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FROM MY CHEST OF EXAMPLES OF FOURIER TRANSFORMS

Domingo A. Herrero

INTRODUCTION.

The Riemann-Lebesgue theorem guarantees that the Fourier transform

f of a function f € LI(R) is continuous and tends to 0 at infinity.
Indeed, the Fourier transform is a bounded linear mapping with den-

se range from Ll(R) into the space C_(R) of all complex-valued con-

tinuous functions defined on R, such that g(t) - 0 (|t| + «). How-
ever , it is not so immediate to check that the range of this trans
formation is not all of C_(R). More is actually true: not every

compactly supported continuous function is the Fourier transform of
some Ll—function.

This can be shown, either by some general Baire category argument,
or by exhibiting a concrete example. Perhaps, the following '"but-

terfly" (look at the graph of B!) is the simplest example that one
can imagine. Define

(1/k) sin 4%s, if 7/2% < |s| < w/2%7!
B(s) =

0, if s = 0, or |s| > 7.

Clearly, B € CO(R) (= the space of all compactly supported complex-

valued functions defined on R), and a simple computation shows that,
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for all k >ko (>4).

It readily follows that
=}
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Hence, B is not the Fourier transform of any L!-function.

However, since CO(R) C LZ(R), it is immediate (from Plancherel's

theorem) that b and B = b belong to LZ(R); furthermore, it is not
difficult to check that b is the restriction to the real axis of an
entire function, and that b(t) -~ 0 (|t| » «).

On the other hand, B is a real-valued function whose image is equal
to B(R) = [-1,1]. If

o = (22

then k(s) = max{1 - |s|,0} , and therefore the function
2k(s/2) - 3k(s) € CO(R) is the Fourier transform of the L1-function
k(2t) - 3k(t), and has exactly the same image as B.

These examples suggest two questions:

(I) According to a famous theorem of Hahn and Mazurkiewicz, a non-
empty subset X of the complex plane C is the continuous image of
a closed interval if and only if X is compact, connected and local-

1y connected [3,IV.9]. Thus, if f € Lt (R), then (Image (%))- =

= f(R) U {0} necessarily satisfies the above conditions, and con-
tains the origin. Does there exist a compact, connected, locally
connected subset X of C, containing the origin, such that X is not

closure of the image of a Fourier transform of an L!-function?.
(That is, X # (Image ($))" for all £ in L'(R)).

(II) Does there exist a functlon f, defined on R, such that both f
and its Fourier transform f are restrictions to the real axis of

entire functions, f, fe L (R) \ Lt (R), and both f and f tend to 0
at the infinity?.

The author does not know the answer to the first question, but se-
veral examples point in the affirmative direction. On the other
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hand, the answer to the second question is YES, and £(t) = (1/t) sin %

is a.concrete example of such a function.

The author wishes to thank Professors N.Grace, J.N.Mc Donald and
H.A.Smith for references and helpful .discussions.

IMAGES OF FOURIER TRANSFORMS OF LI-FUNCTIONS.

PROPOSITION 1. There exists g € LI(R) such that § € C,(R) and

Image (g) i8 the closed square S of vertices 0, 1, 1+i and i; that
i8, g i8 a "Peano curve'" mapping a closed zn*erual continuously on-
to a square.

Let A(T) be the class' of all continuous periodic functions (period
2w) with absolutely convergent Fourier series; that is, G € A(T) if

and only if G(s) = } g, eins (s € R), where "G"A(T) = 3 Ignl < w,

LEMMA 2. ([5,Lemma 67]). Let F € CO(R) be a function such that

F(s) = 0 for |s| > m-e (for some ¢, 0 <e < 7m) , and let

£(t) = f%'fn F(s) elSt gs

Then the three following statements are equivalent:

(-]

M 1@ <= ;

-0

(2) I max{|f(t)]: n<t <n+l} <= ;
(3 fellm.

A well-known result of S.Bernstein [2,Theorem 6.3], [6,V01.I,p;240],
says that A(T) contains every Lipschitz function of order o, for
each o > 1/2. Thus, if F € CO(R) vanishes outside (-m+e,m-¢)' (for

some €, 0 <e <7m) and F € Lipq for some a > 1/2, then Lemma 2 gua-

rantees that F = E for some ' f € Ll(R). Unfortunately, this observa-
tions does not help too much:'in order to prove Proposition 1, be-
cause a Peano curve mapping axclosed interval continuously onto a
square can be cho;en to be Lipi/z, but not Lip, for any a>1/2 h]#

However, we can still use an important part of the proof of Lemma 2:

if g e LI(R) and F € A(T), then the product F(s)é(s) is the Fourier
eins

n ’

transform of an Ll-function. Indeed, if F(s) = ) f
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3 |fnl < @, then F(s)g(s) =) f - gins g(s) is the Fourier trans-

oo ——- n

form of the fgnction
] £ gt-n) e L'(R)

Let J € A(T) be any function such that 0 < J(s) <1 for all s € R,
J(s+m) = J(s) , and

: 0, if 0 <s < 3m/8 ,
J(s) =
1, if /2 <s < 77/8 .
(For instance, we can define J so that its graph is continuous,

equal to a linear segment between 37/8 and w/2, and equal to another
linear segment between 77/8 and m).

©

Clearly, if J(s) = } j, ei™  then

G(s) =

He~18

2% 3(8%) = 1 (I {z7%j_: 8*m = a1 glins
k=1 -

and o [ .
G(2s) = 5 27% J2.8%s) = § (I 27%j_:2.8%m = n}) ™°
k=1 -00

are elements of A(T).
A minor modification of the proof given in [4] indicates that
F(s) = G(s) + iG(2s) € A(T)

maps [0,7/4] continuously onto the square S.

Let g(t) = 4k(2t) - k(t). Clearly, g € L'(R), and g(s) = 2K(s/2)
-k(s) satisfies 0 < g(s) < 1 for all s € R, and

n 1, if |s| <1,
g(s) =
0, if |s| =2
It readily follows from our previous observations that
p(s) = F(s) g(s)
is the Fourier transform of a function p € Lr(R), ﬁ € CO(R), and
Image (ﬁ) =S

because's([‘n/4,ﬂ/4]) =S, p(s) = 0 for all s such that |s| = 2,
and p(s) € S for /4 < |s| < 2.
The proof of Proposition 1 is now complete.

What else can be obtained as the, image of a Fourier transform of

an Ll-function?.
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(a) Clearly, if ¢ is any function analytic on a neighborhood of the
real interval [-1,1], such that ¢(0) = 0, then the Riesz-Dunford

functional calculus (in the Banach algebra Ll(n)) indicates that
¢1-1,11) = Image (¢o2)  (g(t) = 4k(2t) - k(t))

can be attained as the image of the Fourier transform of an Ll-fung
tion. ’ '

(b) Instead of F(s) = G(s) + iG(2s) (as in the proof of Proposition
1), we can consider functions of the form aG(s) + BG(2s), «,B € C,

" and deduce that every "solid" parallelogram with a vertex at the
origin is also attainable. ‘

(c) If y(z) ='[-iz/(2r2i)]4, then ¢ is analytic on a neighborhood
of the square S, ¥(0) = 0, and ¥(S) is the closed unit disk D.
Hence,

D = ﬁ(S) = Image (yoI[F.gl) ,

and therefore there exists m € Ll(R) such that Image (m) =D
(i = yo(F.2)).

(-] . -]
(d) Let y(z) = ] c_ 2" be a Taylor series such that ) le | <=,
n=1 n=1

then : -
(D) = Image (] c (mM") ,

. o n=1

and 21 <, (1?1)n is the Fourier transform of an Ll-function.

n= .

By using a classical result on conformal mapbings (see, e.g., I6,

Vol.I,p.293]), it réadily follows that if @ is an open simply con-

nected neighborhood of the origin such that 3Q is a rectifiable

Jordan curve, then Q2  is attainable as the image of the Fourier

transform of an L!-function.

Does there exist f € LI(R) such that (Image (%))" coincides with,

for instance,
b

+

or with 521 {rel™™. 0 < r < 1/n)2.

A STRANGE FOURIER TRANSFORM IN LZ(R)\ L'(R). Define
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2 o2 _
h(t) = I (cos 37-- sin 170 dt, for t >0 ,
» t ‘
and h(t) = -h(-t) for t <0,

Clearly,

(a) h is the restriction to the real axis of an entire function,
and a classical exercise of calculus of residues indicates that

: : 2 2 ‘
lim h(t) = lim J (cos 17-4 sin %r) dr = VA 0.
[0,t]

t+o oo

t? 2 _ t2
On the other hand, cos -5 - sin -5 = V2 cos(jf + ZJ and (by study-
ing the beha?ior of this function) it is not difficul to deduce
that '
(b) 1lim sup th(t) = lim sup -th(t) = c, for some constant c > 0,
t &> %o t > oo
and

() het?®\ 1 @®).

CLAIM.iﬁ also enjoys the properties (a), (b) and (c). Indeed,
2

ﬁ(s) = (-2iY7/s) sin §7-.

Clearly, it suffices to show that h has the indicated form. The

easiest way to do this is to think of h as the indefinite integral
2

of the dzstrzbutzon ¢ associated to the function V2 cos (—— + —)

(see, e.g., [2, Chapter VI]); then h is ‘the L2-function associated
to the distribution.

~

1
(p-v. 1g) -0
Since ¢ is the limit, in the sense of distributions (as R =+ «), qf

the distributions associated to the functions

2 ' ~
V2 X( R, R)(t) cos(27-+ Ty (R > 0), and ¢ is the distribution asso-

ciated to the functzion is. h(s), we have

n _ i 2
¢(s) = lim V2 [ e~ 18t cos (:Cz— + %) dt =
R (_R,R)
. . . 2
- lim 4% oim/4 [ o-ist gi(t 12) 3¢ 4
R~> (-R,R)
. . 2
+ lim _/ZZ e—11T/4 I oist e-l(t /4) at =
R0 ('R’R)
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L2 ) 2
= lin (1/2) (1ea)e72 /D) (/D (=)™ 4,
R0 (_Ryk)
. 2 . 2
+ 1im (1/2) (1-i)ei(s7/2) f e (FL/D)(e48)" 4y
R+ "J(-R,R)
. 2 . 2
Oiim (1/2) (1+1)et /D j el (/D) g¢
R+ : (-R,R)
i(s2/2) i(tZ}Z)
+ lim (1/2) (1-1)e1(s f 5 dt
, R (—R;R_)_
. 2 . 2
= lim (1+i)e]'(s /2) f el (t7/2) g
R+ . (0,R)
. 2 . 2
+ lim (1-i)e”1(s7/2) J e (/D) g¢ -
R (0,R)
*% . 2 . 2 2
D imemis?in ivmet (/D) < g7 sin 5.

Therefore

~ 2
h(s) = (p.v 15). 4(s) = (-2i/7/s) sin .

((*) follows by a straightforward estimation of the difference be-
tween the two integrals; (**) follows by using calculus of residues).
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