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ABSTRACT. In this paper we prove (see Theorem 3) that if f belongs 

to a parabolic HP space, 0 < p ~ 2 and if p ~ q and lip + 1/q ~ 1, 
then 

(*) 

where c is a constant which depends on p and q. This theorem gene
ralizes a result of Calderon and Torchinsky ([2], Theorem 4.4), 

where formula (*) is proved under the considerable more restrictive 
hypothesis: 0 < p ~ q/q-1 ~ 2. 

Our theorem co~tains, as a particular case, an n dimensional analo
gue of a classical theorem of Hardy and Littlewood [5]. 

1. I NTRODUCT I ON. 

In this section we review the basic facts of the theory of parabo
lic HP spaces. For details we refer the reader to [2) and [3]. 

Let A = t P (0 < t < 00) be a group of linear transformations on Rn 
t 

with infinitesimal generator P. The group At satisfies the differen 
tial equation 

(1. 1) 
t dA t 

dt 

With (x,y) we denote the ordinary inner product of two vectors x 

and y in Rn and with Ixl '" (x,x)1/2 the no I'm of the vector x. The 
transpose of At, with respect the ordinary inner product, will be 
denoted by A~. 

It is well known that 

(t.2) det At = det A~ = t Y ,y = trace P. 

We assume that the infinitesimal. generator P of the group satisfies 

(1. 3) (Px,x) ~ (x,x). 
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LEMMA 1. FoI' eveI'Y x ERn: 

(i) IAtxl ;;;. t Ixl if t ;;;. 1 

(ii) IAtxl ;,;;;; tlxl if o < t ;';;;;1. 

PI'oof· We may suppose that x " O. If t > 0, by (1.1) and (1 .3) 

Hence, if we define the function !jl(t) 
;;;. 2q,(t). Thus 

2 IAtx I ,we have t!jl' (t) ;;;. 

This implies that the function <P(t)/t 2 is monotonically increasing 
in t > O. Hence, if t ;;;. 1, then 

This proves (i). The proof of (ii) is completely similar. 

For each x ERn, x " 0, let p(x) be the unique t > 0 such that 

IA~lxl = 1. We put prO) = O. Then the function p(x), x ERn, is a 

norm in Rn which satisfies: 

(i) p(Atx) = tp (x) (t > 0) ; 

(1. 4) (ii) p (x) ;,;;;; 1 if and only if Ixl ;,;;;; 1 ; 

(iii) Ixl ;,;;;; p(x) if p (x) ;,;;;; 1 or Ixl ;,;;;;1 

(iv) Ixl ;;;. p (x) if p(x) ;;;. 1 or Ixl ;;;. 1 

For the proof of (i) and (ii) see [2]. Formula (iii) follows from 
Lemma 1. Indeed, if 0 < t = p(x) ;,;;;; 1, then 

Thus p(x) = t ;;;. Ixl. The proof of Civ) is completely analogous. 

In a similar fashion we define p*(x) with A~ , and the following re
lations hold 

(i) p*(Atx) = tp*(x) 

(ii) p* (x) ..;; 1 if and only if Ixl ;,;;;; 1 
(1.4') 

(iii) Ixl ;,;;;; p* (x) if p*(x) ;,;;;; 1 or Ixl ;,;;;; 

Civ) Ixl ;;;. p*(x) if p*(x) ;;;. 1 or Ixl ;;;. 

Let d(x,y) = p(x-y) be the metric associated with p. For x E Rn and 

r > 0, Br(x) = {y: d(x,y) < r} denotes the ball of center x and ra-
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dius r. The Lebesgue measure of Br(x) is IBr(x)1 

is the volume of the unit ball in Rn. 

The following two lemmas will be useful in the proof of the results 
below. 

LEMMA 2. If A < Y the foZZowing integra"l aonverges and 

(1. 5) 

Proof. By a well-known formula (see [71, p.162), we have 

I A foo n· -I/All I = p*{x)- dx = ol{x E R :p*(x) < t, p*(x) < s ds . 
p*( )<t 

Taking into acc;ount that 

j 
w t Y if 5 ..;; t-A 

< s-llAll 
n 

I {x ERn: p*(x) < t, p*(x) 
w s-Y fA if s > t-A , n 

we obtain 

yw Y-A 
(Y_~) t . 

LEMMA 3. If A > Y and t > O. the foZZowing integraZ aonverges and 

(1 .6) I A W Y Y-A 
p*(x)- dx = ('~Y) t . 

p*(x»t. . 1\ 

Proof. In a similar manner as in the proof of Lemma 2, we have 

I = I p*(X)-Adx = fOOl {x ERn: p*(x) > t, p*(x) < s-i/All ds 
p*(x»t 0 

Taking into account that 

we obtain 
-A ft . W Y 

I = w (s-Y/A-tY)ds = (~) t Y- A • 
o n A-Y 

if 

if -A s > t . 

Given a function in the class S of rapidly decreasing infinitely dif 

ferentiable functions of L. Schwartz in Rn , we define ¢t(x) = 

= t-Y¢(A;lx). If J¢(X)dX # 0 and if f is a tempered distribution we 
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define the function) 
·1,. 

F(x,t) = (f*~t)(x) , x ERn, t > 0 

and the maximal function 

Maf(x) = sup IF(x+y,t)1 , a> 0 • 
p(y)<at 

We say that f E HP (0 < p < ao) if Maf ELP and we put II fll HP = II Mafll P . 

For any .other choice of ~ and a we obtain the same space HP and an 
equivalent norm 11.11 • 

HP 

An atom is defined as follows: A p-atom (0 < P <: 1) is a measurable 

function a(x), x ERn, which is supported in a ball Br(xO) and which 
satisfies: 

(L) la(x) 1<: IBr (xo)I- I / p ; 

(ii) J xaa(x)dx = 0, for every multi-index a such that 

lal <: [-j'(1Ip-l)1. 

The following theorem of atomic decomposition, which is an extension 
of a previous result of A.P.Calder6n (1], was obtained by R.H,Latter 
and Akihito Uchiyama (6) and A.B.E.Gatto (4]. 

THEOREM A. Let f E HP (0 < P <: 1). Then thepe exist a sequence a i of 

p-atoms and a sequence Ai ~ 0 such that 

and 

ConvepseZy. if f 

then f E HP and 

ao 

I Aiai • whepe a i is a p-atom and {Ai} E lP • 
i-I 

All fliP 
HP 

ao 

<: I 
i .. l 

The constants A and B depend onZy on the choice of nopm fop HP. 

Throughout this paper we use the letter c to denote a constant which 
need not be the same in different occurrences. 

2. CASE 0 < P <: 1. 

In this section we apply the atomic decomposition theorem, Theorem A, 

to prove Theorem 1, which will be used in the proof of·Theorem 3. 
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Previoqsly we prove the following. two lemmas. 

LEMMA 4. If a is a p-atom, 0 < p ~ 1, supported on the ball Br(O), 
then 

(2.1) 

where b is a p-atom supported on the baZZ· Bl (OL and the foZZowing 

equality hoZds. 

J IS (x) I qp* (xry(q/p-q+l) dx , (q;;;' p) . 

Proof. Let b be the function 

b(x) = r y/p a(Arx) . 

Then, as it is easy to see, (2.1) holds, Ib(x) I ~ IBI (0) I-lip, 

Supp b C Bl(D) and 

for every multi-index a such that lal ~ N = [y(l/p-l)l. Therefore b 
is a p-atom. From formula (2.1), we have 

a(x) = r-y/p Jb(A;ly)e-2~i(X'Y) dy . 

By means the change of variable y = Arz , we obtain 

Hence 

Making the change of variable x = A~-lz in last integral, we obtain 
formula (2.2). This proves the lemma. 

LEMMA S. If a is a p-ato~, DI< p ~ 1 and p ~ q, then 

Jla(x) Iqp*(x)-y(q/p-q+l)dx ~ c 

where c is a constant which dependes on p and q. 

Proof. We may suppo~e by translation, that the atom is supported on 
B (0), and by Lemma\4, that a is supported by BleD). By formulae 

r \ 

(1.4,) and (1.4'), we have Bl(D) = {x: p(x) < 1} = {x: p*(x) < 1} 

= {x: Ixl < n. 
Firstly, we prove that the following formula holds. 
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(2. S) li(x)1 C cp*(x)N+l Ix I c 1 , 

where N [y(l/p-l)]. 

Indeed, by definition of p-atom: 

A I -2ni(x y) a(x) = a(y)[e '- (-2ni(x,y))k] dy • 
k! 

Hence 

la(x)1 c w- 1 / p J le-2ni (x,y) - r (-2ni(X,y))k l dy . 
n Iyl{l k~O k! 

Moreover, it is easy to show by Taylor's formula, that 

le-hi(x,y) _ N 

L 
k=O 

(-2ni(X,y))k l C clxI N+1 IyIN+l . 
k! 

Therefore, if Ixl c 1, by formula (1.4' .iii) we have 

I A I N+l J N+l a(x) C cp*(x) p*(y) dy. 
lyl!Ol 

From this inequality, taking into account that, by Lemma 3, we have 

= c 

we obtain formula (2·. S) which we whished to show. 

Now, we prove (2.4). We have 

(2.6) J1a(x)IQp*(x)-y(Q/P-Q+l)dX = f + f 
p*(x)$1 p*(x»1 

Estimate of 11: By the formula (2.5) and Lemma 2 

(2.7) II C c f 
p*(x)'::;l 

-A cWnY 
p*(x) dx = -Y-A c , 

II + 12 . 

where A = Y (q/p-q+l) - (N+l )q. The last integral converges since 

A-Y • q(y(l/p-l) - (N+l)) < o. 
Estimate of 12 : Consider first the case p=l. By Schwarz's inequality 
we have 

r la(x)lqp*(x)-Ydx c (fla(x)12qdX)1/2( J p*(x)- 2Ydx)1/2 
P*(~»l p*(x»l 

Since p = 1 C q, we have that 2q ~ 2. Let q' = 2q/(2q-l). Then 
1 < q' C 2. By Hausdorff-Young's theorem, we have 
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On the other hand, by Lemma 3, we have 

So that, we obtain 

(2.8) 

1/2 
w 

n 

Consider now the case 0'< p < 1. Obviously 

c . 

12 ~ u1ilqu_ r P*(X)-y(q/p-q+1) dx . 
p*(~»l 

Since y(q/p-q+1) > y , from Lemma 3 follows that the last integral 
converges and that 

f p*(x)-Y(1/p-q+1) dx 
p*(x»l 

On the other hand 

Therefore, we obtain 

wq (1-1/p)+1 

(2.8' ) 12 ,;;;; --"'-n ____ _ 

q(1/p-l) 

w 
n 

q(1/p-1) 

c . 

wq (1-1 /p) 
n 

Formula (2.4) follows from (2.6), (2.7) and (2.8). This proves the 
lemma. 

THEOR~M 1. If f E HP (0 < p ,;;;; 1) and q ~ p, then the Fourier trans

form f is a continuous function and 

(2.9) 

where c is a constant which dep~nds on p and q and on the choice of 

norm for HP. 

Proof. Let f E HP (0 < p ,;;;; 1). By the atomic decomposition theorem, 
Theorem A, there exist a sequence a i of p-atoms and sequence Ai ~ 0, 
such that 



24 

and 

00 

(2.10) A II fll p. < L A ~ < B 11£11 p • 
H'P i-l 1 HP 

Therefore, if fk 

By Theorem 4.4 ~f [2], ~ is a continuous function and 

l'k(x)-~(x)1 < cp*(x)y(l/p-I)lIf_f II 
k HP 

This implies that lk(x) + f(x), as k + 00, uniformly on compact sub

sets of Rn. To prove the theorem it suffices to show that the ine
quality 

(2.11) 

holds for every k. Indeed, letting k + 00 in (2.11) and applying Fa
t~).l's. lemma we obtain the estimate (2.9). 

k 
Consider first the case 0 < p '" q '" 1. From I ~k (x) I '" LA. Iii. (x) I, 

i=l 1 1 

we have 

J lt (x)lqp*(x)-y(q/P-q+l)dx '" ~ A~Jla.(x)lqp*(x)-y(q/p-q+l) dx 
k i-I 1 1 

Hence, by Lemma 5 and (2.10), we obtain 

Conslder now the case 0 < p '" 1 '" q. By Minkowski's inequality we 
have 

By Lemma 5 and (2.10), we obtain 

This proves the desired inequality (2.11) , and so the proof of 
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the theorem is complete. 

3. CASE 1 < P ~ 2. 

In this section we prove the following theorem. 

THEOREM 2. If f E LP (1 < P ~ 2) and if p ~ q and 1/p+1/q ~ 1, then 

the Fourier transform f of f is a locally integrable function and 

(3.1) 

where c is a constant which depends on p and q. 

Proof. The fact that f is a locally integrable function is an easy 
consequence of Hausdorff-Young's theorem. 

For the proof we use a method similar to those of [9], page 121, 
and [7], pages 176-177. 

Let rand t be given by the relations 

(3.2) r = 1 + p/q 2 t = (p+q-pq)/p 

Then it is easy to verify that rand t are solution of the system 
of equations 

(3.3) { 
1/p 

1/q 

(l-t)/r + t 

(1-t)/r' + t/(r'-1) 

where r' = r/(r-1). From (3.2) and the hypothesis of theorem it easi 

ly follows that 1 < r ~ 2 and 0 ~ t < 1. 

Consider the measure spaces (X,J.I) = (Rn,dx) and (Y,v) = 

n -yr' 
= (R ,p*(x) dx), for S(X,J.I) the space of the simple functions on 

(X, J.I) and M(y,v) the space of the measurable functions on (Y, v), let 
T: S(X,J.I) + M(Y,v) be the operator defined by 

(3.4) (Tf)(x) = p*(x)Yf(x) 

We shall-see that T is of strong type (r,r') and weak type (1,r'-1). 
Indeed, by the Hausdorff-Young's theorem, we have 

(JITflr'dV)l/r' = {Jlf(x)lr'dX}l/r' ~ {Jlf(x)lrdX}l/r 
y 

This proves the strong type (r,r') of T. We now prove that T is a 
weak type (1,r'-1). In fact, for every A > 0, we have 
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v({ I (Tf) (x) I > A}) v({I~(x)lp*(x)Y > A}) < v({p*(x)Y > AI"f"l) 

v({p*(x) > A'}) 

where A' = (AI"fIl 1)1!y. So that, from Lemma 3 

v({(Tf)(x) > A}) < J p*(x)-yr'dx 
p*(x»A' r' -1 

By the relations (3.3), we may use the Marcinkiewicz's interpola
tion theorem to conclude that T is of strong type (p,q), i.e. 

{JITflq dv}l/q < c "f"p 
y 

for every simple function f. Therefore, taking into account (3.4), 

we obtain 

" f" p 

Thus, we have proved formula (3.1) in the case of simple-functions. 
A simple argument using the density of the simple functions in LP 
enables us to extend formula (3.1) to every function of LP. 

COROLLARY. If f E LP (1 < P < 2), then 

(3.6) {Jlf(X)I Pp*(x)Y(P-2)dx}1/P < c "f"p' 

where c is a constant which depends on p. 

Proof. This corollary follows immediately from Theorem 2, taking 
p=q. 

REMARK. In the particular c.ase in which the infinitesimal generator 
P of the group coincides with the identity, we obtain from this Co
rollary a well-known theorem: If f E LP (1 < P <~), then 

(3.7) " fll P 

See, for example, [7], page 175. 

4. GENERAL CASE. 

As consequence of Theorems1 and 2, we obtain the· following result. 
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THEOREM 3. If f E HP (0 < p ~ 2) and if p ~q, 1/p+1/q ~ 1, then 

the Fourier transform f of f is a LocaLZy integrabZe function and 

(4.1) 

where c is a constant which depends on p and q and on the choice of 

norm for HP. 

Proof. If 0 < p ~ 1, the theorem immediately follows from Theorem 1. 

If 1 < P ~ 2, then HP = LP and the norms UfU and UfU are equiva-
P HP 

lent ([2), Corollary 1.8 and Theorem 4.3); therefore the theorem, 

in this case, is. an easy consequence of Theorem 2. 

The following corollary is obtained taking q=p in Theorem 3. 

COROLLARY. If f E HP (0 < p ~ 2) then the Fourier transform f of f 
is a LocaLly integrabLe funation and 

(4.2) 

where c is a constant whiah depends on p and q and on the ahoiae of 

norm for HP. 

REMARK. In the particular case in which the infinitesimal genera
tor P of the group At coincides with the identity, formula (4'.2) 

reads: 

(4.3) 0<p~2 . 

This last result, which was obtained by Hwai-Chiuan Wang [8) is 
an Rn analogue of the following classical theorem of Hardy and Lit

tlewood [5): If a function analytic in the unit disk Izi < 1, be
longs to HP (0 < p ~ 2) and if 

00 

fez) = L akz k 
k=O 

is its Taylor's expansion, then 

where c is a constant which depends on p. 
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