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ABSTRACT. In a connected Riemannian manifold one has a natural dis
tance. A subset of the manifold is called basic if every point in M 
is uniquely determined by its distances to the points in the subset. 
We prove that'every compact Riemannian manifold has a finite basic 
set and obtain some consequences. 

1. INTRODUCTION. 

Let (M.g) be a connected Riemannian manifold. Let d be the distance 
associated to g. 

A set B C M is called basic if every point in M is uniquely determi

ned by its distances to the points in B. 

We see (Theorem (2.1)) that every compact Riemannian manifold has a 
finite basic set. As a consequence a "metric number" can be associa
ted to M. We compute some of these numbers. 

2. THE DISTANCE IN A RIEMANNIAN MANIFOLD. 

In what follows (M,g) will be a connected complete Riemannian mani
fold with metric g and d(x,y), x,y EM will be the distance function 
naturally associated to g. 

(2.1) THEOREM. Let (M,g) be a aompaat Riemannian manifoZd. Then the

re exists in M a finite set of points {x1' ...• xN} suah that if x,y 

i = 1,2, ... ,N then x = y. 

Proof. Let PO be a point in M and consider Br(po) a convex, normal, 

minimizing ball arround PO' Let Xl"" ,Xn (n = dim M) be a basis of 

Mpo such that exppo Xi = Pi E Br(Po) and consider the functions 

i = O,l, ... ,n 

We can start with r small enough in order to assure that 
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With the fi's we form the function F: Br(po) 

then we clearly have dF I Po has rank n since gr f' l = 2 X. 
l. Po l. 

i = 1,2, ... ,n. By the rank theorem we have that there exists a 

neighborhood BE(po)'f. ~ r,such that FIBECPo) is one to one. 

Now we can do this f.or each point Po E M obtaining an open covering 

obtain by compactness a finite number of 

k . 
such that U B .CpJ) = M .. 

u=l EpJ 0 . 
o 

For each of the points we have the corresponding balls Br j(P6) and 
Po 

in each one of them the n points j j 
PI' ... 'Pn determined by the basis. 

We have then k(n+1) points in M. 

Now take two points x,y in M such that 

j = l, ... ,k , i = O,l, ... ,n. 

Since the balls form a covering we have, for some j, x E Bf. j(P6) 
Po 

and therefore also y E B .. Now the function 
EpJ 

i.e. 

is one to one in B .(pJo·) and since Fj(x) 
E J 

Po 
and the theorem is proven. 

o 

Fj(y) we must have x=y 

An arbitrary subset .B eM with the property of the previous theorem 

will be called ba~ie in M i.e. B is ba~ie in M if for each pair 
x,y E M 

d(x,b) = d(y,b) 'V b E B x = y. 

If there exists in (M,g) a finite set which is basic in (M,g) we de
fine N(M,g) as the minimum of the cardinalities of such sets. Other
wise we write N(M,g) = 00. 

If a given manifold M admits a Riemannian metric g such that 
N(M,g) < 00 we may consider all such metrics and define LN(M) 

= Min N(M,g). 
g 

We can make now the simple but important 

(2.2) OBSERVATION. If (M,g) has a basic set A C M then there is a 

one to one continuos function ~: M -+ RA defined by 
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[<j>(x) 1 (a) = [d(a ,x) 1 2 for .each a E A. 

In particular ,if M is compact and we write IN(M) for the minimum of 

the dimensions of the euclidean spaces in which M can be topologically 

imbedded (3. ¢: M -+ Ek one to one continuous) we have 

(2.3) COROLLARY. If M is compact IN(M) "';;;N(M,g) for each Riemannian 
metric g on M. In particular IN(M) ".;;; LN(M) . 

We also have the following 

(2.4) COROLLARY. If (M,g) is a Riemannian ~inifold and dim M = n 

then N(M,g) > n. 

Proof. If N(M,g) ".;;; n then we can find a set A = {al, ... ,an} which is 
basic in M and consider the one to ope continuous function ¢:M + Rn. 

Let (U,f) be a coordinate neighborhood arround a l . Then 
C l If> RD ~ feU) --+ M ~ Rn is one to one continuous. By invariance of 

domain ¢CU) is open in Rn but ¢Cal) = (0,r2,···,rn) (ri =d(al,a)) 

is the limit in Rn of the sequence (~~ , r 2 , ... ,rn) which is a con
tradiction. 

We have now 

Proof. This follows from the last corollary and the following lemma 
which can be proven via the cosine theorem of the corresponding tri
gonometry. 

(2 ;6) LEMMA. For the usual- constan't curvature metrics in Rn, Sn and 

We also have the following 

(2.7) THEOREM. Fop the n-dimensional- toruB Tn we have LN(TD) = n+1. 

Proof. It is enough to show that for some metric g on Tn N(Tn,g) = 

= n + 1. 

For simplicity we shall consider only the case n=2. On T2 we can 
consider several flat metrics;we shall take the one of the square 

i.e. T2 = R2/_ with the lattice generated by (1,0) and (0,1). 
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Let us consider the points PO,PI'PZ in the torus such that the cor

responding points in the plane (also denoted PO' PI and pz)be as 

in Fig.l,Po in the center,P I in the parallel to the x-axis at a 

distance E < t from Po and the same Pz on the parallel to the y-axis. 

We want to prove that each point in the torus is uniquely determi
ned by its distance to these~hree points. 

For each Pi we have its "lattice". 

and for each P in the square we have 

d z(p,p·) -= d z(p,L ) 
T ~ R Pi 

where dTZ and dRZ mean distances in the torus and plane respective

ly~ 

Let us consider now the four regions A,B,C and D in the torus (Fig.2). 

y 

-B- -----.---r------
Po' PI 

A 

y=E~--+-----~----------+----

D c 
x-E 

Fig.Z 

determined by the lines y=E and X=E. 

x 
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Let us take now a point p in the square and consider the following 
cases: 

pEA. In this case we have 

d 2(P,P.) = d 2(P,P.) 
T 1 R 1 

i = 0,1,2 

then the point p is uniquely determined by these three numbers,in 

other words,if p and q are in A and d 2(P,P.) = d 2(q,P.) i = 0,1,2 
T 1 T 1 

then p = q. 

Let us take now a point p E B. In this case we have the following 
si tuation 

d 2(P,P·) d 2(P,P.) 
T 1 R 1 

i = 0,2 

dT2 (P,PI) • dR2 (P,pt) (see Fig. 3) 

pi is the first point to the left on L . 
PI 

There exists one and only one point q in the square such that 

d 2(P,P.) = d 2(q,P.) 
R 1 R 1 

i 0,2 

and clearly q E A. We have to see that d 2(p,pi) ~ d 2(q,PI)' 
R R 

This situation is represented in Fig.3. 

di d~ + £2 - 2 do £ cos ex 

di d2 + (1-£) 2 - 2 do (1-£) cos ex 

1 since £ < I the two equations can hold simultaneously if and only 

if 2 do cos ex = 1. 

y' 

q 

~~--.------------------~~~~~--~----------------~p x' pi Po PI 

Fig.3 

This is the equation of the vertical line x' = l or of x = 1 in 

the system indicated in Fig.1 so the point q lies on the right boun 
dary of the square and so p q in the torus. 

If we take a point in C the situation is clearly analogous with pi 
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(Fig.l) . 

Let us take now a point p in D. We have 

dT2 (P,PO) 

dT2 (P,PI) 

dT2 (P,P2) 

dR2 (P,PO) 

dR2 (p,pP 

dR2 (P,P"z) 

It is therefore cleat that in D can not exist two points with the 

same three numbers since .the points PO' pi and Pz determine uniquely 

every point in the plane. 

Now it remains to be proven that no other point in the torus could 
have the same" three numbers that the point p in D. 

There is clearly one (and only one) point q in B such that 

d 2(P,PP 
R 

but clearly dR2 (q,P2) < dR2 (P,P;) except when p is on the lower 

border of D and in this case p=q in T2; 

There is also one (and only one) point q' in C with the same distan

ces to Po and "P; but its distance to PI is smaller unless p is on the 

left border of D and in this case p = q' in T2. 

The theorem is then proven. 

The results we have seen may mislead us to think that for any 
Riemannian manifold M admitting a constant curvature metric LN(M) 
= n+l but in fact we have the following 

(Z.8) THEOREM. Let Rpm be the m-dimensional real projective space. 

Then for m = zr + j , j 0,1,Z,5,6,7, r > 3 we have 

Zm - k < LN(Rpm) ~ r (m+3) 

where k is a function of j given by the following table 

j o Z 5 6 7 

k Z 4 4 6 8 

Proof. We need to recall the following remarkable result due to 
Haefliger [Zi (see also [1]). 
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(Z.9) LEMMA (Haefliger [Z)). If Mm and Nn are two differentiable ma 

nifolds such that: 

i) .Mm imbeds topologicaUy in Nn (i.e. there is f: Mn ... Nn one to 

O~e which is a homeomorphism onto its image with the induced topolo

gy) . 

ii) 3 n ;;;. 2" (m+l). 

Then there exists a differentiable imbedding of Mm into Nn • 

. Now there are several well known results due to various authors con

cerning the impossibility of imbedding Rpm f~r m = Zr + j into Rn 

n = Zm-k (k and j as above) see [1] p.91 for the corresponding table. 

These results and our observation (Z.Z) yield the left hand side 

inequality since r > 3 implies n ;;;. f (m+l) in each case. 

Now the right hand side inequality can be obtained for the usual 

constant curvature metric by using the well-known cell structure of 

Rpm. 

In the topological category, on the other hand, the situation is 

much. simpler as the following fact shows 

(Z.10) THEOREM. Let M be a compact connected topological space. 

Then M can be imbedded in a finite dimensional euclidean space if 

and only if M is metrizable and admits a distance with a finite ba

sic set. 

Proof. If M is metrizable and admits a distance with a -finite basic 

set we obtain the imbedding as in (Z.Z). 

On the other hand if M can be imbedded in RN we may assume that it 
is substantial now consider on M the induced distance then M is me
trizable and clearly there is a basic set with N+l points on M. 

FINAL REMARK. If M is a differentiable manifold the induced distan

ce from RN considered in (Z.10) cannot be the distance of a Riemman 

nian metric on M. It seems, in fact, very hard to determine N(M,g) 
for the distance of the induced metric of a differentiable imbed-

ding of M in RN. 

It is clear however that N(M,g) must be closely related to the geo
metry of (M,g) being small for more "regular" metrics and larger 
for more complicated ones. 

Clearly LN(Mj has a more "topological" nature but we suspect it is 
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more. related to the differentiable structure of M. 
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