Revista de la Unión Matemática Argentina Volumen 31, 1984.

FINITE TETRAVALENT MODAL ALGEBRAS

Isabel Loureiro

ABSTRACT. We prove that a finite tetravalent modal algebra is determined, up to an isomorphism, by its determinant system, applying the results of [4].

INTRODUCTION.

It is well known that a finite distributive lattice A is determined, up to an isomorphism, by the ordered set π of all its prime elements [1]. Similarly, a finite De Morgan algebra A is determined by its d<u>e</u> terminant system [5,6,8]. The aim of this paper is characterize the determinant system of a finite tetravalent modal algebra A and obtain from it the structure of A.

Recalling from [3,4] we have:

1. DEFINITION. A tetravalent modal algebra $\langle A; A, v, \sim, \nabla, 1 \rangle$ or, simply A, is an algebra of type (2,2,1,1,0) satisfying the following axioms:

A_1) $x \land (x \lor y) = x$,	$A_{2}) x \wedge (y \vee z) = (z \wedge x) \vee (y \wedge x)$
$A_3 \sim x = x$,	A_4 ~(x Ay) = ~xv~y
$A_5) \sim x_V \nabla x = 1$,	A_6) $x \wedge x = -x \wedge \nabla x$.

Let A be a finite tetravalent modal algebra and $\langle \pi, \phi \rangle$ its prime spec trum [4]. In this case, it is well known that a prime filter P of A is a principal filter P = F(p) where p is a prime element of A [2]. Therefore we shall identify the set π with the family of all prime elements of A. We can also identify the Birula-Rasiowa transformation associated with A [4], ϕ , with a map ϕ from the set π of all prime elements of A, into itself. If $p \in \pi$, $\phi(p)$ is the generator of the principal prime filter $\phi(F(p)) = F(q)$, i.e., $\phi(p) = q \in \pi$. Thus ϕ has the following properties:

> 1) $\phi(\phi(p)) = p$ for each $p \in \pi$. 2) If $p_1, p_2 \in \pi$ and $p_1 \leq p_2$ then $\phi(p_2) \leq \phi(p_1)$.

2. DEFINITION. The couple $\langle \pi, \phi \rangle$ is the determinant system of the finite tetravalent modal algebra A.

An immediate consequence of theorem 3.8 of [4] is the following result, which gives us the characterization of the determinant system of a finite tetravalent modal algebra:

3. THEOREM. The determinant system $\langle \pi, \phi \rangle$ of a finite tetravalent modal algebra A, has ϕ -connected components of the three following types:

Type I: $\oint p$ with $\phi(p) = p$. Type II: $\iint p^{\circ} q$ with $\phi(p) = q$ and $\phi(q) = p$. Type III: $p^{\circ} q$ with $\phi(p) = q$ and $\phi(q) = p$.

Following the work of A.Monteiro in [5,6,8], let us show that it is possible to recover the operator ∇ from the knowledge of the determinant system of a finite tetravalent modal algebra A.

From [4] we recall the following lemma, that will simplify the proofs of next results:

4. LEMMA [4]. Let A be a tetravalent modal algebra, $a \in A$. If P is a prime filter in A, then $\forall a \in P$ iff $a \in P$ or $a \in \phi(P)$.

We have then:

5. THEOREM. In a finite tetravalent modal algebra A with determinant system $\langle \pi, \phi \rangle$, if $p \in \pi$, then $\nabla p = pv\phi(p)$.

Proof. Let us prove that we have (a) $pv\phi(p) \leq \nabla p$. From [4] we know that (b) $p \leq \nabla p$. Since $p \in \pi$, P = F(p) is a prime filter in A. Let us suppose that (c) $\phi(p) \leq \nabla p$; it follows then (d) $\nabla p \notin F(\phi(p)) = \phi(P)$, From (d), by lemma 4, it follows $p \notin \phi(\phi(p)) = P$, which is a contradiction. So we get $\phi(p) \leq \nabla p$ and we have (a) as wished.

Let us suppose that (e) $pv\phi(p) < \nabla p$ holds. It is well known, in lat tice theory, that in this condition, there is a prime filter Q=F(q) in A such that:

(f) $\nabla p \in Q$ and (g) $pv\phi(p) \notin Q$.

From (f) and lemma 4, it follows either (h) $p \in Q$ or (i) $p \in \Phi(Q)$. Since (h) contradicts (g), we have (i), which is equivalent to (j) $P \subseteq \Phi(Q)$. Applying lemma 2.4 of [4] to condition (j), we get either (ℓ) P = Φ(Q) or (m) Φ(P) = Φ(Q). From (ℓ), we have p = Φ(q), thus φ(p) = q and so φ(p) ∈ Q, which contradicts (g). From (m) we get P = Q, so p ∈ Q, that also contradicts (g). Therefore we cannot have condition (e); hence, from (a) it follows that pvφ(p) = ∇p.
From the above result, we then have:
6. THEOREM. Let A be a finite tetravalent modal algebra whose deter minant system is <π, φ>. If x ∈ A, we have:
1) If x = 0, then ∇x = 0.
2) If x ≠ 0, then ∇x = V pcπ(x)
Proof. Let x ∈ A. 1) If x=0, by definition 0 = ~1 [3]. Using axiom A₆) we have 0 ∧ 1 = 1 ∧ ∇0, thus 0 = ∇0, so ∇x = 0.
2) Let x≠0. It is well known that: (a) x = V pcπ(x)
Since ∇(avb) = ∇a v ∇b [3], from (a) it follows: (b) ∇x = V pcπ(x)
From (b) and theorem 5, we finally have:

 $\nabla x = \bigvee_{p \in \pi(x)} (p \lor \phi(p)).$

Now we can prove the main result of this paper, which justifies the given name of determinant system of a finite tetravalent modal algebra:

7. THEOREM. Let $\langle \pi, \phi \rangle$ be a couple formed by a finite ordered set $\pi(\leqslant)$ and an anti-isomorphism ϕ from π into π which is an involution of π , such that its ϕ -connected components are of the three types of theorem 3. Then, there is up to an isomorphism, a finite tetravalent modal algebra A whose determinant system is $\langle \pi, \phi \rangle$.

Proof. In these conditions, from [1,5,6,8] we have at once that there is, up to an isomorphism, a finite De Morgan algebra A whose determinant system is $\langle \pi, \phi \rangle$. Define an operator ∇ over A:

Let $x \in A$:

 ∇_1) If x=0, let $\nabla 0 = 0$,

 ∇_2) If $x \neq 0$, let $\nabla x = \bigvee_{p \in \pi(x)} (pv\phi(p))$, where $\pi(x) = \{p \in \pi : p \leq x\}$.

These formulas make sense, because $\pi(x)$ is a finite set. From the definition of the operator ∇ , we get at once (1) $x \leq \nabla x$.

We must prove that this operator ∇ satisfies the two axioms A_5) and A_6) from the definition of a tetravalent modal algebra.

a) Axiom A_5) $\sim xv\nabla x = 1$ is verified:

Let us suppose that we had (2) $\sim xv\nabla x \neq 1$. By [7], from (2) it follows that there is a prime filter P of A, such that (3) $\sim xv\nabla x \notin P$. From (3) we get: (4) $\sim x \notin P$; (5) $\nabla x \notin P$. Condition (4) is equivalent to $x \notin \sim P$, which is equivalent to (6) $x \in \Phi(P)$. But, applying lemma 4 to condition (5), we obtain $x \notin P$ and $x \notin \Phi(P)$ which contr<u>a</u> dicts (6). Thus, condition (2) cannot hold and so axiom A₅) is fulfilled.

b) Axiom A_6) $x \wedge x = x \wedge \nabla x$ is verified:

From (1) it follows at once (I) $x \wedge x \leq x \wedge \nabla x$. Let us suppose that we had (7) $x \wedge \nabla x \leq x \wedge x$. Then it should be a prime filter P of A such that (8) $x \wedge \nabla x \in P$ and (9) $x \wedge x \notin P$. From (8) it follows (10) $x \in P$ and (11) $\nabla x \in P$. Applying lemma 4 to (11) we get either (12) $x \in P$ or (13) $x \in \Phi(P)$. Conditions (10) and (12) imply $x \wedge x \in P$, which is against (9), so (12) cannot hold and we have (13). But this one is equivalent to $x \notin P$ which is equivalent to $x \notin P$, which contradicts (10). Therefore we cannot have (7) and we get (II) $x \wedge x \leq x \wedge x$.

From (I) and (II) it follows that axiom A_6) $x \wedge x = -x \wedge \nabla x$ is verified.

Therefore the operator ∇ gives to A the required structure of tetra valent modal algebra.

REFERENCES

.

[1]	G.BIRKHOFF, Rings of Sets, Duke Math.Jour., 3(1937) 443-454.
[2]	G.BIRKHOFF, Lattice theory, Am.Math.Soc., 1948.
[3]	I.LOUREIRO, Axiomatisation et propriétés des algèbres modales tetravalentes, C.R.Acad.Sc.Paris, t.295 (22 Novembre 1982) Série I, 555-557.
[4]	I.LOUREIRO, Prime Spectrum of a tetravalent modal algebra, No- tre Dame J. of Formal Logic. Vol.24, N°3 (1983) 389-394.
[5]	A.MONTEIRO, Algebras de Morgan, Curso de Algebra de la Lógica III, Univ.Nac.del Sur (Bahía Blanca, Argentina) (1962) l°sem.
[6]	A.MONTEIRO, Conjuntos graduados de Zadeh, Técnica 449/450 Vol.XL (1978) p.11-34.
[7]	A.MONTEIRO, Filtros e Ideais II, Notas de Matemática N°5. Col. L.Nachbin, Rio de Janeiro, 1959.
[8]	A.MONTEIRO, Matrices de Morgan caractéristiques pour le calcul propositionnel classique, An.Acad.Bras.Cienc.32, N°1 (1960), 1-7.

C.M.A.F. 2, Av.Gama Pinto, 1699 Lisboa Codex, Portugal.

Recibido en febrero de 1982. Versión final octubre de 1984.