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ON THE e-SUBDIFFERENTIAL OF A CONVEX FUNCTION

Telma Caputti

1. INTRODUCTION.

The e-subdifferential of a convex function has been proved to be a
useful tool in convex analysis, from the theoretical viewpoint as
well as for practical purposes.

Throughout this paper, f is a lower-semicontinuous convex function

from R® (the usual vector space of real n-tuples) into (-=,+=].
Given such a function and € > 0 the e-subdifferential of f at
X, € domf (domf is the set where f is finite) is denoted by Be f(xo)

and defined by
= n, * -
aef(xo) {x € R": f(xo) + £*(x) <X, Xg> < e}

where f* designates.the Frenchel conjugate of f defined by

f*(x) = sup {on,x> - f(xo)} (11
X
. 0
and <X X> is the usual inner product of two vectors XX

Let p be a non null vector in R™; throughout the sequel we shall as

sume that x. € int(domf) (int(domf) is the interior of domf). Then

0
it is well known that aef(xo) is a nonempty compact convex set so
that we can denote

f(xo +Ap) - f(xo) + €

V(XO) = sup <p,x> = inf
xEBEf(xo) A>0 A

Moreover a major aim of research is to define a concept of second
derivative for a nondifferentiable function. In this respect Nur-
minski [2] proved that the set-valued mapping aef(.) is locally

Lipschitz when f is real-valued. More recently, Hiriart-Urruty [3,
Corollary 3.4] proved that this last assumption could be omitted
and that Bef(.) is locally Lipschitz on int(domf).

Hence v is locally Lipschitz on int(domf) and following Clarke [4]
the generalized directional derivative of v at X, in direction d,

denoted v°(x0;d) is given by
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V(x0+h+Xd) - V(x0+h)

v°(x0;d) = 1im sup
h>0 A
A0t

It follows from a fundamental theorem of Clarke [4, Proposition 1.4]
that

V°(x0;d) = sup <z,d>
zeav(xo)

where (since v has at almost all points a derivative) Bv(xo) is the
convex hull of the set of limits of the form Vv(xo + hn) when

hn — 0 as n — +w; av(xo) is called the generalized gradient of v
at Xg- We always have v'(.,.) <v°(.,.).

In the first part (Section 2) some properties of v(xo) and v'(xg;d)

are proved and in the second part (Section 3) p will be considered as
a variable. We shall denote

fé(xo;d) = v(xo) H fg(xo;p;d) = v'(xo,;d)
and we shall study the properties of the functions
p — £1(x,;p;p)
p — £l(x45p) *+ 17 £ (xy5p5P)

since one of the possible applications of the formula giving
fg(xo;p;p) would be to define a Newton type method for minimizing a

nondifferentiable convex function. Following this idea we propose a
convergent algorithm similar to defined by Bertsekas-Mitter [5]. In
this section we shall describe a descent algorithm for the minimiza
tion of a convex function subject to convex constraints. Rather than
considering explicity the constraints, however, we shall allow the
function to be minimized to take the value +.

Thus the problem of finding the minimum of a function g over a set

X is equivalent to finding the minimum of the extended real-valued
function f(x) = g(x) + &§(x/X) where §(./X) is the indicator function
of X, i.e., 8(x/X) = 0 for x in X; &§(x/X) = = for x ¢ X.

Stating the problem formally: Find inf f(x) where f: R? — (-o,+o]
X
is a convex function which is lower semicontinuous with inf £(Xx)>-w
X

and f(x) < +» for at least one x in R™. With this assumption, the
function f is a closed proper convex function as defined in [1].

A basic concept for the algorithm that we shall present is the no-
tion of e€-subgradient. This notion was introduced in [61, [7] in
connection with investigations related to the existence and charac-
terization of subgradients of convex functions.
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PRELIMINARIES AND NOTATIONS.

If we consider the optimization problem

(P) v(xy) = sup <P, x>
XEBEf(xo)

we can associate the usual dual problem

(D) a(xy) = inf 8 (xq;u)
u20
where B (xq5u) = Supn L(x;x,;u) (1.1
X€ER
with

<p,x> -ll(f(xo) + £*(x) - <Xg,X> - e) if x € domf* (1.2)
L(x;xo;u)

- otherwise (1.3)

Denote by U(xo) the set of optimal solutions of (D), that is,

U(x = {u>0: a(xo) = e(xo;u)} and let M(xo) be the set of opti-

o)
mal solutions of (P)

M(xo) = {x € Bef(xo): v(xo) = <p,x>}.

Since aef(xo) is compact convex and nonempty, M(xo) is a nonempty
convex compact set. Furthermore, since Bef(.) is locally Lipschitz

on int(domf) M(.) is closed and locally bounded on -int(domf) (the
set-valued mapping M(.) is said to be locally bounded at Xq if the-

re exists a neighborhood V of Xq such that U M(z) is bounded).
zeV

Also, U(x,) is a nonempty convex and compact set and since f = f*%*

it follows that

u(£(x, + 1&) - f(xy) +€) if u>0 (1.4).
8(x45u) =

sup <p,x> if u=20. (1.5)

xcdomf *

Now, using the methodology of Hogan [8, Theorem 2] we use the fol-
lowing theorem, the Lemarechal-Nurminski theorem [9], deleting the

coercivity assumption.

THEOREM 1.1. [9]. The directional derivative of V at X, in the di-

rection d Zs given as

V'(xo;d) = max min - u(f'(xo;d) - <x,d>) (1.6)
xeM(xo) ueU(xo)

and the operators max-min commute.
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2. PROPERTIES OF THE FUNCTIONS v(xy) AND Vv'(x,3d).

According to the expression of v'(xo;d) in the Lemarechal-Nurminski

theorem and considering p as a variable, we set
fé(xo;d) = V(xo) ; fg(xo;p;d) = v'(xo;d).
We can study very interesting properties of the following functions
p — £l(x4;5p;p) (2.1)
p — fl(xg;p) + % £e(xg5p5p) - (2.2)
We set Ue(xo;p) = U(xo). Then for all A > 0 the ‘relation
U (xg3Ap) = AU_(xq;P) (2.3)

is valid.

According to (1.4) the following statements are equivalent for
u>0:

i) ue U (xg5p) 5 i) £1(xg3p) = ulflxg + B) - £(xg) + €) ;

iii) Au(f(xo_+ %E) - f(xo) + g) = fé(xo;p) 5 iv) Au € Ue(xo;p).

PROPOSITION 2.1. a) £1(xy;p;p) > 0 for all p. (2.4)

b) fg(xo;kp;kp) =2 f'e'(xo;p;p) for all x>0. (2.5)
Proof. From (1.6) in Theorem 1.1 we have

e (xg3p5p) = min - u(f' (xy5p) - £1(x45p)) (2.6)
uel_(x4;p)
e "0
from which we obtain inequality (2.4j since u = 0 and since fé > f'.

The relation (b) is an immediate consequence of the above proposition
and formula (2.6). (q.e.d.) ’

Throughout the sequel we shall assume henceforth that f is real-va
lued.

Suppose now that f is strongly convex, that is, there exists § > 0
such that for each x, y and A € [0,1] we have

FOx + (1-0)y) < AE(x) + (1-ME() - A(1-2)slx-yll 2

where |l .|| denotes the usual Euclidean norm in R™.

It is very easy to establish the following property: If the func-
tion A — ¢ (1) = f(xo + Ap) is strictly convex on R*, then U(xo) is

reduced to a single point u(xgy).
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This property is an immediate consequence of the convexity of f and
the properties of the subgradient of 6(u) with X, fixed. Then f is

strictly bonvex and Ua(xo;p) is reduced to a single point us(xo;p).
Moreover u_(.,.) is strictly positive. So if we define G;(xo) =

= min {ue(xo;p): lIpll = 1} we have ﬁé(.) > 0.

The set Bef(xo) has some interesting properties from the algorith-

mic point of view as shown by the following two propositions:

PROPOSITION 2.2. Let X, be a vector such that f(xo) < ©, Then

0 < f(xO) - inf f(z) < e <f and only <f 0 € Saf(xo).
z

Proof. By definition of e-subdifferential of f at Xg>» that is,
x € R® is said to be an e-subgradient of f at X, if

f(z) = f(x - & * <z - Xq,X> for all z in R™.

0) .
In consequence, 0 € aef(xo) if and only if f(z) > f(x) - € for all

z in R™ which is equivalent to the desired relation. (q.e.d.)

PROPOSITION 2.3. Let X, be a point such that f(xo) <o and

0 ¢ Bef(xo). Let p be any vector such that

v(x,) = £'(x,;p) = sup <p,x> < 0. (2.7)
0 e "0
xe9d_f(x,)
€ 0
Then we have f(x,) - inf £(x, + Ap) > €. (2.8)
0 3>0 0

Proof. Assume the contrary, i.e., inf f(x0 + Ap) - f(xO) + €20,
A20
then we have

f(xo

+Ap) - f(xy) + €
X =20 , for all » > 0.
Using the definition of v(x,) this implies that

f(xo + Ap) - f(xo) + € -

sup <p,x> = inf X
xeaef(xo) A>0

Since aef(xo) is closed this implies that 0 € 8€f(x0) which contra-
dicts the hypotesis. (q.e.d.)
In the case 0 & Bef(xo), a possible method for finding a vector

?(xo) in R™ such that sup <?(x0),x> < 0 1is the following:
XSBEf(xo)

Let x*(xo) be the unique vector of minimum norm in 3€f(x0). Then
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the vector ?(xo) = -x2(xg) /IxE(x I (2.9)

satisfies sup <§(x0),x> = -lIx*(x )N < 0.
xeBEf(xo)

Propositions 2.2 and 2.3 form the basis for the algorithm that we
shall present later.

PROPOSITION 2.4. If f is strongly convex, then the functions
p — f(xg5p3p)  and  p — £l(x55p) * % £(x5p5P)
satisfy the following relations

' 2
fé(xo;p;p) = ke(xo) lIpll for all p (2.10)

(fg (xgs5p) + % £1(xq3p5p)) =lpll (-lIxE(x )l + % k (x)lpl)  (2.11)

Proof. We remark that

- V(xo) > min max <z,d> = -Hx*(xO)H.
el ldlls1 zed_£(x,)

€ 0
Moreover, if f is strictly convex, we have

f(xo + Ap) - f(xo) + €
A

> £'(xy;p) * Mpli%s + £, for all A > 0.

This inequality implies

f(x, + xp) - f(x,) + ¢
inf 0 0 > £'(xy;p) + min {Xllpll2 + %}
D o0

A>0 A

which is equivalent to
£1(xg3p) - £'(xy3p) > 2/e8 lipl

and since Ue(xo;p) is homogenous in p and is reduced to a single

point Ee(xo) we obtain the relations (2.10) and (2.11) respect-
ively. (q.e.d.) .

REMARK 2.1. If 0 € aef(xo) then fé(xo;p) > 0 for each p and from
1
(2.4) we have fé(xo;p) o fg(xogp;p) > 0 for all p.
If 0 & aef(xo), then there exists p such that fé(xo;p) < 0. Conse-
quently, there exists p satisfying:

1

Iph <1 fé(xo;p) + flf'(xo;p;p) <0. _(2.12)

'
€

Therefore,
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. . . ' . 1 L.
0 ¢ 3_f(x;) 1f‘and only if n?ﬁg1 (£l (xg3p) + 5 £(xq;p;p)} < 0.
If £ is strongly convex from Proposition 2.4 we obtain the follo-
wing equivalence

oo . . 1
0 ¢ 3_f(x,) if and only if 2;:n {£1(xq3P) + 7 £(xy5p5p)} < 0.

REMARK 2.2. One can prove. that Ua(xo;.) is locally bounded and clo-
sed at each p # 0.

Then from (2.6) it follows that the function
1
p — £l(xy;p) *+ 7 £/(x4;p;5p)

is lower semicontinuous.

3. APPLICATIONS IN ALGORITHMS.

In connection with Propositions 2.2 and 2.3 we can state that when-
ever the value f(x) exceeds the optimal value by more than €, then
by a descent along a vector x satisfying (2.7) in Proposition 2.3
we can decrease the value of the cost by at least €.

Consider the following descent algorithm for the minimization of a
convex function subject to convex constraints which is a descent nu
merical method for optimization problems with nondifferentiable cost
functionals:

STEP 1. Select a vector X, such that f(xo) < o, a scalar €9 >0

and-a scalar a, 0 <a < 1.

STEP 2. Given x_ and €_ > 0, set € = ak € where k is the small
n n n+l n =

est non-negative integer such that 0 & 9 f(x ).
€n+l n

STEP 3. Choose a vector y_ that satisfies
. 1 en N
fén+1(xn’)’n) + 7 f‘€n+1 (Xn.)’n ,)’n) <0

From Remark 2.1, such a vector exists if 0 ¢ Be f(xn), and (2.7)

n+l
is valid.

STEP 4. Set x = x_ + Ay where A_ > 0 is such that
n+l n n‘n n

£(x)) - £(x ,,) >e_ ., - Return to Step 2.

REMARK 3.1. If X, is not a minimizing point of f there always exists

a non-negative integer k such that 0 & aakE f(xn) since by Proposi
n
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tion 2.2 we have

. . . _ .k
0 & 3, f(xn) if and only if f(xn) - inf f(x) > €hpl = 8 €
n+l x
and by Proposition 2.3 there exists a scalar e such that
f(xn) - f(xn + Xnyn) > €4l (3.1)

thus showing that Step 4 can always be carried out. One way of fin-
ding a scalar An satisfying (3.1) is by means of the one-dimensio-

nal minimization
f(xn + Anyn) = min f(xn + Ayn)
A>0
assuming the minimum is attained. This in turn can be guaranteed

"whenever the set of minimizing points of f is nonempty and compact,
since in this case all the level sets are compact [1].

REMARK 3.2. We note that Steps 2 and 3 of the algorithm can be car-
ried out by means of the auxiliary minimization problem:

min hxi . (3.2)
xeaaken f(xn)

Now clearly we have 0 € aake f(xn) if and only if (3.2) has a zero
n

optimal value and therefore Step 2 of the algorithm can be carried
out by solving problem (3.2) successively for k = 0,1,... . There
exists an integer k for which the problem (3.2) has a nonzero opti-
mal value. Let x* be the optimal solution of problem (3.2) for the
first such integer k. Then a suitable direction of descent y satis

fying (2.7) in Step 3 of the algorithm is given by Yo = -x* /Il x*| .

REMARK 3.3. This algorithm is the same as defined by Bertsekas and
Mitter in their paper but the kind of choice for Y is different.

However, the proof of convergence given in [5] is always valid with
this kind of choice. Certainly, a good choice of y_  would be a vec-
tor that minimizes the function

(xg3p) + ]7 £ (xg35P;P)

— f!
P €n En+l

+1
on the unit ball.

We are now attempting to implement such a choice.

After the release of the preprint of this article, the author has
been informed about the fact that a recent work along similar lines’
has been published by J.B.Hiriart-Urruty. Unfortunally she has not
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been able to read it and verify the overlap between both papers.
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