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FINITE TETRAVALENT MODAL ALGEBRAS

Isabel Loureiro

' ABSTRACT. We prove that a finite tetravalent modal algebra is deter-
mined, up to an isomorphism, by its determinant system, applying the
results of [4] .

INTRODUCTION.

It is well known that a finite distributive lattice A is determined,
up to an isomorphism, by the ordered set w of all its prime elements
[1] . Similarly, a finite De Morgan algebra A is determined by its de
terminant system [5,6,8] . The aim of this paper is characterize the
determinant system of a finite tetravalent modal algebra A and ob-
tain from it the structure of A.

Recalling from [3,4] we have:

1. DEFINITION. A tetravalent modal algebra <A;A,v,~,V,1> or, simply
A, is an algebra of type (2,2,1,1,0) satisfying the following axioms:

Al) xA(xvy) = x , Az) XA(y9z) = (zax)v (yax)
A3) ~~X = X s A,) ~(xAy) = ~xv~y
Ag) ~xvix = 1 , Ag) XA~X = ~XAVX

Let A be a finite tetravalent modal algebra and. <m,%> its prime spec
trum [4] . In this case, it is well known-that a prime filter P of A
is a principal filter P = F(p) where p is a prime element of A [2].
Therefore we shall identify the set m with the family of all prime
elements of A. We can also identify the Birula-Rasiowa transforma-
tion associated with A [4], ¢, with a map ¢ from the set = of all
prime elements of A, into itself. If p € m, ¢(p) is the generator of
the principal prime filter ¢(F(p)) = F(q), i.e., ¢(p). = q € 7. Thus
¢ has the following properties:

1) ¢(¢p(p)) = p for each p € m.

2) 1f p;,p, € m and p; < pzlthen o(p,) < ¢(py)-
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.2. DEFINITION. The couple <m,¢> is the determinant system of the fi
nite tetravalent modal algebra A.

“An immediate consequence of theorem 3.8 of [4] is the following re-
sult, which gives us the characterization of the determinant system
of a finite tetravalent modal algebra:

3. THEOREM. The determinant system <T,¢> of a finite tetravalent
modal algebra A, has ¢-connected components of the three following

"~ types:
Type I: g)p with ¢(p) = p.
Type II: (§ 1 with  ¢(p) =a and ¢(q) = p.
Type III: p°¥afq with ¢(p) = q and ¢(q) = p.

Following the work of A.Monteiro in [5,6,8], let us show that it is
possible to recover the operator V:from the knowledge of the deter-
minant system of a finite tetravalent modal algebra A.

From [4] we recall the following lemma, that will simplify the
proofs of next results:

4. LEMMA [4]. Let A be a tetravalent modal algebra, a € A. If P is
a prime filter in A, then Va € P iff a € P or a € ¢(P)..

We have then:

5. THEOREM. In a finite tetravalent modal algebra A with determi-
nant system <m,¢>, Zf p € w, then Vp = pvéo(p).

froof. Let us prove that we have (a) pvé(p) < Vp.

From [4] we know that (b) p<Vp. Since p € m, P = F(p) is a prime fil-
ter in A. Let us suppose that (c) ¢(p) € Vp; it follows then (d)

Vp € F(¢(p)) = ¢(P), From (d), by lemma 4, it follows p & ¢(2(p)) =
= P, which is a contradiction. So we get ¢(p) < Vp and we have (a)
as wished.

Let us suppose that (e) pv¢(p) < Vp holds. It is well known, in lat
tice theory, that in this condition, there is a prime filter Q=F(q).
in A such that:

(£) VpeqQ and (g) pvé(p) € Q.
From (f) and lemma 4, it follows either (h) p € Q or (i) p € ¢(Q).

Since (h) contradicts (g), we have (i), which is eduivalent to (3)
P C 9(Q). Applying lemma 2.4 of [4] to condition (j), we get either
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() P = 9(Q) or (m) ¢(P) = ¢(Q). From (£), we have p = ¢(q), thus
6(p) = q and so ¢(p) € Q, which contradicts (g). From (m) we get
P=0Q, sop €Q, that also contradicts (g). Therefore we cannot ha-
ve condition (e); hence, from (a) it follows that pvé(p) = Vp.

From the above result, we then have:

6. THEOREM. Let A be a finite tetravalent modal algebra whose deter
minant system is <m,¢>. If X € A , we have:

1) If x = 0 , then Vx

0.
2) If x # 0 , them VX

) (pv¢(p)), where w(x) = {p € m: p < x}.
pem(x) -

Proof. Let x € A. 1) If x=0, by definition 0 = ~1 [3] . Using axiom
Ag) we have 0 A 1 =1 A V0, thus 0 = V0, so Vx = 0.

2) Let x#0. It is well known that: (a) x = V p [2].
peT(xX)
Since V(avb) = Va v vb [3], from (a) it follows: (b) Vx = V vp.

pET(X)
From (b) and theorem 5, we finally have:

vx =V (pve(p)).
peT(x)

Now we can prove the main result of this paper, which justifies the
given name of determinant system of a finite tetravalent modal al-
gebra:

7. THEOREM. Let <m,¢> be a couple formed by a finite ordered set
(L) and an anti—isomorphism ¢ from T into W which is an involution
of m, such that its ¢-connected components are of the three types
of theorem 3. Then, there is up to an isomorphism, a finite tetra-

valent modal algebra A whose determinant system 18 <T,$>.

Proof. In these conditions, from [1,5,6,8] we have at once that the-
re is, up to an isomorphism, a finite De Morgan algebra A whose de-
terminant system is <m,¢>. Define an operator V over A: '

Let x € A:

v;) If x=0, let VO = 0,

v,) If x#0, let Vx v (pvé (p)), where m(x) = {p € m: p < x}.

pem(x)
These formulas make sense, because w(x) is a finite set. From the
definition of the operator V, we get at once (1) x < Vx.

We must prdve that this operator V satisfies the two axioms Aj5) and
Ag) from the definition of a tetravalent modal algebra.
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a) Axiom A5) ~xvVx = 1 is verified:

Let us suppose that we had (2) ~xvVx # 1. By [7], from (2) it fol-
lows that there is a prime filter P of A, such that (3) ~xvVx ¢ P.
From (3) we get: (4) ~x & P; (5) Vx € P. Condition (4) is equiva-
lent to x & ~P, which is equivaleﬁt to (6) x € ®(P). But, applying
lemma 4 to condition (5), we obtain x € P and x € ¢(P) which contra
dicts (6). Thus, condition (2) cannot hold and so axiom Ag) is ful-
filled.

b) Axiom A6) XA~X = ~XAVX is verified:

From (1) it follows at once (I) xA~x <~xAVx. Let us suppose that we
had (7) ~xaVx € x A ~x. Then it should be a.prime filter P of A
such that (8) ~xaVx € P and (9) xA~x € P. From (8) it follows (10)
~x € P and (11) Vx € P. Applying lemma 4 to (11) we get either (12)
X € P or (13) x € (P). Conditions '(10) and (12) imply xa~x € P,
which is against (9), so (12) cannot hold and we have (13). But
this one is equivalent to x & ~P which is equivalent to ~x € P,
which contradicts (10). Therefore we cannot have (7) and we get
(II) ~xAVX < XA~X.

From (I) and (II) it follows that axiom A6) XA~X = ~XAVX is veri-
fied. '

Therefore the operator V gives to A the required structure of tetra
valent modal algebra.
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