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ON AN INEQUALITY IN THE THEORY OF PARABOLIC HP SPACES

Osvaldo N. Capri

ABSTRACT. In this paper we prove (see Theorem 3) that if f belongs
to a parabolic HP space, 0 <p <2 and if p<q and 1/p + 1/q =1,
then

* {Jl?(x)|qp*(x)—Y(q/p_q+l) ayt/i <l
H

where ¢ is a constant which depends on p and q. This theorem gene-
ralizes a result of Calderén and Torchinsky ([2], Theorem 4.4),
where formula (*) is proved under the considerable more restrictive
hypothesis: 0 < p < q/q-1 < 2.

Our theorem contains, as a particular case, an n dimensional analo-
gue of a classical theorem of Hardy and Littlewood [5].

1. INTRODUCTION.

In this section we review the basic facts of the theory of parabo-
lic HP spaces. For details we refer the reader to [2] and [3].

Let At = ¢P (0 <t <) be a group of linear transformations on R®
with infinitesimal generator P. The group At satisfies the differen
tial equation

(1.1 t — = PA

With (x,y) we denote the ordinary inner product of two vectors x

and y in R® and with |x] = (x,x)l/2 the norm of the vector x. The

transpose of A,, with respect the ordinary inner product, will be
denoted by A:.

It is well known that
(1.2) det A_ = det A* = t¥ , y = trace P.
We assume that the infinitesimal generator P of the group satisfies

(1.3) - (Px,x) = (x,x).
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LEMMA 1. For every X € R":
(1) |Ax] > tlx] it >
(i1) JAx] < t|x] if 0<t<1.

Proof. We may suppose that x # 0. If t >0, by (1.1) and (1.3)

d _ 2
t o (Ax,AX) = 2(PAX,AX) > 2[A x| > 0.

Hence, if we define the function o(t) = |Atx|2 , we have t¢'(t) =
= 2¢(t). Thus

2 pmy/th) = e @)e? - @/ede) > o.

This implies that the function ¢(t)/t2 is monotonically increasing
in t > 0. Hence, if t > 1, then

Clagxl? = ey ot = Jaxl el ® = (xI? el

This proves (i). The proof of (ii) is completely similar.

For each x € R®, x # 0, let p(x) be the unique t >0 such that
lA;lxl = 1. We put p(0) = 0. Then the function p(x), x € R“, is a

norm in R™ which satisfies:

(1) p(AX) = to(x) (t>0);
(1.4) (ii) p(x). < 1 if and only if [x| <1 ;
(iii)  |x| < p(x) if p(x) <1 or |x] <1
(iv) |x| = p(x) if p(x) =1 or x| =1 .
For the proof of (i) and (ii) see [2]. Formula (iii) follows from
Lemma 1. Indeed, if 0 <t = p(x) < 1, then

-1 -1
1= |A] x| = t77|x].

Thus p(x) = t > |x|. The proof of -(iv) is completely analogous.
In a similar fashion we define p*(x) with A: , and the following re-
lations hold .
(1) p*(Ax) = tp*(x) .

: (ii) p*(x) <1 if and only if |[x| <1
1.4")

(iii) |x] < p*(x) if p*(x) <1 or |[x]| <1

(iv) |x| = p*(x) if p*(x) =1 or [x] =1
Let d(x,y) = p(x-y) be the metric associated with p. For x € R™ and
r >0, B .(x) = {y: d(x,y) < r} denotes the ball of center X and ra-
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Y

dius r. The Lebesgue measure of Br(x) is ]Br(x)l =w T, where

n

is the volume of the unit ball in R,

The following two lemmas will be useful in the proof of the results
below.

LEMMA 2. If A <y the following integral converges and

Aay = CnY¥l L y-A
(1.5) p*(x)"dx = (It .

p*(i)<t

Proof. By a well-known formula (see [7], p.162), we have

I= p*(x)'xdx = J |[{x € R%:p*(x) < t, p*(x) < s'l/k}] ds
0

P*(i)<t
Taking into account that
w tY if s<t
[{x € R®: p*(x) < t, p*(x) < s'l/x}l =
wns'Y/A if s>t} ,

we obtain

t ’ e
I =uw J tYds + w j
n n
t—k

-y /2 o ay y-A
s ds (Y-X) t

LEMMA 3. If A >y and t > 0, the following integral conveiges and
- wyY -
(1.6) f pr(x)™h dx = () V.
px(X)>t. ’ Y

Proof. In a similar manner as in the proof of Lemma 2, we have

1= J p*(x)'kdx = J [{x € R®: p*(x) > t, p*(x) < s'l/x}l ds
p*(x)>t 0
Taking into account that

wn(s'y/x-tY) if s<t?

[{x € R®: p*(x) > t, p*(x) < s'l/xil =

0 if s>ttt

we obtain

t” : w_Y
= -y/x LY _ n Y-A
1 J w_ (s -tN)ds = (XTV) t .
0
Given a function in the class S of rapidly decreasing infinitely dif

ferentiable functions of L. Schwartz in R", we define ¢t(x) =

= t'Y¢(A;1x). If f¢(x)dx # 0 and if f is a tempered distribution we
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define the functiong

F(x,t) = (£%)(x) , x €R", t>0
and the méximai function

M,f(x) = sup |F(x+y,t)| , >0
p(y)<at

We say that f € H? (0 <p <) if M f € LP and we put IIfIIHp = IM £l .

For any other choice of ¢ and o we obtain the same space HP and an
‘equivalent norm Il .lI
q 4P

Anatom is defined as follows: A p-atom (0 <p < 1) is a measurable

function a(x), x € Rn, which is supported in a ball Br(xo) and which
satisfies:
. ) -1
(W laml< 1B, (xg) 172
(ii) J xaa(x)dx = 0, for every multi-index o such that

la|l < [¥(1/p-11.

The following theorem of atomic decomposition, which is an extension
of a previous result of A.P.Calderdén [1], was obtained by R.H.latter
and Akihito Uchiyama [6] and A.B.E.Gatto [4].

THEOREM A. Let £ € HP (0 < p < 1). Then there exist a sequence a; of
p-atoms and a sequence Xi > 0 such that

f = izl Asay
and
bt P
AP < BIEIP .
izl 1 Hp
]
Conversely, if £ = ] Ajag s where a; i8 a p-atom and {ki} e £P ,

i=1
then £ € H? and

AMEIP. < T | P
g i=1

The constants A and B depend only on the choice of norm for HP.

Throughout this paper we use the letter c to denote a constant which
need not be the same in different occurrences.

2. CASE0 <p < 1.

In this section we apply the atomic decomposition theorem, Theorem A,
to prove Theorem 1, which will be used in the proof of Theorem 3.
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Previously we prove the following two lemmas.

LEMMA 4. If a <s a.p-atom, 0 <p <1, supported on the ball Bt(O),
then

(2.1) ax) = o P balln)

where b 28 a p-atom supported on the baZZ'Bl(O), and the following
equality holds.

(2.2) [Iﬁ(x)lqp*(x)*‘f‘q’?“‘*l’dx - jlﬁcxal‘*p*(x)‘“‘*""""” dx , (q >p).

Proof. Let b be the function
b(x) = r'/? a(A x)

Then, as it is easy to see, (2.1) holds, |b(x)| < ]BI(O)I'I/P ,
Supp b C Bl(O) and

Jb(x)x“ - rY/pJa(Arx)xadx - r‘Y(l‘l/P)Jacz)(A;lz)“ dx = 0 ,

for every multi-index o such that |a| < N = [y(1/p-1)]. Therefore b
is a p-atom. From formula (2.1), we have

ax) = r7Y/P Jb(A;ly)e“Z“i(x’V) dy .
By means the change of variable y = Arz , we obtain
a(x) = r-Y/p-1) fb(z)e'2“1<x’ArZ)dz - r'Y(l/p—l)g(A:x)
‘Hence
jlé(x)l‘*p*(x)“f‘q/P‘q“”dx - Y@ [ (arx)or () Y@/

Making the change of variable x = A§'lz in last integral, we obtain
formula (2.2). This proves tbe lemma.

LEMMA 5. If a ie a p-ator, 0 <p <1 and p < q, then
J|5(x)[qp*(x)-Y(q/p'q+1)dx <c,
where c s a constant which dependes on p and q.

Proof. We may suppose by translation, that the atom is supported on
Br(O), and by Lemmai4, that a is supported by BI(O). By formulae

(1.4) and (1.4'), we have B (0) = {x: p(x) <1} = {x: p*(x) < 1} =
= {x: |x|] < 1}.

Firstly, we prove that the following formula holds.
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(2.5) lax)] < co*(x)™! |, x| <1,
where N = [y(1/p-1)].
Indeed, by definition of p-atom:

. N . k
a(x) = Ja(y)[e-zwl(x’y) - kZo ngll£§Lle—] dy

.

Hence

A . -l/p
la(x)] < w,

. N . k
f Ie-Zﬁl(x,y) . z !-2w1!x!z!! I dy .
k=0 k!

lyl<1
Moreover, it is easy to show by Taylor's formula, that

. N . k
le-Zﬂl(x,y) - z !-2n1!xzz)! | < ClX|N+1|y|N+1
k!

k=0
Therefore, if |[x| < 1, by formula (1.4'.iii) we have

1A | < cor (™! I pex(n™! ay .
ly]<1

From this inequality, taking into account that, by Lemma 3, we have

w_y
J N+1 - n =c ,

p*(y) " Tdy

Y+N+1
we obtain formula (2.5) which we whished to show.
Now, we prove (2.4). We have
(2.6) Jla(x)|qp*(x)‘Y‘q/P‘Q+1)dx N R

p*(x)<1 p*(x)>1
Estimate of Ilz By the formula (2.5) and Lemma 2
cw_y

-2 n
(2.7) I. <c¢ p*(x) “dx = =c

where A=1v(q/p-q+1) - (N+1)q. The last integral converges since
A-y = q(y(1/p-1) - (N+1)) < 0.

Estimate of I,: Consider first the case p=1. By Schwarz's inequality
we have

1300 %% Yax < (1300 P02 [ erio a2

o*(l)>1 p*(x)>1

Since p = 1 < q, we have that 2q = 2. Let q' = 2q/(2q-1). Then
1 < q' < 2. By Hausdorff-Young's theorem, we have
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(j|a(x)|2qu)1/2 < (Jla(x)lq'dx)q/q' <o3/a’-D oo
On the other hand, by Lemma 3, we have

f p*(x)'szx)l/2 =0lf? - ¢,
p*(x)>1 "

So that, we obtain
(2.8) I, = Jla(x)lqp*(x)-de <c.
Consider now the case 0 <p < 1. Obviously

1, <&, l ok (x)~Y(a/P=a*1) 4o
p*(x)>1
Since y(q/p-q+1) >y , from Lemma 3 follows that the last integral

converges and that

[ ereov@/ematD g o %0
p*(x)>1 q(1/p-1)

On the other hand

Harn, <nalf < ( f w;I/pdx)q . wg(l~l/p)

Therefore, we obtain

Ld(1-1/p)+1
(2.8") I, < 2 -
q(l/p-1)

Formula (2.4) follows from (2.6), (2.7) and (2.8). This proves the
lemma.

THEOREM 1. If £ € HP (0 <p < 1) and q = p, then the Fourier trans-

form £ is a continuous funetion and

(2.9) (f|%(x)lqp*(x)fY(q/P'q+1)dx)1’q <clfl , ,
H

where c is a constant which depends on p and q and on the choice of

norm for HP.

Proof. Let £ € H? (0 <p < 1). By the atomic decomposition theorem,
Theorem A, there exist a sequence a; of p-atoms and sequence Ai =0,
such that ‘
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0
£= 1 2ay

i=])

and
0
(2.10) AIEIP < 7 AR <BI£IP .
‘ #? =1 * uP
k
Therefore, if f = ! A.a., then f-f, € HP and
‘ jop 174

He-£010 <A MRy aR)MP L0, (as k » ).
k i
gP i=k+1 .

By Theorem 4.4 of (2], £ is a continuous function and

12, -2 < cp*(x)Y“’P‘”uf-fkqu

This implies that ?k(x) + f(x), as k + », uniformly on compact sub-
sets of R®. To prove the theorem it suffices to show that the ine-

quality

(2.11) {J]%k(x)]qp*(x)‘Y(q/P‘q”)dx}”q <clfl
H

holds for every k. Indeed, letting k - « in (2.11) and applying Fa-
tou's lemma we obtain the estimate (2.9).

. k
Consider first the case 0 < p < q < 1. From [fk(x)l < 7 Ailﬁi(x)l,
i=1

we have

N k
Jlfk(x)lqp*(x) 'Y(Q/P'Q"'l)dx < Z )\gjlgi(x)iqp*(x)‘Y(Q/P'CH'l) dx
i=1

Hence, by Lemma 5 and (2.10), we obtain

A v (q /e k bl
(12, 601%4 0 (/P Daxi/a < o [ a9 <o T aDHP <

i=1 i=1 B

Consider now the case 0 < p < 1 < q. By Minkowski's inequality we
have

- - k
{Jlfk(x) ]qp*(x) Y(q/p—q+l)dx}1/q < X

1=1A1{J | ai(x) !qp*(x)'Y(q/p”qH)dx}l/q.

By Lemma 5 and (2.10), we obtain

k o
{J|%k(x)|‘1p*(x)‘7(q“"q“)dx}”q< c T, <c( I aARYyP <qpg
i=1 *t i=1 * uP

This proves the desired inequality (2.11) , and so the proof of
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the theorem is complete.

3. CASE 1 <p < 2.
In this section we prove the following theorem.

THEOREM 2. If f € 1P (1 < p € 2) and ©if p < q and 1/p*+1/q = 1, then

the Fourier transform t of £ is a locally integrable function and

(3.1) {J|%(x)|qp*(x)'Y(q/P‘Q+1>dx}1/q <cll

where ¢ 1s a constant which depends on p and q.

Proof. The fact that fisa locally integrable function is an easy
consequence of Hausdorff-Young's theorem.

For the proof we use a method similar to those of [9], page 121,
and [7], pages 176-177.

Let r and t be given by the relations
(3.2) r=1+p/q , t= (p*qa-pa)/p’ .

Then it is easy to verify that r and t are solution of the system
of equations

1/p = (1-t)/r + t
(3.3)
1/q = (1-t)/r* + t/(x'-1) ,
where r' = r/(r-1). From (3.2) and the hypothesis of theorem it easi

ly follows that 1 < r <2 and 0 <t < 1.
Consider the measure spaces (X,u) = (R®,dx) and (Y,v) =

= (Rn,p*(x)'Yr'dx), for S(X,u) the space of the simple functions on
(X,u) and M(Y,v) the space of the measurable functions on (Y,v), let
T: S(X,u) - M(Y,v) be the operator defined by

(3.4) (TE) (x) = p*(x)VE(X) .

We shall-see that T is of strong type (r,r') and weak type (1,r'-1).
Indeed, by the Hausdorff-Young's theorem, we have

(JITflr'dv)l/r' = {[|%(x)|r'dx}‘/r' < {Jlf(x)lrdx}llr - (Jlflrduf/r.
Y X

This proves the strong type (r,r') of T. We now prove that T is a
weak type (1,r'-1). In fact, for every A > 0, we have
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Vv (TE) (x)]| > A})

VUEE) [p* ()Y > A1) < v({p* ()T > A/I £l )

1}

v({p*(x) >A'}) ,

where A' = (A/Hle)l/Y. So that, from Lemma 3

1 w [
v{(TE) (x) > A < J p*(x) V¥ dx = —2 (HfIH/A)r -1
px(x)>A\"' r'-1

By the relations (3.3), we may use the Marcinkiewicz's interpola-
tion theorem to conclude that T is of strong type (p,q), i.e.

{JITfIq it < e,
Y

for every simple function f. Therefore, taking into account (3.4),
we obtain i

{JI%(x)qu*(x)qu*(x)-Y(1+q/9)dx}1/q <c IIfIIp

Thus, we have proved formula (3.1) in the case of simple-functions.
A simple argument using the density of the simple functions in LP
enables us to extend formula (3.1) to every function of LP.

COROLLARY. If £ € LP (1 < p < 2), then
(3.6) ([IFeoPer 0T Pt <,

where ¢ s a constant which depends on D.

Proof. This corollary follows immediately from Theorem Z, taking
p=q. ’

REMARK. In the particular case in which the infinitesimal generator
P of the group coincides with the identity, we\obtain from this Co-
rollary a well-known theorem: If f € LP (1 <p <'2), then

(3.7) {J|%(x)|P|x|“(P'2)dx}1/P <c il

See, for example, [7], page 175.

4, GENERAL CASE.

As consequence of Theorems1 and 2, we obtain the following result.
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THEOREM 3. If f € H? (0 <p < 2) and if p <.q, 1/p+1/q > 1, then
the Fourier transform £ of £ 28 a locally integrable function and

4.1 {J[%(x)|qp*(x)‘Y(q/P'q+1)dx}1/q <af
H

where C 18 a constant which depends on p and q and on the choice of

norm for HP,

Proof. If 0 <p < 1, the theorem immediately follows from Theorem 1.

If 1t <p <2, then HP = LP and the norms Hpr and HfHH are equiva-

P
lent ([2], Corollary 1.8 and Theorem 4.3); therefore the theoren,
in this case, is an easy consequence of Theorem 2.

The following corollary is obtained taking q=p in Theorem 3.
COROLLARY. If £ € HP (0 < p < 2) then the Fourier transform %vof £
is alocally integrable function and

(4.2) {J|%(x)|Pp*(x)Y(P‘2)dx}1/P <c £l

’
HP

where C s a constant which depends on p and q and on the choice of
norm for HP,

REMARK. In the particular case in which the infinitesimal genera-
tor P of the group At coincides with the identity, formula (4.2)
reads:

(4.3) {jl%(x)|P|x|“(P'2)dx}1/P <clfl , 0<p<2

. H
This last result, which was obtained by Hwai-Chiuan Wang [8] , is
an R™ analogue of the following classical theorem of Hardy and Lit-
tlewood [5]: If a function analytic in the unit disk |z]| < 1, be-
longs to H? (0 < p < 2) and if

£(z) = k
kzo a,z

is its Taylor's expansion, then

i _
{1 )P 2 e MR <cnen
k=0 P

where ¢ is a constant which depends on p.
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