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FROM MY CHEST OF EXAMPLES OF FOURIER TRANSFORMS 

Domingo A. Herrero 

INTRODUCTION. 
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The Riemann-Lebesgue theorem guarantees that the Fourier transform 

f of a function f E ~lCR) is continuous and tends to 0 at infinity. 
Indeed, the Fourier transform is a bounded linear mapping with den-

se range from L1 CR) into the space C~CR) of all complex-valued con­

tinuous functions defined on R, such that get) + 0 Cltl + 00). How­
ever, it is not so immediate to check that the range of this trans 

formation is not all of CooCR). More is actually true: not every 

compactly supported continuous function is the Fourier transform of 

some L1-function. 

This can be shown, either by some general Baire category argument, 

or by exhibiting a concrete example. Perhaps, the following "but­
terfly" (look at the graph of B!) is the'simplest example that one 
can imagine. Define 

B (s) 
= {(11k) sin 4k s, if ~/Zk < lsi < v/Z k- 1 

0, if s = 0, or lsi> v. 

Clearly, B E Co(R) (= the space of all compactly supported complex­

valued functions defined on R), and a simple computation shows that, 

for 4k + Zk-1 _ Zk-2 < s < 4k + Zk-1 + Zk-2, we have 

bet)' B (t) 

1 
Z1f {J 

;;;._1 { 
Zk1[ 

1 J Zv 
R 

B (s) 

k-1 k. k k-l [-v/2 ,-1[/2 lu[1T/2 ,'/T/2 1 

sin 4k Ct-4k) 
t - 4k 

B(s)e ist ds + "leftover"} ;;;. 



for all k ;;. ko (>4). 

It readily follows that 
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f Ib(t) I dt;;. I f bet) dt ;;. 
R k=ko I t_(4 k +2 k + I ) I S2 k -2 

;;. L 
k=k o 

2.2 k - 2 (1/3krr)2-k 
6rr ;: 

k=k o 

1 
k 

00 

Hence, B is not the Fourier transform of any LI-function. 

However, since C (R) c L2(R), it is immediate (from Plancherel's o 

theorem) that.b and B = b belong to L2 (R); furthermore, it is not 

difficult to check that b is the restriction to the real axis of an 
entire function, and that bCt) ~ 0 Cltl ~ 00). 

On the other hand, B is a real-valued function whose image is equal 
to B (R) = [-1,1]. If 

k(t) 1 [sin t/2) 2 , 
z:rr . t/2 

then k(s) = max{1 - Isl,O}, and therefore the function 

2~(s/2) - 3~(s) E C (R) is the Fourier transform of the LI-function o 
k(2t) - 3k(t), and has exactly the same image as B. 

These examples suggest two questions: 

(I) According to a famous theorem of Hahn and Mazurkiewicz, a non­

empty subset X of the complex plane C is the continuous image of 
a closed interval if and only if X is compact, connected and local-

I " -ly connected [3, IV. 9]. Thus, if f E L (R), then (Image (f)) 
= feR) U {a} necessarily satisfies the above conditions, and con­

tains the origin. Does there exist a compact, connected, locally 
connected subset X of C, containing the origin, such that X is not 

closure of the image of a Fourier transform of an LI-function? 

" - I (That is, X ~ (Image (f)) for all f in L (R)). 

(II) Does there exist a function f, defined on R, such that both f 
" and its Fourier transform f are restrictions to the real axis of 

entire functions, f, f E L2 (R) \ LI(R), and both f and f tend to 0 

at the infinity? 

The author does not know the answer to the first question, but se­

veral examples point in the affirmative direction. On the other 
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hand, the answer to the second question is YES, and f(t) 
is a,concrete example of such a function. 

(lit) sin t2 

The author wishes to thank Professors N.Grace, J.N.Me Donald and 
H.A.Smith for references and helpful.discussions. 

IMAGES OF FOURIER TRANSFORMS OF Ll_~UNCTIONS. 

1 ' "-
PROPOSITION 1. There e:z:is,ts gEL CR) such that g E CO CR) and 

Image Cg) is the closed square S of vertices 0, 1, l+i and i; that 

is, g is a "Peano curve" mapping a closed interval co.ntinuously on­

to a square. 

Let ACT) be the class' of all continuous periodic functions (period 
2n) with absolutely convergent Fourier series; that is, G E A(T) if 

00 

and only if G(s) = L 
_00 

00 

gn e ins (s ER), where IIGIIA(T) = L Ign l <00. 

, _00 

LEMMA 2. (IS,Lemma 6 7]), Let FE Co(R) be a function such that 

Fes) = 0 for lsi> n-e: (for some e:, 0 < e: < 1T) , and let 

f(t) = ~ f F(s) e ist ds . 21T R 

Then the three following statements are equivalent: 

(1) L I f (n) I < 00 ; 

-00 

00 

(2) L max{lf(t) I: n ~ t ~ n+l} < 00 

_00 

A wel1-known result of S .Bernstein [2, Theorem 6.3], [6, Vol. I ,p. 240] , 
says that A(T) contains every Lipschitz function of order u, for 

eac~ a > 1/2., Thus, if F E Co(R) vanishes outside (-1T+e:,1T-e:)\ (for 

some e:, 0 < e: < 1T) and F E LiPa for some a > 1/2, then Lemma 2 gua­

rantees that F = f for somef E LI (R). Unfortunately, this observa­
tions does not help too much ,in order to prove Proposition 1, be­
cause a Peano curve mapping a'closed interval continuously onto a ( 
square can be chosen to be Lip~/2' but not LiPa for any a> 1/2 [1] j 

However. we can still use an i,mportant part of the proof of Lemma 2: 

if g E LlCR) and F EA(T), then the product F(s)g(s) is the Fourier 

transform qf an L1-function. Indeed, if F(s) = I 
-00 

f e ins , 
n 
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.. Y Ifni < 00, then F(s)g(s) 
-00 

00 

L 
-00 

f e ins g(s) is the Fourier trans­
n 

form of the function 
00 

L f g(t-n) E Ll(R) 
-00 n 

Let J E A(T) be any function such that 0 ~ J(s) ~ 1 for all s E R, 
J(s+n) = J(s) , and 

{ 
0, if 0 ~ s ~ 3n /8 , 

J(s) 
1 i if n/2 ~ s ~ 7n/8 

(For instance, we can define J so that its graph is continuous, 
equal to a linear segment between 3n/8 and n/2, and equal to another 
linear segment betwe~n 7n/8 and n). 

Clearly, if J(s) 

G(s) 

and 
G(Zs) 

are elements of A(T) . 

then 

n} ) 
ins· e 

A minor modification of the proof given in [4] indicates that 

F(s) G(s) + iG(Zs) E A(T) 

maps [O,n/4] continuously onto the square 5. 

Let get) = 4k(Zt) - k(t). Clearly, g E L1 (R), and g(s) z1«s/Z) 
~ 

-k(s) satisfies 0 ~ g(s) ~ 1 for all s E R, and 

~ {1 , if I s I ~ 
g(s) = 

o,iflsl~z 

It readily follows from our previous observations that 

pes) F(s) g(s) 

is the Fourier transform of a function pEL l(R), p E Co (R), and 

Image (p) = 5 

because ~([-n/4,n/4]) = 5, pes) = 0 for all s such that lsi ~ 2, 
and pes) E 5 for n/4 < lsi < 2 .. 

The proof of Proposition 1 is now complete. 

What else can be obtained as the. image of a Fourier transform of 

an L1-function? 
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(a) Clearly, if ~ is any function analytic on a neighborhood of the 
real interval [-1,1], such that ~(O) = 0, then the Riesz-Dunford 

functional cafculus (in the Banach algebra L 1 (R)) indicates that 

~ [-1,1]) = Image (~.g) (g(t) = 4k(2t) - k(t)) 

can be attained as the image of the Fourier transform of an L1-func 
tion. 

(b) Instead of F(s) = G(s) + iG(2s) (as in the proof of Proposition 
1), we can consider functions of the form aGes) + BG(2s), a,B E C, 
and deduce that every "solid" parallelogram 'with a vertex at the 
origin is also attainable. 

(c) If .(z) ; [-iz/(zr2i)]4, then. is analytic on a neighborhood 
of the square 5, .(0) = 0, and .(5) is the closed unit disk D. 
Hence, 

D = .(5) = Image ( •• [F.g]) , 

and therefore there exists m E L1(R) such that Image em) D 
(m = .o(F.g)). 

co 

(d) Let y(z) = L C zn be a Taylor series such that 
n I I c I < co, n 

then 

co 

and I 
n=l 

n=l n=l 

'" (D) = Image (I Cn (m)n) , 
n=l 

c (~)n is the Fourier transform of an Ll-function. 
n 

By using a classical result on conformal mappings (see, e. g., [6, 

Vol.I,p.293]), it readily follows that if n is an open simply con­
nected neighborh6od of the origin such that an is a reatifiabte 

Jordan curve, then n is attainable as the image of the Fourier 
transform of an Ll-function. 

Does there exist f E L1CR) such that (Image (f)) coincides with, 
for instance, 

or with ~ {rein/n : 0 < r < lIn}? 
n=l 

A STRANGE FOURIER TRANSFORM IN L2(R)\L 1(R). Define 
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h(t) = f 
[0, t] 

T 2 2 
(COS 2 - sin T) dT, for t ;;;. 0 , 

and h(t) -he -t) for t < O. 

Clearly, 

(a) h is the restriction to the real axis of an entire function, 
and a classical exercise of calculus of residues indicates that 

lim h(t) ':' lim f (cos T; - sin TZ
2) dT = ;; - ;; = o. 

t .... oo t .... oo [0, t1 

t 2 t 2 t 2 
On the other hand, cos :r - sin 2 = 12 cos(:r + ~) and (by study-

ing the behavior of !his function) it is not difficul to deduce 
that 

(b) lim sup th(t) lim sup -th(t) 
t .... ±oo 

c, for some constant c > 0, 
t .... ±oo 

and 

(c) h E L2(R) \ L1 (R). 

CLAIM. ih also enjoys the properties (a), (b) and (c). Indeed, 
2 

h(s) = (-Ziv'rr/s) sin T 
" Clearly, it suffices to show that h has the indicated form. The 

easiest way to do this is to think of h as the indefinite integral 
2 

of the distribution ~ associated to the function 12 cos (~ + ~) 'i' Z . 4 

(see, e.g., [2,Chapter VI]); then h is the L2-function associated 

to the distribution 

1 " (p.v. is).¢ 

Since. is the limit, in the sense of distributions (as R .... (0), of 

the distributions associated to the functions 

t 2 " 12 \_R,R)(t) cos(:r + ~) (R .... 0), and 41 is the distribution asso-

" ciated to the function is.h(s), we have 

$(s) = lim 12 f e-ist cos 
R .... oo (-R, R) 

lim 12 e i Tr / 4 f 
R .... oo 2 . (-R,10 

+ 

12 -in/4 f e-ist e~i(t2/4) dt + lim 2 e 
R .... oo (-R,R) 



Therefore 
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= lim (1/2)(1+i)e- i (S2/2) J e(i/2)(t-s)2 dt + 
R+oo (-R,R) 

+ lim (1/2)(1_i)e i (s2/2). J e(-i/2)(t+s)2 dt 
R+oo (-R,R) 

(!)lim (1/2)(1+i)e i (S2 /2 ) J e i (t 2 /2) dt + 
R+oo (-R,R) 

+ lim (1/2)(1_i)ei (s2 /2 ) J 
R+oo (-R,R) 

+ lim (1_i)e- i (s2 /2 ) J 
R+oo (O,R) 

(**) 2 2 . = -i(s 12) . = i(s 12) 1 V Tfe - 1 V Tfe 

-i (t 2 12) e 

~ 1 ~ s2 h(s) = (p.v is)' 4J(s) = (-2ilTf/s) sin 2" 

dt 

(C*) follows by a straightforward estimation of the difference be­
tween the two integrals; (U) follows by using calculus of residues). 
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