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OPERATOR DIFFERENTIAL EQUATIONS OF n-th ORDER
WITH n BOUNDARY CONDITIONS®*)

Lucas Jédar

ABSTRACT. In this paper we study the boundary operator differential
problem of a n-th order linear operator differential equation with
n boundary operator conditions. Conditions for the existence and

uniqueness and an explicit expression of the solution are given.

0. INTRODUCTION.

If we consider the boundary value problem for a n-th order differen
tial equation

y ™) «a @y )+ e A )y = ()
(0.1) n . . )
(1, (G-1) (2),(3-1) )
jzl gy (0) + N; Ty (1) =0
0<t<T,1<i<n

where the given function f and the unknown y are vector-functions
with values in C™ and the coefficients Ao(t),...,An_l(t) are m xm

matrices with entries that are integrable on [0,T], and for i,j the
matrices Ni;) and Niﬁ) appearing in the boundary conditions are

constant mx m matrices. The boundary conditions in (0.1) are said to
be well set if the corresponding homogeneous equation has the tri-
vial solution only, and in this case the solution of (0.1) can be
written in the form

T
y(t) = JO G(t,s)f(s)d; , 0<t<T

where G(t,s) is the Green's function of the equation (0.1), see [3],
chapter 7.

(*) This work has been partially supported by a grant from the Con-
selleria de Cultura, Educacid i Ciéncia de la Generalitat Va-
lenciana.
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This paper is concerned with the infinite-dimensional analogous
problem, that is, Ai(t) is a bounded linear operator on a complex

Hilbert space X, for all t in [0,T] and 0 < i < n-1.
We assume that Nii), i=1,2, 1<i,j <n are bounded linear opera-

tors on X and f is a Bochner integrable function with values in X,
that we can suppose continuous in order to obtain solutions every-
" where defined in [0,T].

" For convenience we define the following operators that will be
used in the following

0 I 0 0
0 . .. I
A(t) = : . ) B =1.
: . ' I 0
SA(E)  -AL(R) .. sAL ()] I
- (V) V)
Nll Nln
c=1[I 0 0] H Nv = 1. , Vv =1,2
N(v) . N(v)
nl nn

1. PROOFS AND RESULTS.

We recall' that for the evolution equation (du/dt)(t) = A(t)u(t)
on the interval [0,T1, if A(.)'is'a continuous function, generator
of a fundamental operator UA(t,s), defined on the triangle

A={(t,s) ; 0 <s <t<T}, such that if A(t) € L(H,H), then
U, (t,s) € L(H,H), strongly continuous jointly in s,t and that satis-
fies:

(i) The partial derivative BUA(t,s)/at exists in the strong topolo-

gy, belongs to L(H,H) for (s,t) € A, and is strongly continuous in
t.

(ii) aU,(t,s)/dt = A(t)U,(t,s), U, (t,t) = T for (s,tj in A.

(iii) UA(t,s)UA(s,u) = UA(t,u), for 0<u<s<ts<T.

When UA(t,s) is invertible for (s,t) in A, we can extend UA(~,-) to
the rectangle [0,T] x [0,T], in the following way UA(s,t) =
= (UA(t,s))—1 for 0 < s <t <T. In this case it follows that

aUA(s,t)/dt'= -UA{s,t)A(t) and the property (iii) is vgrified for
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0 < tb< s <u <T. Several different conditions on A(t) in order to
ensure that {A(t)} generates a fundamental operator can be found in
[71, 181,91, [11], and [12].

THEOREM 1. Let us consider the boundary problem (0.1) where A ()

are continuous functions with values in L(X,X), f <& a continuous
X valued function and Ni;) R Nég) are operators in L(X,X). If
{A(t)} Zs generator of an invertible fundamental operator U,(t,s)

such that

(1.1) N1 + NZUA(T,O) is invertible

and we denote
= -1
P = (N1+N2UA(T,0)) NZUA(T’O)

C UA(t,O)(I—P)UA(O,S)B », 0<s<t<T

G(t,s)
-C UA(t,O)PUA(O,s)B , 0<t<s<T

then the only solution of (0.1) Zs given by

T
(1.2) y(t) = IO G(t,s)f(s)ds , 0<t<T

Proof. Given the problem (0.1) and taking

y(t)
x(t) = 3

y (™ ¢y

it is clear that this problem is equivalent to the following boun-
dary problem

x(t) = A(t)x(t) + Bf(t)
.3 S y(t) = C x(t)
N x(0) + N,x(T) = 0

From the hypothesis imposed on {A(t)}, the Cauchy problem associa-
ted with the differential equation in (1.3) has only one solution
for a given value x(0) in t=0, and this solution is given by

t
x(t) = U,(t,0)x(0) + IO U, (t,s)B£(s)ds

see [11], p.19 for details. We define now the following other func-
tion
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T
x(t) = UA(t,O)(I—P)f:UA(O,s)Bf(s)ds—UA(t,O)P[ UA(O,S)Bf(s)ds
t

It follows that

T v
x(0) = -PfOUA(O,s)Bf(s)ds

T
x(T) = UA(T,O)(I-P)fOUA(O,s)Bf(s)ds

(1.4) (I—P)x(0)+P UA(O;T)X(T) =0

From (1.1) and the definition of P one gets

- -1 N
I-P = 1 - (N;+N,U,(T,0)) 7 "N,U,(T,0) =

n

-1 : _
(N1+N2UA(T,0)) {N1+N2UA(T,O)-N2UA(T,0)} =

-1
(N1+N2UA(T,0)) N,

Thus the boundary condition in (1.3) is equivalent to (1.4). From
the definition of x(t) and by differentiation it follows

t
x(t) = A(t)UA(t,O)(I-P)I U,(0,s)BE(s)ds + U, (t,0) (I-P)U, (0, t)BE(t) -
0
T .
- A(t)UA(t,O)PI U, (0,5)BE(s)ds+U, (t,0)PU, (0, t)BE(t) = A(D)x(t)+£(t)
t 7

From (1.3) it follows that y(t) = Cx(t).‘From here and the expres-
sion which defines x(t), the result is concluded. ‘

EXAMPLE 1. If we consider the problem (0.1) where A(t) = A € L(X,X)
for all t in [0,T], being X a complex Hilbert space, then A is ge-
nerator of the invertible fundamental operator

UA(t,s) = exp((t-s)A) , 0<s<t<T
Thus the condition (1.1) takes the form

N1+N2exp(A T) 1is invertible

EXAMPLE 2. For the infinite-dimensionalrcasé, if A(t) satisfies the
property (See [6], p.600)

t t
A(t)(( A(s)ds) ((OA(s)ds)A(t)
0

or

R AGEDACE) T ACEACE)

for all t, t,, t. in [0,T] , then it is easy to show that

12 "2
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t-s

S Uy (t,s) = exp([0 A(w)du) , 0<s<t<T

is an invertible fundamental operator generated by {A(t)}.
The condition (171) takes the form

T
N1+N2exp(f A(s)ds) is invertible
0

EXAMPLE 3. With the hypothesis of theorem 1, if X = C®, the matrix
A(t) generates an invertible fundamental operator U,(t,s) defined
by the transition state matrix of the linear system

(du/dt) (t) = A(t)u(t)

See [2] , p.22.

The results of theorem 1 and the examples are related with [1], [5]
and [10].

The following result is concerned with the existence problem of T-
periodic solutions of the differential equation of (0.1), when
A; (t+T) = A;(t) for all t in [0,o[, and 0 < i <n-1, and f(t) =

= f(t+T) .in this interval.

COROLLARY 1. Let us consider the operator differential equation

(.5 y® a0y e sy () = £(0)

where f:[0,o[ --— X, and Ai:IO,w[--e- L(X,X), are T-periodic conti-
nuous functions. If {A(t)} is generator of an invertible fundamen-
tal operator U,(t,s), such that

(1.6) 1 ¢ o(U,(T,0))

where G(UA(T,O)) denotes the spectrum of the operator UA(T,O) then

there exists only one T-periodic solution of the equation (1.5)
that is given by (1.2).

"Proof. If we consider the problem (0.1) where Nié) = -N§§) =1

c . (1) _ (2) _ g R - . -
for i=j and Nij Nij 0, for i#j, that is N, N, I, then
from the hypothesis (1.6), the hypothesis (1.1) of theorem 1 is
satisfied. From here, the only solution of our boundary problem is

T-periodic, and it is given by (1.2).

COROLLARY 2. Let us consider the equation (1.5) with A;(t) = A{
for all t in [0,«[ , and f continuous and T-periodic. If the spec-



trum of A, o(A) is disjoint with the set {(2kmi)/T ; k integer},
then there exists only one T-periodic solution of (1.5), and this
solution is given by (1.2), taking UA(t,s) = exp((t-s)A) in the
expression which defines G(t,s).

pProof. Taking U,(t,s) in the corollary 1, the result is concluded
if the condition (1.6) is satisfied. Moreover, (1.6) is equivalent
to the condition

(1.7 1 ¢ o(exp(T A))

From the spectral mapping theorem, [4], p.569, this condition is
equivalent to say that exp(TA) # 1, for all A in the spectrum of
A. Thus the result is proved.
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