 'Yn is a pseudo-orthonormal basis, put in (3-17): 

and for 3 .so;; j .so;; n. Then, it 

follows that 

(3-18) o . 

By Theorem 0.4 and Proposition 0.5 of [3], we need to consider four 
cases. 

CASE 1. There exists a pseudo-orthonormal basis Y1 ' ... 'Yn such that 

Al Aj bj j j 
c3" .. ck 0 0 0 

0 Al 0 Aj o ... 0 
0 0 

A vi 15 = 
Al Ik A 0 ci 0 0 ~.15 A~ 1 J J 

0 'ito 

1 A~ 
J AR,Ik ·A~ R, 

J 

An easy computation shows that [A~,Aj] = 0 for 1 .so;; i,j .so;; n. Let us 

consider the positive definite subspace V= span {Y3 ' ... 'Yk } and 
o 

the symmetric linear transformations ~\ = V -+ V for i = 3,.' .• ,n, 

defined by 
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x-:- (X) 
1. 

Since A? 
1. 

Ai for 1 ~ i ~ n, thus there exists an orthonormal basis 

Y3""'YkO of V which diagonalizes simultaneously the matrices Ai 

for 1 ~ i ~ n. The matrix A does not change for the new basis 
'ill <5 

Y1 

Yl'Y2'Y3""'YkO'YkO+1""'Yn' and for the other matrices, we have 

(dropping the bar) 

;\j b j a j 
0 0 3 

0 ;\j 0 
0 

0 a j 
3 

yj 
3 

A 1 
'ilY. 

a j J 0 
ko 

From (3-15) , we obtain 

i) for Z = Y1 and Y = Y2 

;\2 = 1 
0 

ii) for Z Y1 and Y Y. , 3 ~ j 
J 

;\3 
0 

iii) for Z Y2 and Y Y. , 3 ~ j 
J 

a~ 2 
J 

Yj 

From (3-18) , we obtain 

iv) y~ = 0 3 ~ j ~ k 
J 0 

ko 
a~ v) Z + L 0 

j=3 J 

From (3-16) , we have that 

A A A A 
'ill <5 'ill <5 'ill <5 1,/ <5 

YZ Y. Y. Y2 
J J 

o 

~k 
0 

;\ 
ko 
0 

~ k 
0 

A~ 
J 

0 

. ~ 
A. 

J 

3~ ~n. 

In particular, comparing the j~ element of the first line of both 
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matrix products. we obtain 

vi) 

From i). ii). iii). iv) and vi). it follows that 

. • 2' 
a~ = (a~) • 

which is a contradiction to v). So case 1 is not possible. 

CASE 2. There exists a pseudo-orthonormal basis Y l' ... '. Yn such that 

Al 

° 
0 llj bj j j 

c1·· .ck +1 

Al llj ° 0 0 0 o ••• 0 

0 Al 0 cj 
A 0, A 1 

vit'l All ~.t'l Aj 
° ko ° 1 J j 0 ck +1 . ° A~ I 

AR,IkR, J • 

From (3-15). we have 

Thus 

which is not possible. So Case 2 can not occur. 

~A5E 3. There exists an orthonormal basis YI •...• Yn such that 

A 
~l t'l 

Yl 

where 

From 

i) 

a 1 al 

-a 1 a l 

a 1I k 
° 1 

AIIkl 

1 
AR,Ik 

al ., O. 

(3-15). we obtain 

for Z = YI and Y 

R, 

Y2 

a. 
J, 

-a. 
J 

". 

. . 
A~ 

J 
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From (3-17), we obtain 

ii) 

Then S1 = 0, which is a contradiction. So case 3 is not possible. 

CASE 4. There exists an orthonormal basis Y1 ' ... 'Yn such that 

A Ik 
o 0 

It is easy to see that the basis can be chosen in such a way that 

for 2.;;;; .;;;; n 

where Aj (a j ) is a k x k matrix. 
k2 0 0 

From (3-15), it follows that 

y~ = 0 if· 5 ~ t and ko+1';;;; s,t .;;;; n . 

Then (3-17) implies that 

yS = 0 for k +1 .;;;; s .;;;; n . 
S 0 

Using (3-15) for Z = Yj , 1.;;;; j .;;;; ko ' and Y 

we obtain 

o and 

Then, from (3-17), it follows that 

ko 

o . 

L <Y.,Y.><A 1 Yj 'Y1> o. 
j =1 J J V· 0 

Y. 
J 

Thus 
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ko 
L <Y. ,Y . ><A 1 Y., Y.> 0 

j=I J J 'V 0 J J 
Y1 

SO we obtain -" + (ko -1) " 0 
0 0 

Therefore, " = 0 or k 2. 
0 0 

If " = 0, from (3-15) for Z =Y 1 and Y Yk , 1 .;;; k .;;;k 
0 0 

we obtain 
k a in = 0 . 

But then, all the matrices can be simultaneously diagonalized and 
the same argument as in the beginning of this case shows that they 
must vanish. 

If ko = 2 , we have 

[
all 

-a 12 

From (3-15), we obtain 

" -a 12 all = 0 
0 

From (3 -17), we obtain 

" a 12 a 22 0 
0 

Thus 
A 0 A 
vl 0 'Vl 0 Yl Y2 

which concludes the proof. 

PROOF OF THEOREM 1-1. From Proposition 3-2, we have 

Thus 

tI (p) 
m ~+l(P) 

It follows that Nm is a parallel normal subbundle and we can apply 
Proposition 3.2 to complete the proof. 

REMARK. In fact, we proved that 
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o 
Nm is parallel if and only if 

REMARK. The Theorem 1-1 remains valid if the immersion is m-regular 

in an open connected and dense subset of Mn. 
s 
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