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H. AMANN'S éADDLE POINT REDUCTION AND FIXED
POINT OF SYMPLECTIC DIFFEOMORPHISMS OF THE TORUS

C. Zuppa

‘In this paper we study the existence of fixed points of symplectic

diffeomorphisms of the torus T2Y which are homologous to the iden-
tity (cf. app. 9 of [3]). It is known that such a diffeomorphism
has at least N+1 geometrically different fixed points if it is not
too far from the identity (cf. [6]). The main theorem here shows
that the latter condition can be dropped.

At this point it should be mentioned that, as V.I.Arnoid pointed
out (app. 9 of [3]), this result gives another proof of H.Poincaré's
geometric théorem.

In order to state the theorem, we recall first a definition.

Let g: 72N , 72V be a symplectic deffeomorphism of class cl. we
say that g <s homologous to the identity if it can be connected to
the identity diffeomorphism by a cl- curve g, consisting of sym-
plectic diffeomorphisms such that the field of velocities g, at
each ‘moment of time t has a single-valued hamiltonian function.
More precisely, there exists a function K: 72N x [0,1] + R of class
c%, such that, if

O : 2% x [0,1] » T2V

is the flow of the hamiltonian vector field XK with initial condi-

tions (x,0), x € 72N , then
0, (x,1) = gx) , xeT1,
Note that we do not impose a periodicity condition on K.
THE MAIN THEOREM. Such a diffeomorphism has at least N+1 geometric

ally different fized points.

The strategy of the proof of this theorem is roughly as follows.
In a standard way, the existence problem of periodic solution of
the hamiltonian system
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E‘l = Kp(q:p’t) » P "‘Kq(q,P,t) , {a,pl € RNXRN

(we consider K defined in R2Y in a natural way), is transformed in
an existence problem of solution of an equation of the form

Au = F(u)

in a real Hilbert space H, where A is a selfadjoint linear opera-
tor, and F is a potential operator, mapping H continuously into it-
self.

In [1], H.Amann shows that, with certain assumptions on the opera-
tor F, it can only interact with finitely many eigenvalues of A.
Roughly speaking, this means that the original problem is reduced
to the study of critical points of a functional a defined in a fi-
nite-dimensional space that, in this particular case, is of the

form R"™ x RZN .

Next, taking advantage of the symmetries of the problem (periodici-
ty in {q,p}), the functional a can be considered as defined in

R® x T2V, Finally, one can show with the aid of categorical argu-

TZN

ments that a has at least cat( ) = N+1 different critical points

that are solution of our problem.

I should like to thank F.Takens for helpful discussions at IMPA,
Rio de Janeiro. .

§1.H. AMANN'S SADDLE POINT REDUCTION.
In this section we follow almost word by word the expositionin [2].

(1.1). The basic hypotheses. H is a real Hilbert space with inner
product <.,.>, and we identify H with its dual.

A: dom(A) CH + H is a self-adjoint linear operator of dis-
crete spectrum o(A).

(A) There exist numbers a < 0 < B such that a,B & o(A) and
o(A) N (a,B) consists of at most finitely many eigenvalues
of finite multiplicity. '

We denote by Al < sz< ...<An the eigenvalues of A in (a,B), and
by m(kj) the multiplicity of Aj.

F: H+ H is a continuous potential operator such that
(F)

allu-vi? < <F(u)-F(v), u-v> < glu-vi® v u,v € H.

We denote the potential of A by ¢, that is, ¢ € CI(H,R) and‘¢' = F.
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Let»{EA | A € R} be the spectral resolution of A; P,, P € L(H) the

orthogonal projections defined by

a ) o B
P_:= J dEA » P o= IB dEA , P := J dE ,

-co

respectively, and X := P_(H) , Y := P.(H) , Z := P(H).
It is clear that H = Xe Ye Z, and Z is finite-dimensional with

n
dim z = §J m(A

j.l j)\.

Next, one defines self-adjoint linear operators R € L(H,X)
Se€L(H,Y) , TEL(H,Z) by
1

[0 ] "E @« —‘;“
R := J (a=-2) dEl , S := J (A-a) dEA
-0 B
o f%d I f%
T &= I A-Q E, = (M. -0 P, ,
a Ay J

respectively, where Pj denotes the orthogonal projection of H onto
the eigenspace ker(XjI—A) of Aj.

It is an immediate consequence of these definitions that R,S and T
are pairwise commuting, R|X , S]Y, and T|Z are injective, and

-R% + % + T2 = (A-aI)"!, Moreover -(A-aI)RZ = P_, (A-aI)S® =P
(A-aI)T? = P,

+?

(1.2) Saddle point reduction. We let
$(uw) = o(w) - $Hu? vueH,

and we define feclxxyxz,R) by

£06,y,2) 1= % Uxh? < wyl? - 1zi?) + 3 (Rx+Sy+Tz)

It is immediately verified that (x,y,z) is a critical point of f
iff Rx+Sy+Tz is a solution of Au = F(u). Moreover,

(1.3) PROPOSITION. There exists a globally Lipschita continuous map
(x(.),y()): Z » X x Y such that (x(z),y(z)) is the unique saddle
point of £(.,.,2): XxY + R for every z € L. Thus the point
(x(2),y(z)) € XxY <8 characterized by the "saddle point inequali-
ties"
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(1.4) £f(x(z),y,z) < g(z) < f(x,y(z),z2) (x,y,z) € XxYxZ,

where . g(z) := £(x(z),y(z),z) vV z €12

as well as by the fact that (k(z),y(z)) i8, for every z € 1, the
unique point (x,y) € XxY solving the system

(1.5) 0 = x + RF(Rx+Sy+Tz)
(1.6) ' 0 = -y + SF(Rx+Sy+Tz)
where E(u) 1= F(u) - au Vv u € H.

Moreover, g has a globally Lipschitz continuous derivative g':Z » Z,
given by g'(z) = -z + Tﬁ(Rx(z) + Sy(z) + Tz) =z € Z.

Finally, z is a critical point of g iff Rx(z) + Sy(z) + Tz 1is a
solution of Au = F(u).

Now, we set ! .= (T|Z)"1 € L_(2) := {B € L(Z)|B = B*} ,
a := -go ! e CI(Z,R) and u(z) := v(z) +z where
(1.7 v(z) := Rx(T—lz) + Sy(T"lz) v z € Z.

Then, by (1.6), u(.): Z - H is Lipschitz continuous, and

u(z) € dom(A) v z € Z.

Moreover, a has a globally Lipschitz continuous derivative, given
by a' = -7l g'o T~! and z is a critical point of a iff u(z) is a

solution of Au = F(u).

(1.8) LEMMA (cf. [11,12]1). For every z € 1

a(z) = 7 <Au(z),u(z)> - #(u(z))

or a(z) = % <Az,z> + % <Av(z),v(z)> - o(u(z))

and a'(z) = Az - PF(u(z)).

In the following lemma we state a technical remark, which will be
useful,

(1.9) LEMMA. If F <s globally bounded, i.e. there exists M > 0 such
that IF(u)ll <M < +o ¥ u €M, then the mapping Vv defined in (1.7)
i8 also globally bounded.

Proof. The equations (1.5) and (1.6) characterizing (x(z),y(z)),
z € Z, can be rewritten as

0= (I - aRz)x(z) + RF(Rx(z) + Sy(z) + Tz)
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0 = (-1 - aS?%)y(z) + SF(Rx(z) + Sy(z) + Tz)
Therefore, there exists a constan® C > 0 such that
I(I-aR?)x(2)ll , H(-I-a8P)y(z) <C V z €2

Now, it is easily verified that (I—uRZJIX and (—I-aSZ)IY are linear

isomorphisms, and the assertion follows immediately.

§ 2. REDUCTION UNDER SYMMETRY ASSUMPTIONS.

We assume henceforth that 0 € o(A) and we let Z = 209 Z1 where

Z0 := ker(A) = PO(H);f 1
2

The definition of T implies that T|Z0 = |o I  that is,

1 : 1
T(z,.) = |0L|—2 z, =Yz vz, €Z where vy := |a 2,
0 0 0’ 0 0 :
(2.1). Let z € Z. Setting 1z = Zy * 2y, Zg € Z0 and z, € Z1
we have <Az,z> = <A(z0 + zl) s 2ot z,> = <Az1 s Zp>.

(2.2). Let now Eb € Zo be fixed and assume that ¢ is invariant un-

der translation by EO' More precisely, @(u+ib)

It follows that F is also Eb—invariant, i.e.,

= d(u) Vv u € H.

(2.3) F(u + Eo) = F(u) YV u€EH

The equations that characterize the point

(x(z + y7! zg), y(z + vt zy)), .z €1 are
0 = x - aR?x + RF(Rx + Sy + Tz + z,)

-y - a8%y + SF(Rx + Sy + Tz + z)

0

because T(Y—l EO) = Eb. Hence, from (2.3), the latter equations can

be written

0 = x - aR?x + RF(Rx + Sy + Tz)
0 =-y- GSZy + SF(Rx + Sy + Tz)
Consequently,
(2.4) (x(z + ¥ Z), vz + v7H Z)) = (x(2),y(2)) z € Z.

Moreover, from (1.7) and (2.4), for every z € Z,

v(z + Z) = Rx(T7H(z + Zp) + sy(T7M(z + 7))
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1 1 1

= Rtz + y7lZ) ¢ sy(TThz « v = Rx(TTT2) ¢ sy(17M2) = v(2).

Thus, we have proved that v is invariant under translation by Zo’
(2.4) Let nowm = dhnzo and Wiy e, W be linearly independent

vectors in Z,. The integral linear combinations n,.w, + ... + wah

form a lattice Q in Zo, and the quotient space ZO/Q is precisely

the m-dimensional torus T"
The following result is just a consequence of (2.3).

(2.5) PROPOSITION. If ®(u+w)

o(u), ¥Yu€H and ¥V w € Q , there
exists a functional f € Cl(me Y/ ,R) such that the diagram

pxid

—_— T"x Z,

NS

18 commutative, where p: ZO + T® {8 the canonical projection. Moreo

ver, f has a globally Lipschitz continuous derivative (gradient) f'.

. m . . . . .
0f course, we consider T with its natural Riemannian metric.

§ 3. EXISTENCE OF CRITICAL POINTS OF f£.

In this section we give an existence theorem of critical points of
f based upon Ljusternik-Schnirelmann theory. The basic assumptions
are:

(a): ¢ is Q-invariant as in (2}5).

|¢| and IIFIl = ll8'll are uniformly bounded.

Let Z1 = R®. We denote with y (x, respectively) a generic point of
R™ (T®, réspectively). Then, the functional f can be written

£(y,x) = 7 <Ay,y> + ¢(y,x), (y,x) € R®* x T™ where, from (1.7),
9(y,x) = -2- <Av(y,x) , v(y,x)> - ¢(u(y,x)).

The linear operator A € L(Rn) is symmetric, non-singular and of in-
dex (A) = i. Moreover, ¢ € C1(R™ x T®,R) is, from (1.9), uniformly
bounded. Also, from (1.7), ¢'(y,x) = -d(id xp) PF (u(y,x)). It fol-

lows that ¢' is globally Lipschitz continuous and ||¢'ll is uniform-
ly bounded.

Hence, we can assume that there exists a constant N > 0 such that
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max {|é(y,x)|,Neé'(y,x)I} <N, (x,y) € R® x T".

Finally, we assume that index (A) =i <n.

(3.1) THEOREM. The number of geometrically different criticai
points of £ s at least m+1.

We begin with some preparations. First, it can be observed that f
satisfies Palais-Smale condition (C) because

€ (y,x) = Ayl - o' (y,x)ll = Ayl .- N » +e

when |lyll + +~. Hence, the set K := critical points of f, is compact.
0f course, we have assumed that n > 0, because in case n=0 the theo
rem is a known fact.

In the following, we denote z a generic point of R™ x T® and for
r € R, we set

f¥ 1= {z € R"®x T"|f(2) < T}
Moreover, the term isotopy always refers to a Lipschitz contiﬁ&éys

isotopy. With obvious reduction on smoothness, the following re-
sults are proved in (6.5.5) and (6.6.2) of [4].

(3.2) PROPOSITION. Let ¢ > b > a be real numbers. If f has no cri-

tical values on the interval [b,c], then the sets £% and fb are iso

topic. Furthermore, the isotopy may be so chosen that the points

of £f2 are fized.

(3.3) PROPOSITION. Let c. be an isolated eritical value of'f and
a<c, a,c €R. Then for ¢ >0 sufficiently small there is a

neighborhood U of the set Kc i= {z € R®x T®|f(z) = c,.f'(z) = 0}
and a deformation {;t} of f¢Y€\ U such that ;1(f°+a\ U) C £°7€F,

The deformation may be so chosen that the points of £2 are fixed.

Now, let a < 0 < b real numbers such that, (3.4): f has no criti-

cal points on R™ x T™ £ ; (3.5): f has no critical points on f2 if

index (A) > 0, or £f2 = @ if index (A) 0. It is clear that such
numbers exist. )

b

We set X := fb/fa (X := b in case f2 @) and t: f -+ X the cano-
nical projection. In order toestimate the number of critical points
of f in fb\fa, we use an integer-valued function defined on the
class of subsets of £°. We define

n(@ =0 , vn(B) = éétx[T(B)] if B C £ and B # 0.
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In the following lemma we collect the properties of n which will be
useful and that are easily proved. '

(3.6) LEMMA.

(i) n(B) =1 if B s a point of f°.

(ii) n(B) =n(C) <Zf B D C.

(iii) n(B U C) < n(B) + n(C).

(iv) n(B) = n(Bt) where Bt is isotopic to B by an isotopy that
leaves fixed the set £2,

(v) There is a neighborhood U of B, for every B, such that
n(U) = n(B). '

(3.7) LEMMA. Let ¢, a <c < b be an isolated critical value of f.

Then for e>0 sufficiently small n(Kc) > n(£*%) - n(£S7E).

Proof. Let U be a neighborhood of Kc such that (3.3) and (3.6.v)
are valid, then n(£°"%) > n(£°*\ U). Hence

n(fc+e) - n(fc+e U U)>< n(fc+€\ U) + n(U) < n(fc—e) + n(Kcy.

Now, we can prove

(3.8) THEOREM. The number of geometrically different critical
points of £ in £2 is at least n(fb)-1 if £2 ¢ @, and n(fb) if
£2 = 0.

Proof. Without loss of generality, we may suppose that the number
- of critical points of f is finite. Then f has a finite number of
critical values Cio» i=0,1,...,N, such that a<(:0<c1 <... <cN<b,

. b c y
so that we may write £ D f N5 ..o £90 5 £,

From (3.7), for some € > Q ihdependent of i =1,,,.,N, it is veri-
fied:

. cs+€ c.-€
B9 n(K. ) > n(f Y)Y -n(£t ).

Adding this last inequélity over i, and using the fact that, from
(3.2) and (3.6.iv),

.= c._q1+e
a1 = e ), ie1,..0,N
N cn+eE cg-€
we find ) n(k, ) >n(f ) - n(f " ).
i=0 i

ente .
Also, for the same reason, n(f N ) = n(fb). Finally, for the va-
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c —E . - -
lue of n(f Y .) there are two possibilities:

CO—S

(a). f% = @, then f has.an absolute minimum in Co so that £ =@

[k 4
and n(f 9 ) =.0.

Cc B .
(b). £2 # @, then n(f ° ) = n(£f®) = 1 because T(£f?) is a point

of‘X, and then, the theorem is proved.

We turn now to the probiem of determining‘n(fb). Assume first that
index (A) = i >1. If ¢ = 0 and g € C}(R®,R) is defined by
G(y) := % <Ay,y> , y € R® then we have
: R if p=i
b [
HP(g”, 3R) = _
g 1 0 if p#i
As £f° = gP x T™® and £2 = g2 xT®, Kunneth's formulae imply
0 if j <1

HOGR) =4
HI"*H(T",R) if j.> i

Therefore, cuplong (X) = m+1 and
(3.10) n(£®) = cat(X) > cuplong(X) + 1 = m+2 (cf. [51).

In the general case (¢ # 0), the asymptotic behavior of f and g
near infinity are similar. Then, for |a|, b sufficiently large, we

can hope that fb/fa and gb me/ga’(Tm are homeomorphic spaces and

(3.10) remains valid. In fact, we can prove

(3.11) THEOREM. If |a|, b are sufficiently large, there exists a
diffeomorphism of class C1 P R" xT® > R" x T® such that
w(gbem) = £ and w(game) = f2,
Proof. Fix N > 0 such that
(3.12) max {[¢(2)] , Ne" (2} < LN
Then, if z = (y,x), we have
(3.13)  <£(2),g(2)> = lAyl2 '+ <Ay ¢'(y,x)> >
; 2 -1,2 1
> TAylI“-IAINIyl > Byl (TAT 120yl -TAIN) = >

when llyll is sufficiently large, say llyll = C.



192

Now, let c be a real number such that
c > % CZHAH + 4N and set a:=-c , b:=c.
When ;'= (y,x) € g'l(a-4N,a+4N) ) g'l(b-4N,bf4N) it is verified
that . '
L clAl < c-aN < |g(2)| < F IAI Iyl?,

Thus, liyll > C. In other words, (3.13) is verified in
g l(a-4N,a+aN) U g;'lfb-4N,b+4N).
On the‘other hand, (3.12) implies | |
(3.14) £ 1) cgla-N,b-N) , £l(a) c g7l(a-N,a*N).

"It is easily seen now that the gradient vector field g' can be used

in order to construct a diffeomorphism of class ct

a, : g~1(b-4N,b+aN) » g=1(b) x (b-4N,b+4N)

such that g = P, a0, where P, is projection onto the second factor.
Conditions (3.13) and (3.14) imply that ab(f'l(b)) is the graph in
g'l(b) x (b-4N,b+4N) of a function h: g’l(b) + (b-4N,b+4N) of class
Cl, which verifies |h(s)-b| <N VvV s € g'l(b).

Now, let A : (b-4N,b+4N) » [0,1] be a function of class c! such

that

Ap(®) =1 and supp(},) € [b-3N,b+3N] ,
()] <JN V t € (b-4N,b+4N).

It is easily verified that the mapping By defined by

B,(s,t) = (s,t + A (t) [h(s) - b]) , (s,t) € g~ (b) x (b-4N,b+4N)

is a diffeomorphism of class C1 of g_l(b) x (b-4N,b+4N) onto itself.
Moreover, B, maps g—l(b) x {b} onto f-l(b) and B, (s,t) = (s,t) if
|t - b] = 3N.

Now, setting wb = Bb ca. , we obtain a diffeomorphism of
g_l(b-4N,b+4N) onto itself mapping g“l(b) onto f_l(b).
Analogously we comstruct o_, B, and v, - Finally we define ¥ by the

formulae
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¥, (2) if z € g7 (b-4N,b+4N)
¥(z) =9 v, (2) if z e g_l(a—4N,a+4N)
z .in the complementary case
and the assertion follows immediately.

In a similar way it is proved that, when index (Aj = 0 and conse-

quently, f2 = @ for.a sufficiently large, the estimafe n(fb) > m+1
is valid. Finally, if we collect all these preliminary results, we
have proved theorem (3.1).

(3.15). COROLLARY. Let a and f be as in (2.5). Then, there exist at
least m+1 critical points of @, Zy,.ces2 1> such that

Py(zy) - Polz) €@ Vi, j=1,...,m1, and ifj.

§ 4. THE PROOF OF THE MAIN THEOREM.

We denote a generic point of RZN = RV xRN by x := {q,pl}, where

q,p € RY , and let. y: RZN > T2N the canonical projection defined

by v({q,p}) = (ez“iql,...,ezwiqu , e2™ry ..., e2™ipyy

Let K: T?N x [0,1] > R be a function of class c? and.

K: R?N x {0,11 - R the function defined by K(x,t) = f(y(x),t) ,
v (x,t) € R%Vx [0,1]. | |

Then, it is clear that there exists a constant C > 0 such.that

(4.1) max  {|K(x,t) |, 1K (x, ) , 1K _ (x,)I} <C.
(x,t)

Moreover, K is invariant under translation by elements of the lat-

tice 2N
Q= {izl n, e, | n, €2}

where {ei},is the canonical basis of rRZY.

We consider the existence problem of periedic solutions of the ha-
miltonian system ‘

(4-2) q = Kp(q’p)t)! P = 'Kq(q;’p’t)

Setting H := L2({0,1];R2N), we define a linear operator

A: dom(A) CH+H

dom(A) := u e HL(10,11;R2Y) | u(0) = w(D)}, and Au := -Ju = {p,-d)
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where J =

is the standard symplectic structure on RN,

(4.3) LEMMA (cf. [1]).

(i) 4A 18 self-adjoint, has closed rangé and a compact resolvent.

(ii) o(A) = 21Z , and each A € 0(A) 7Zs an eigenvalue of multipli-
eity 2N.

(iii) For each A € o(A), the eigenspace ker(AI-A) <s spanned by

the orthogonal basis t =+ (cos ZnAt)ek + (sen Zﬂlt)Jek R
k=1,...,2N.

2N

In particular, ker(A) = R“", that is, it consists of the constant

functions.

Now, F: H - H is defined by F(u)(t) := Kx(u(t),t) , t € [0,1] and
u € H.

The assumptions imply that F is a continuous potential operator on

H, the potential ¢ being given by

1
d(u) = IO K(u(t),t) dt V u € H.

Clearly, classic periodic solutions of (4.2) are precisely the so-
lutions u € dom(A) of equation Au = F(u). Moreover, (4.1) and the
mean value theorem imply that there exist constants a,B € R such
that hypothesis (F) of (1.1) is satisfied. Without loss of generali
ty, we suppose o < 0 < B and |a|,B8 > 27. Then,

(4.4) o(A) n («,0) and o(A) n (0,B) are non vacuous.

Therefore, Z = R?Y @ R® where R?Y = ker(A) and R® is the direct
sum of the eigenspaces ker(AI-A), A € (a,B) Nn o(A) and A # 0. More-
over, A := A|R® is non-singular and, from (4.4), 0 < index (A) <n.

On the other hand, if we Q@ C RZN , then

1 1
o (u+w) = I K(u(t)+w,t) dt = J K(u(t),t) dt = ¢(u) Dbecause K is
0 0

Q-periodic.

We have seen that all conditions in order to apply theorem (3.1)
and its corollary (3.15) are verified. Consequently, there exist at

least 2N+1 periodic mappings U, ..

.,uzn+1 that are classic solu§1ons

of (4.2) such that Po(ul),...,Po(u l) are pairwise inequivalent

2N+
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module the lattice Q.
This last condition implies clearly that ¥y oUj,eee,Y o Uyp,, are dif
ferent periodic solutions of "the hamiltonian vector field XK, and

the proof of the main theorem is finished.
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