LA VARIEDAD DE DISTANCIAS ENTRE PUNTOS

Patricia Fauring, Flora Gutiérrez y Angel Larotonda

En cuestiones vinculadas con las configuraciones centrales, interesa establecer las relaciones existentes entre n puntos distintos $\mathbf{x_1},\dots,\mathbf{x_n}$ en $\mathbf{R^3}$ y sus distancias mutuas $\mathbf{t_{ij}} = |\mathbf{x_i} \cdot \mathbf{x_j}|$ ([1], § 357); esto suele hacerse utilizando recursos de geometría métrica (como en [2], ch.IV mediante los "determinantes de Cayley-Menger"). En la presente nota se replantea el problema en términos de espacios homogéneos bien conocidos.

1. FORMAS CUADRATICAS SEMIDEFINIDAS POSITIVAS.

Si E y V son espacios de Hilbert reales, indicamos con L(V,E) al espacio de Banach de todas las aplicaciones lineales continuas $V \to E$; O(V) designará al grupo ortogonal de V (subvariedad cerrada de L(V,V)), mientras que O(V,E) será la variedad de Stiefel de tipo V asociada a E, es decir, el conjunto de las aplicaciones lineales u: $V \to E$ "isométricas", |u(x)| = |x| para todo $x \in V$. Notemos que $u \in O(V,E)$ equivale a decir que $u \in L(V,E)$ y que $u^*u = 1$, (donde u^* indica el adjunto de u); se sabe que O(V,E) es una

= 1_V (donde u* indica el adjunto de u); se sabe que O(V,E) es una subvariedad cerrada de L(V,E), cuyo espacio tangente en $u_0 \in O(V,E)$ se identifica al subespacio {a: $a*u_0 + u_0^*a = 0$ } de L(V,E).

La operación a izquierda (σ ,u) \to u σ de O(V) sobre O(V,E) da lugar al fibrado principal

$$O(V) \rightarrow O(V,E) \rightarrow G_{V}(E)$$
 (1)

donde $\mathbf{G}_{\mathbf{V}}(\mathbf{E})$ es la variedad Grassmaniana de los subespacios de tipo \mathbf{V} de \mathbf{E} .

En el subespacio cerrado $H(V) \subset L(V,V)$ formado por las aplicaciones lineales autoadjuntas (es decir $f = f^*$) consideramos el cono cerrado $H^+(V)$ formado por las aplicaciones positivas, es decir las que verifican $\langle f(x), x \rangle \geqslant 0$ para todo $x \in V$. Vista la identificación de formas cuadráticas -continuas sobre V- con elementos de H(V), $H^+(V)$

corresponde a las formas cuadráticas (semidefinidas) positivas.

También interesa el cono $GH^+(V) = GL(V) \cap H^+(V)$, que es un conjunto abierto en H(V) -esto es evidente si dim $V < \infty$, y en el caso general basta recordar que si $h \in GH^+(V)$ entonces $0 \notin Sp(h) \subset [m,\infty)$ don de $m = \inf\{\langle h(x), x \rangle, |x| = 1\}$ y por lo tanto para un $\epsilon > 0$ conveniente será: $\|h-f\| < \epsilon$, $f \in H(V) \Rightarrow f \in GH^+(V)$.

Con Mono(V,E) designamos al subconjunto de L(V,E) formado por las aplicaciones inyectivas con imagen cerrada (es decir, los isomorfismos de V sobre subespacios de E); se trata de un subconjunto abierto de L(V,E).

El producto (o composición) permite definir una aplicación

$$a: O(V,E) \times GH^{+}(V) \longrightarrow Mono(V,E)$$
 (2)

por a(u,h) = uh.

1.1. LEMA. La aplicación a es un difeomorfismo C^{∞} .

Demostración. Que a es C^{∞} es evidente; la inversa de a se obtiene por el siguiente procedimiento: dado $f \in Mono(V,E)$, $a^{-1}(f) = (fh^{-1},h)$ donde $h \in GH^+(V)$ es la única solución de $h^2 = f^*f$. Notemos que $f^*f \in H^+(V)$ trivialmente; asimismo es evidente que f^*f es inyectiva, mientras que $f(V) \oplus Ker(f^*) = E$ muestra que f^*f es survectiva. Esta construcción muestra además que a^{-1} es C^{∞} , por serlo $g \to g^{1/2}$ de $GH^+(V)$ en $GH^+(V)$.

El lema 1.1 no es otra cosa que una reformulación de la "descomposición polar" de un monomorfismo. En particular si f: $V_1 \rightarrow V_2$ es un isomorfismo continuo, la descomposición polar f = uh nos provee de una isometría u: $V_1 \rightarrow V_2$. Usando esto se produce enseguida un difeomorfismo C^{∞} de $O(V_2,E)$ sobre $O(V_1,E)$ -por composición de u-. En consecuencia la variedad O(V,E) depende del espacio V más que del producto interno específico que se utiliza en su definición: productos internos equivalentes en V dan variedades difeomorfas. Por ello tiene sentido escribir $O(k,E) = O(R^k,E)$ sin especificar explícitamente el producto interno en R^k , que en general se supondrá que es el canónico.

Ahora, si V y E son espacios de Hilbert, designamos con L(k,V,E) $(k\geqslant 0)$ al subconjunto de L(V,E) formado por las aplicaciones de rango k, esto es: dim f(V)=k. Asimismo ponemos $H_k^+(V)=H^+(V)\cap L(k,V,V)$ ("formas cuadráticas positivas de rango k").

El resultado siguiente es conocido (ver por ejemplo [3], 1.1):

1.2. PROPOSICION. Para todo $k \ge 0$, L(k,V,E) es una subvariedad de L(V,E); además, para cada $p \ge 0$ el conjunto $\bigcup_{k \le p} L(k,V,E)$ es cerrado en L(V,E).

Demostración. Sea $f_0 \in L(V,E)$ tal que dim $f_0(V) = k$; si $N_0 = Ker(f_0)$, $S_0 = N_0^L$, $W_0 = f_0(V)$ entonces $f_0(N_0) = 0$ y $f_0|S_0: S_0 \rightarrow W_0$ es un isomorfismo.

Por composición con los correspondientes proyectores e inclusiones se obtiene un isomorfismo

$$L(V,E) \gtrsim L(S_0,W_0) \times L(N_0,W_0) \times L(S_0,W_0^{\perp}) \times L(N_0,W_0^{\perp})$$

que representa a cada f por la matriz de transformaciones

$$\mathbf{f} \to \begin{pmatrix} \mathbf{a_f} & \mathbf{b_f} \\ \mathbf{c_f} & \mathbf{d_f} \end{pmatrix} \tag{3}$$

 $\mathbf{a_f} \in \mathrm{L}(\mathbf{S_0}, \mathbf{W_0}) \,, \,\, \mathbf{b_f} \in \mathrm{L}(\mathbf{N_0}, \mathbf{W_0}) \,, \,\, \mathbf{c_f} \in \mathrm{L}(\mathbf{S_0}, \mathbf{W_0^l}) \,, \,\, \mathbf{d_f} \in \mathrm{L}(\mathbf{N_0}, \mathbf{W_0^l}) \,.$

Sea U el subconjunto de L(V,E) formado por las f para las cuales $a_f \in \operatorname{Iso}(S_0,W_0)$; como este conjunto es abierto en L(S_0,W_0), y como la aplicación (3) es un isomorfismo, resulta claro que U es abierto en L(V,E). Además es evidente que f_0 es un elemento de U \cap L(k,V,E). Un argumento sencillo muestra que

$$U \cap L(k, V, E) = \{f: d_f = c_f a_f^{-1} b_f \}$$
 (4)

Utilizando (4) se obtiene sin dificultad un mapa

$$U \cap L(k,V,E) \rightarrow Iso(S_0,W_0) \times L(N_0,W_0) \times L(S_0,W_0^{\perp})$$
 (5)

dado por f \rightarrow (a_f,b_f,c_f), estableciendo la primera parte de la tesis. (Notemos que $Iso(S_0,W_0) \approx GL(R^k)$).

Para la segunda afirmación basta probar que la aplicación f oup dim(f(V)) es semicontinua inferiormente, de L(V,E) en $N \cup \{\infty\}$. Pero si dim $f_0(V) > r$ y $N_0^I = Ker(f_0)$ hay entonces r vectores x_i en N_0 tales que $f_0(x_i)_{i \le r}$ es linealmente independiente; sea S el subespacio generado por los x_i . Es dim(S) = r, y el conjunto $U = \{f \in L(V,E): f|S \in Mono(S,E)\}$ es abjecto en L(V,E). Claramente

 $\begin{tabular}{ll} $U = \{f \in L(V,E): \ f | S \in Mono(S,E) \}$ es abierto en $L(V,E)$. Claramente $f_0 \in U$ y dim $f(V) > r$ para toda $f \in U$ lo que completa la demostration $f(V) = r$ para toda $$

ción.

Análogamente resulta

1.3. PROPOSICION. Para cada $k \ge 0$, $H_k^+(V)$ es una subvariedad de H(V) y para cada $p \ge 0$, el conjunto $\bigcup_{k \le p} H_k^+(V)$ es cerrado en H(V).

 $\begin{array}{lll} \textit{Demostración}. & \text{El esquema es el mismo que el de la proposición anterior: si } \mathbf{f_0} \in \textbf{H}_k^+(\textbf{V}) \text{ sean } \textbf{N}_0 = \textbf{Ker}(\mathbf{f_0}) \text{, } \textbf{S}_0 = \textbf{N}_0^L = \mathbf{f_0}(\textbf{V}) \text{; ciertamente } \mathbf{f_0} \big| \textbf{S}_0 \in \textbf{GH}^+(\textbf{S}_0) \text{.} \end{array}$

En la representación (3) se tendrá ahora

$$H(V) \gtrsim H(S_0) \times L(N_0, S_0) \times H(N_0)$$

mediante

$$f \rightarrow \begin{pmatrix} a_f & b_f \\ b_f^* & d_f \end{pmatrix}$$

Consideramos $U = \{f \in H(V): a_f \in GH^+(S_0)\}$, entorno abierto de f_0 en H(V); como en la proposición anterior se tendrá

$$U \cap H_{L}^{+}(V) = \{f \in H(V) : d_{f} = b_{f}a_{f}^{-1}b_{f}\}$$

y se obtiene un mapa para $H_k^+(V)$ poniendo

$$U \cap H_k^+(V) \rightarrow GH^+(S_0) \times L(N_0, S_0)$$
(6)

vía f \rightarrow (a_f,b_f) . El resto es idéntico a la proposición anterior.

Ahora para dos espacios de Hilbert V y E podemos definir una aplicación de clase C^{∞} mediante

$$\beta \colon L(k,V,E) \to H_k^+(V) \tag{7}$$

donde $\beta(f) = f*f$.

1.4. PROPOSICION. Si $k \leq \dim(E)$, la aplicación β es una fibración localmente trivial cuya fibra tipo es O(k,E).

Demostración. Sea $f_0 \in H_k^+(V)$, con $S_0 = f_0(V)$ y $N_0 = S_0^1 = \mathrm{Ker}(f_0)$; de acuerdo con la proposición anterior, el conjunto $\Omega = \{f \in H_k^+(V) \colon \Pi_0 f \big| S_0 \colon S_0 \to S_0 \text{ es isomorfismo} \} \text{ es un entorno abierto de } f_0 \text{ en } H_k^+(V) \text{ .}$

Definimos una trivialización de β sobre Ω mediante

$$\tau: \beta^{-1}(\Omega) \to \Omega \times O(S_0, E)$$

donde $\tau(g) = (g^*g, \gamma(g))$ con $\gamma \colon \beta^{-1}(\Omega) \to O(S_0, E)$ la única aplicación C^{∞} definida por el procedimiento siguiente:

como g = (g_0,g_1) con $g_0\colon S_0\to E$, $g_1\colon N_0\to E$, $g_0^*g_0\colon S_0\to S_0$ es un elemento de $GH^+(S_0)$, luego hay un único $h\in GH^+(S_0)$ tal que $h^2=g_0^*g_0$. Entonces $\gamma(g)=g_0h^{-1}\colon S_0\to E$ es trivialmente una isometría de S_0 en E.

Que au es un difeomorfismo es claro, ya que su inversa se obtiene haciendo

$$(f,u) \rightarrow (g_0,g_1), g_0 \colon S_0 \rightarrow E, g_1 \colon N_0 \rightarrow E$$

como sigue:

$$f = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}$$
, $a \in GH^+(S_0)$, $b^*a^{-1}b = c$. Consideramos el único $h \in GH^+(S_0)$ tal que $h^2 = a$ y tomamos $g_0 = uh$, $g_1 = uh^{-1}b$.

1.5. COROLARIO. Si dim(E) = r, la aplicación β deviene en el fibrado principal

$$O(E) \rightarrow Epi(V,E) \rightarrow H_r^+(V)$$

Mencionemos asimismo que si k = dim(V), 1.4 reproduce 1.1.

2. ALGUNOS FIBRADOS INTERESANTES.

En lo que sigue V y E serán espacios de Hilbert, V de dimensión finita n-1, en el cual se supone fijada una base ortonormal a_1, \dots, a_{n-1} .

Definimos una aplicación lineal

$$\Psi: E^{n} \to L(V, E) \tag{8}$$

poniendo $\Psi(x)$ $(\sum_{i=1}^{n-1} t_i a_i) = \sum_{i=1}^{n-1} t_i (x_i - x_n)$, y definimos también una

operación de E sobre Eⁿ mediante

$$a \star (x_1, ..., x_n) = (x_1 + a, ..., x_n + a)$$
 (9)

El siguiente hecho es trivial:

- 2.1. LEMA. a) La aplicación Ψ es un epimorfismo cuyo núcleo es el subespacio diagonal $\{(x,x,\ldots,x)\colon x\in E\}$ de E^n .
- b) $\Psi(x) = \Psi(x')$ equivale a a \star x = x' para un único a \in E.
- c) E^n/E se identifica mediante Ψ con L(V,E).

Ahora sea q: $L(V,E) \rightarrow H^{+}(V)$ la aplicación cuadrática dada por q(f) = f*f; por composición con (8) se obtiene la aplicación cuadr<u>á</u>tica

$$\phi \colon \operatorname{E}^{\operatorname{n}} \to \operatorname{H}^{+}(\operatorname{V}) \tag{10}$$

Notemos que $\phi(x)$ tiene como matriz en la base a_1, \dots, a_{n-1}

$$\langle x_i^- x_n^-, x_j^- x_n^- \rangle$$
 (1 \le i, j \le n-1) (11)

Si $E_k^n \subset E^n$ indica el subconjunto de E^n formado por los x_1, \ldots, x_n tales que la variedad lineal afín $[x_1, \ldots, x_n]$ generada por ellos tiene dimensión exactamente k, resulta de 2.1 (cf.1.2):

- 2.2. PROPOSICION. a) Para todo $k \ge 0$, E opera (mediante (9)) sobre E_{ν}^{n} .
- b) $\mathbf{E}_{\mathbf{k}}^{\mathbf{n}}$ es una subvariedad de $\mathbf{E}^{\mathbf{n}}$ y Ψ induce un difeomorfismo

$$\overline{\Psi}$$
: $E_{k}^{n}/E \cong L(k,V,E)$.

c) Para cada $p \ge 0$ el conjunto $\bigcup_{k \le p} E^n_k$ es cerrado en E^n .

Del mismo modo, usando 1.4 se obtiene:

2.3. PROPOSICION. Si $k \leq \dim(E)$, la aplicación $\phi_k \colon E_k^n \to H_k^+(V)$ define una fibración localmente trivial, con fibra tipo el espacio $E \times O(k,E)$.

En particular, si r = dim(E) se obtiene un fibrado principal $E \times O(E) \to E_r^n \to H_r^+(V)$ con el grupo $E \times O(E)$ operando sobre E^n mediante la acción diagonal. (Nótese que en tal caso E_r^n es abierto en E^n).

Ahora es muy fácil demostrar el teorema de Schoenberg ([2], 43.1):

2.4. PROPOSICION. Sea E un espacio de Hilbert, sea $0 \le k \le \dim(E)$ y sean $t_{ij} \ge 0$ ($1 \le i,j \le n$) tales que $t_{ii} = 0$, $t_{ij} = t_{ji}$ para todo

a) Existen x_1, \ldots, x_n en E que verifican: i) La dimensión de la va-

i,j. Entonces son equivalentes las siguientes afirmaciones:

riedad lineal afin $[x_1,...,x_n]$ es k; ii) $|x_i-x_j|=t_{ij}$ para todo i,j.

b) La matriz $a = (a_{ij})_{i,j \le n} \in R^{(n-1)\times(n-1)}$ definida por

$$a_{ij} = \frac{1}{2} (t_{in}^2 + t_{jn}^2 - t_{ij}^2)$$
 (12)

es semidefinida positiva de rango k.

c) La forma cuadrática $v \to Q(v) = \sum\limits_{i,j} t_{ij}^2 v_i v_j$ (definida sobre R^n) es definida negativa de rango k sobre el hiperplano de ecuación $\sum\limits_{i=1}^n v_i = 0.$

Demostración. La equivalencia de a) y b) resulta de 2.3 puesto que $2\ a_{ij} = |x_i - x_j|^2 + |x_j - x_n|^2 - |x_i - x_j|^2 = 2 < x_i - x_n, \ x_j - x_n > \text{ expresa}$ que la matriz a es de la forma $\phi_k(x)$ (cf.(11), $V = R^{n-1}$). La equivalencia de b) y c) es rutinaria: si M es el hiperplano en R^n de ecuación $\sum\limits_{i=1}^n v_i = 0$, se interpreta M como el gráfico de una aplicación de R^{n-1} en R. Más precisamente, sea j: $R^{n-1} \to R^n$, $j(v_1, \dots, v_{n-1}) = (v_1, \dots, v_{n-1}, -\sum\limits_{i=1}^{n-1} v_i)$, así que j es un isomorfis mo entre R^{n-1} y M.

Ahora si a = $(a_{ij})_{i,j \le n}$ es la matriz definida a partir de los t_{ij} mediante (12) y si K: $R^{n-1} \to R$ es la forma cuadrática asociada (es decir, $K(v) = \sum_{i,j} a_{ij} v_i v_j$), entonces un cálculo simple muestra que $K(v) = -\frac{1}{2} Q(j(v))$ para todo $v \in R^{n-1}$. Luego K es semidefinida positiva si y sólo si $Q \mid M$ es semidefinida negativa.

La afirmación correspondiente al rango es también inmediata, ya que j es un isomorfismo.

NOTA. Si se pretende que los puntos x_1, \ldots, x_n de 2.4 a) sean todos distintos hay que agregar hipótesis a las afirmaciones b) y c), ya sea: $t_{ij} > 0$ para todo $i \neq j$, o bien utilizando el hecho que $a_{ij} = \langle x_i - x_n, x_j - x_n \rangle = \phi_k(x)_{ij}$, imponer las condiciones

$$a_{ii} > 0$$
 $a_{ii} + a_{jj} > 2 a_{ij}$ $(1 \le i, j \le n-1)$.

De otra forma, si ∆ es la diagonal generalizada en Eⁿ:

$$E^{n_{i}} = \{(x_{1}, \dots, x_{n}) : x_{i} \neq x_{i} \text{ si } i < j\},$$

 E^n - Δ es una subvariedad abierta de R^n , establece por la acción de E; la proposición 2.2 subsiste si se reemplaza E^n_k por E^n_k - Δ y L(k,V,E) por $L(k,V,E)_{\Delta}$ (subconjunto formado por las aplicaciones de de rango k que verifican $0 \neq f(a_i) \neq f(a_j)$ si i < j). En 2.3 se debe reemplazar $H^+_k(V)$ por el subconjunto abierto formado por las formas cuadráticas q (positivas, de rango k) que cumplen las condiciones

$$q(a_i) > 0$$
 $q(a_i - a_j) > 0$ si $1 \le i < j \le n-1$.

REFERENCIAS

- [1] Wintner A., The analytical foundations of celestial mechanics, Princeton Math. Ser. 5 (1947).
- [2] Blumenthal, L., Theory and applications of distance geometry, Oxford Univ. Press. (1953).
- [3] Koschore, U., Infinite dimensional K-theory, Proc. of Symp. in Pure Math. Vol.XV (1970), 95-135.

Departamento de Matemática, FCEN Universidad de Buenos Aires Pabellón I, Cdad. Universitaria, Cap. Fed. (1428) Argentina.

Recibido en diciembre de 1981. Versión final diciembre de 1984.