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In this paper we study the existence of fixed points of symplectic 

diffeomorphisms of the torus T2N which are homologous to the iden­
tity (cf. app. 9 of [3]). It is known that such a diffeomorphism 
has at least N+l geometrically different fixed points if it is not 
too far from the identity (cf. [6]). The main theorem here shows 
that the latter condition can be dropped. 

At this point it should be mentioned that, as V.I.Arnold pointed 

out (app. 9 of [3]), this result gives another proof of H.Poincare's 

geometric theorem. 

In order to state the theorem, we recall first a definition. 

Let g: T2N ... T2N be a symplectic deffeomorphism of class C1. We 

say that g is homologous to the identity if it can be connected to 

_~he identity diffeomorphism by a C1_ curve gt consisting of sym­

plectic diffeomorphisms such that the field of velocities g at 
. t 

each moment of time t has a single-valued hamiltonian function. 

More precisely, there exists a function K: T2N x [0,1] ... R of class 

C2, such that, if 

is the flow of the hamiltonian vector field XK with initial condi­

tions (x,D), x E T2N , then 

<P K (x,1) c g(x) '. 

Note that we do not impose a periodicity condition on K. 

THE MAIN THEOREM. Such a diffeomorphism has at least N+' geometric 

alZy different fixed points. 

The strategy of the proof of this theorem is roughly as follows. 

In a standard way, the existence problem of periodic solution of 
the hamiltonian system 



q = K (q,p,t) 
p 
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p ='-K (q,p,t) 
q 

N N {q,p} ER xR 

(we consider K defined in ri2N in a natural way), is transformed in 
an existence problem of solution of an equation of the form 

Au = F(u) 

in a real Hilbert space H, where A is a selfadjoint linear opera­
tor, and F is a potential operator, mapping H continuously into it­
self. 

In [1], H.Amann shows that, with certain assumptions on the opera­
tor F, it can only interact with finitely many eigenvalues of A. 
Roughly speaking, this means that the original problem is reduced 

to the study of critical points of a functional a defined in a fi­
nite-dimensional space that, in this ~articular case, is of the 

form Rm x R2N . 

Next, taking advantage of the symmetries of the problem (periodici­
ty in {q,p}), the functional a can be considered as defined in 

Rm x T2N. Finally, one can show with the aid of categorical argu­

ments that a has at least cat(T2N ) = N+l different critical points 
that are solution of our problem. 

I should like to thank F.Takens for helpful discussions at IMPA, 
Rio de Janeiro. 

§ 1. H. AMANN'S SADDLE POINT REDUCTION. 

In this section we follow, almost word by word the exposition in [2] . 

(1.1). The basia hypotheses. H is a real Hilbert space with inner 
product <.,.>, and we identify H with its dual. 

A: dom(A) C H + H is a self-adjoint linear operator of dis­
crete spectrum cr(A). 

(A) There exist numbers 0. < 0 < a such that 0., a ft cr(A) and 
cr(A) n (o.,a) consists of at most finitely many eigenvalues 
of finite mul tiplici ty. 

We denote by ~l < ~2 < ... <~n the eigenvalues of A in (o.,a), and 

by m(~j) the multiplicity of ~j' 

(F) { 
F: H + H is a continuous ~otential operator such that 

o.lIu-vIl 2 ..;; <F(u)-F(v), u-v> ..;; allu-vll 2 V u,v E H. 

We denote the potential of A by ~, that is, ~ E C1(H,R) and~' F. 
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Let {EA I A E R} be the spectral resolution of A; Pt , P E L{H) the 

orthogonal projections defined by 

respectively, and X := p_eH) , Y := P+(H) , Z := P{H). 

It is clear that H X \II Y \II Z, and Z is finite -dimens ional with 

n 
dim Z = L m{A j ),. 

j =1 

Next, one defines self-adjoint linear operators R E L{H,X) , 
S E L(H,Y) , T E L(H,Z) by 

R := fa 
_00 

n 

L 
j=1 

respectively, where P. denotes the orthogonal projection of H onto 
J 

the eigenspace ker(A.I-A) of A .• 
J J 

It is an immediate consequence of these definitions that R,S and T 
are pairwise commuting, Rlx , s'IY, and Tlz are injective, and 

_R2 + 52 + T2 = (A_al)-I, Moreover -{A-aI)R2 = P , (A-aI)S2 p+, 

(A-aI)T2 p, 

(1.2) SaddLe point reduction. We let 

~ (u) = if> (u) - I II ull 2 \1 u E H , 

and we define fEel eX x Y x Z , R) by 

f(x,y,z) := J (II xII 2 - IIYll2 - IIZIl2) + <I>(Rx+Sy+Tz) 

It is immediately verified that (x,y,z) is a critical point of f 

iff Rx+5y+Tz is a solution of Au = F{u). Moreover, 

(1 .3) PROPOSITION. There exists a gLobaZZyLipsahitz continuous map 

(x{.),y(.)): Z + X x Y such that ex(z),y(z)) is the unique saddLe 

point of £.c.,.,z): XxY + R for every z E Z. ThuB the point 

(x(z) ,y(z)) E X x Y is characteriz.ed by the "saddl.e point inequaU­

ties" 
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(1.4) f(x(z) ,y, z) < g(z) < f(x,y(z) ,z) (x,y,z) E x xY x Z , 

bJhel'e g(z) := f(x(z) ,y(z) ,z) 'rJ z E Z 

a.s bJe7,'[, 

unique 

as by the fact that (x(z) ,y(z» is, fOI' evel'Y z E Z, . the 

(J .5) 

(1 .6) 

bJhel'e 

point (x,y) E X x Y so7,ving the system 

0 .. 'x + RF (Rx+Sy+!Tz) 

o • -y + SF(Rx+Sy+TZ) 

F(u) := F(u) - au VUE H. 

Moreover, g has a globally Lipschitz continuous derivative g': Z -+ Z, 

given by g'(z) .. -z + TF(Rx(z) + Sy(~) + Tz) z E Z. 

Finally, z is a critical point of g iff Rx(z) + Sy(z) + Tz is a 
solution of Au = F(u). 

Now, we set T- I := (Tlz)-I E Ls(Z) :'" {B E L(Z)IB '" B*} , 

a := -g 0 T- I E CI(Z,R) and u(z) := v(z) +z where 

(1 .7) v(z) := Rx(T- 1z) + Sy(T-1z) V z E Z. 

Then, by .(1.6), u(.): Z -+ H is Lipschitz continuous, and 

u(z) E dom(A) V z E Z. 

Moreover, a has a globally Lipschitz continuous derivative, given 
-1 , -1 by a' = -T 0 goT and z is a critical point of a iff u(z) is a 

solution of Au .. F(u). 

(1.8) LEMMA (cf. [1], {2]). Fol' ev.el'Y z E Z 

a(z) = i <Au(z),u(z» - ~(u(z» 

01' a(z) = i <Az,z> + i <Av(z),v(z» - ~(u(z» 

and a' (z) Az - PF(u(z». 

In the following lemma we state a technical remark, which"will be 
useful. 

(1.9) LEMMA. If F is g7,oba7,7,y bounded, i.e. thel'e e~ists M > G su~h 

thaLli F (u) II "M < +'" VuE M, then the mapping v defined in 0.7) 
is a7,so g7,oba7,7,y bounded. 

Pl'oof. The equations (1.5) and (1.6) characterizing (x(z),y(z», 
z E Z, can be rewritten as 

o = (I - aR2)x(z) + RF(Rx(z) + Sy(z) + Tz) 
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o = (-I - aS 2)y(z) + SF(Rx(z) + Sy(z) + Tz) 

Therefore, there exists a cons tan· C > 0 such that 

\j z E Z 

Now, it is easily verified that (I_aR2) Ix and (-I-aS 2) IY are linear 

isomorphisms, and the assertion follows immediately. 

§2. REDUCTION UNDER SYMMETRY ASSUMPTIONS. 

We assume henceforth tha.t 0 E cr(A) and we let Z where 

Zo : = ker (A) = Po (H) . I 
The definition of T implies that TIZo = la I 

--2 
I that is, 

I 1 

T( zo) = la I 
-"2 

'if E Zo where lal 
-"2 

Zo = y zO' Zo y 

(2.1). Let z E Z. Setting z = Zo + zl' Zo E Zo and z1 E Z1 

<Az 1 

(2.2). Let now Zo E Zo be fixed and assume that qJ is invariant un­

der translation by zo. More precisely, qJ (u+zo) = qJ eu) Ii u E H. 

It follows that F is also zo-invariant, i.e., 

(2.3) F(u + z ) 
0 

= F(u) Ii u E H 

The equations that characterize the point 

(x (z + Y -1 zo) , y(z + Y -1 
zo)) , z E Z are 

0 = x - aR2x + RF(Rx + Sy + Tz + zO) 

0 -y - aS 2y + SF(Rx + Sy + Tz + zo) 

because T(y-I zo) = z00 Hence, from (2.3), the latter equations can 

be written 

o = x - aR 2x + RF(Rx + Sy + Tz) 

o = -y - as 2y + SF(Rx + Sy + Tz) 

Consequently, 

(2.4) (x(z),Y(Z)) z E Z. 

Moreover, from (1.7) and (2.4), for every z E Z, 
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Thus, we have proved that v is invariant under translation by ZOo 

(2.4) Let noW m = dimZ o and wl, ... ,wm be linearly independent 

vectors ·in ZOo The integral linear combinations nl·wI + ... + nm.wm 

form a lattice 0 in Zo' and the quotient space Zo/o is precisely 

the m-dimensional torus Tm. 

The following resul t is jus t a consequence of (2 .• 3). 

(2.5) PROPOSITION. If ~(u+w) ~ (u), VuE H and V w EO, there 

exists a funationa7, fECI (Tm x Z I ,R) suah that the diagram 

P xid m 

ZOX~R/.XZl 

is aommutative~ where p: Zo + Tm is the aanoniaa7, projeation. More~ 

ver~ f has a g7,oba7,7,yLipsahitlil aontinuous derivative (gradient) f'. 

Of course, we consider Tm with its natural Riemannian metric. 

§ 3. EXISTENCE OF CRITICAL POINTS OF f. 

In this section we give an existence theorem of critical points of 
f based upon Ljusternik-Schnirelmann theory. The basic assumptions 
are: 

(a): ~ is O-invariant as in (2.5). 

(b): I ~ I and II FII = II ~'II are uniformly bounded. 

Let Zl = Rn. We denote with y (x, respectively) a generic point of 

Rn (Tm, r·espectively). Then, the functional f can be written 

f(y,x) = i <Ay,y> + Ijl(y,x), (y,x) E Rn x Tm where, from (1.7), 

Ijl(y,x) = i <Av(y,x) , v(y,x» - ~(u(y,x)). 

The linear operator A E L(Rn) is symmetric, non-singular and of in­

dex (A) = i. Moreover, <P E CI(RnxTm,R) is,. from (1.9), uniformly 

bounded. Also, from (1.7), <P'(y,x) = -d(idxp) PF (u(y,x)). It fol-

lows that <P' is globally Lipschitz continuous and II<P'II is uniform­
ly bounded. 

Hence, we .can assume that there exists a constant N > 0 such that 



max {IHy,x)I,II4>'(y,x)lI} .s;;; N , (x,y) E RnxTm. 

Finally, we assume that index CA) = i < n. 

(3.1) THEOREM. The number of geometriaalZy different aritiaa'l 

points of f is at 'least m+l . 

We begin with some preparations. First,' it can be observed that f 

satisfies Palais-Smale condition (e) because 

IIf' (y,x)1I ;;;. IIAyll - 1Iq,' (y,x)1I ;;;. IIAyll - N -)0 +00 

when lIyll -)0 +00. Hence, the set K := critical points of f, is compact. 

Of course, we have assumed that n > 0, because in case n=O the theo 
rem is a known fact. 

In the following, we denote z a generic point of Rn x Tm ari'd for 

r E R, we set 

Moreover, the term isotopy always refers to a Lipschitz continu~s 
isotopy. With obvious reduction on smoothness, the following re­
suI ts are proved in (6.5.5) and (6.6.2) of [4]. 

(3.2) PROPOSITION. Let c > b ;;;. a be rea'l numbers. If f has no ari­

tiaa'l va'lueson the interva'l [b,c]. then the sets fC and fb are iso 

topia. Furthermore, the isotopy may be so ahosen that the points 

of fa are fixed. 

(3.3) PROPOSITION. Let c be an iso'lated aritiaal val-ue of f and 

a < c, a,c E R. Then for E >'0 sUffiaientZy sma'l'l there is a 

neighborhood U of the set K := {z E Rn x TIDlf(z) = c, f' (z) = O} 
C 

and a deformation {I;;t} of fC+E\ U suahthat 1;;1 (fc +E \ U) ~ fC-E. 

The deformation may be so ahosen that the points of fa are fixed. 

Now, let a < 0 < b real numbers such that, (3.4): f has no criti­

car points on Rn x TID\fb ; (3.5): f has no critical points on fa if 

index (A) > 0, or fa = 0 if index (A) = O. It is clear that such 
numbers exist. 

We set X := fb /fS (X := fb in case fa = 0) and T: fb -)0 X the cano­

nical projection. In order to estimate the riumber of critical points 

of f in fb\fa, we use an integer-valued function defined on the 

class of subsets of fb. We define 

n(0) = 0 nCB) = catx[T(B)] if B C fb and B # 0. 
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In the following lemma we collect the properties of n which will be 
useful and that are easily proved. 

(3.6) LEMMA. 

(i) nCB) ifB is a point of fb. 

(ii) nCB) > n(C) if B ~ C. 

(iii)n(B U C) < nCB) + n(C) • 

(iv) nCB) = n(B t ) where Bt is isotopia to B by an isotopy that 

Zeaves fi~ed the set fa. 

(v) There is a neighborhood U of B, for every B, suah that 

n(U) = nCB). 

(3.7) LEMMA. Let. c, a < c < b be an isoZated aritiaaZ vaZue of f. 

Then for € > 0 sUffiaientZy smaZZ n(K ) > n(fc+€) - n(fC-€). 
C 

Proof· Let U be a neighborhood of K such that (3.3) and (3.6.v) C 
are valid, then n(fC-€) > n(fC+E \ U). Hence 

n(fC+E) = n(fc+€ U U) <: n(fc+€ \ U) + n(U) <: n(fC-€) + n(Kc)" 

Now, we can prove 

(3.8) THEOREM. The number of geometriaaZZy different aritiaaZ 

points of f in fb is at 2.ast n(fb)-l if fa # 0, and n(fb) if 

e = 0. 

Proof. Without loss of generality, we may suppose that the number 
of critical points of f is finite. Then f has a finite number of 
critical values c i ' i = O,l, ... ,N, such that a<cO<:c1 <: ... <:~<b, 

so that we may write fb ~ £CN ~ ••. ~ fCO ~ fa, 

From (3.7), for some € > 0 independent of i = 1, ... ,N, it is veri­
fied 

(3.9) 
C·+€ c.-€ 

n(Kc.) > n(f 1 ) _ n(f 1 ). 
1 

Adding this last inequality over i, and using the fact that, from 
(3-.2) and C3.6.iv), 

C· -€ c· 1 +€ 
nCf1 )=n(f 1- ), i=l, ... ,N 

we find 

CN+€ 
Also, for the same reason, nCf ) ·b nCf ). Finally, for the va-
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C -E 
lue of n(f 0 .) there are two possibilities: 

a CO-E 
(a) . f = 0, then f has ,an absolute minimum in cO" so that f = 0 

C -E 
andn(f 0 ) = o. 

C -E 
(b). fa , 0, then n(f 0 ) = n(fa) = 1 because T(fa) is a point 

of' X, and then, the theorem is proved. 

We turn now to the problem of determiningn(fb). Assume first that 

index (A) i ~ 1. If $ = 0 and g E C1 (Rn ,R) is defined by 

G(y) := t <Ay,y> , y E Rn then we have 

r R if p=i 
HP(g b 

I ;R) ga 1 0 if p¥i 

As fb b m a g x T and f ga x Tm, Kunneth's formulae imply 

Hj (X;R) 
if j < i 

if 

Therefore, cuplong eX) = m+l and 

(3.10) nUb) = cat(X) ~ cuplong(X) + 1 = m+2 ecf. [5]). 

In the general case (~ ~ 0), the asymptotic behavior of f and g 
near infinity are similar. Then, for lal, b sufficiently large, we 

b d b m can hope that f If a an g x T Iga x Tm are homeomorphic spaces and 

(3.10) remains valid. In fact, we can prove 

(3.11) THEOREM. If lal, bare sUffiaiently large, there exists a 

diffeomorphism of alass C1 1jJ: Rn x Tm -+ Rn x Tm suah that 

1jJ (gb x Tm) = fb and 1jJ( ga x Tm) = e. 

Proof. Fix N > 0 such that 

(3.12) max {I ¢( z) I , II ~' (z) Ii} '" t N 

Then, if z = (y,x), we have 

(3.13) <f(z),g(z» = IIAyIl2,+ <Ay ~'(y,x» ~ 

~IIAyIl2_IIAIINIlYIl ~ IIYII(IIA-11l2I1YII.IIAIIN)~} 

when lIyl! is sufficiently large, say lIyll ~ C. 
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NOw, let c be a real number such that 

and set a := -c b· := c. 

When z = (y,x) E g-1(a-4N,a+4N) U g-1(b-4N,b+4N) it is verified 

that 

Thus, UyU ;> C. In other words, (3.13) is verified in 

g-1(a-4N,a+4N) u g-lrb-4N,b+4N). 

On the other hand, (3.12) implies 

(3.14) 

. It is easily seen now that the gradient vector field g' can be used 

in order to construct a diffeomorphism of class C1 

such that g = P2 'I a b , where P2 is projection onto the second factor. 

Conditions (3.13) and (3.14) imply that ab(f-1(b)) is the graph in 

g-l(b) x (b-4N,b+4N) of a function h: g-l(b) ... (b-4N,b+4N) of class 

C1, which verifies Ih(s) -b I or;; N 'V s E g-1 (b) . 

Now, let Ab: (b-4N,b+4N) ... [0,1] be a function of class C1 such 
that 

Ab(b) = 1 and suPP(Ab) ~ [b-3N,b+3N] , 

IAb(t) I or;; t N 'V t e (b-4N,b+4N). 

It is easily verified that the mapping Sb defined by 

i\(s,t) = (s,t + Ab(t) Ih(s) - bl) (s,t) E g-l(b) x (b-4N,b+4N) 

is a diffeomorphism of class C1 of 

Moreover, Sb maps g-l(b) x {b} onto 

It - bl ;;;. 3N. 

-1 g (b) x (b -4N, b+4N) onto itself. 

f- 1(b) and Sb(s,t) = (s,t) if 

Now, setting 1/I b = Sb 0 ab ' we obtain a diffeomorphism of 

g-1(b-4N,b+4N) onto itself mapping g-l(b) onto f- 1(b). 

Analogously we construct aa' Sa and 1/I a . Finally we define 1/1 by the 

formulae 
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{ 'bC') 
if Z E g-l(b-4N,b+4N) 

1jJ( z) = Wa(Z) if Z E -l( g a-4N,a+4~) 

Z in the complementary case 

and the assertion follows immediately. 

In a similar way it is proved that, when index CA) = 0 and conse~ 

quently, fa = 0 for a sufficiently large, the estimate n(fb) ~ m+1 

is valid. Finally, if we collect all these preliminary results, we 
have proved theorem (3.1). 

(3.15). COROLLARY. Let a and f be as in (2.5). Then. there exist at 

leastm+l aritiaal point' of a, zl' ,,:,zm+l' suah that 

§ 4. THE PROOF OF THE MAIN THEOREM. 

We denote a generic point of R2N = RN x RN by x := .{q,p}, where 

q,p E RN , and 1.et, Y: R2N + T2N the canonical projection defined 

by y(lq,p}) = (e2uiQl, ... ,e2uiQN , e 2uiP I , ... , e 2uiPN). 

Let K: T2N x [0,1] + R be a function of class C2 and 

K: R2N x [0,1] + R the function defined by K(x, t) = K(Y (x) ,t) , 

'r/ (x,t) E R2N x [0,1]. 

Then, it is clear that there exists a constant C > 0 such that 

C 4.1) max 
(x,t) 

{IK(x,t) I, 11K (x,t)1I ,11K (x,t)U}";;; C. x xx 

Moreover, K is invariant under translation by elements of the lat­
tice 

where {e.} ~s the canonical basis of R2N. 
~ 

We consider the existence problem of periodic solutions of the ha­
miltonian system 

(4.2) q = Kp(q,P,t), p = -Kq(q,p,t) 

Setting H := L2( [0,11 ;R2N). we define a linear operator 

A: dom(A) ~ H + H 

dom(A) := {u E H1 ([0, 1] ;R2N) I u(O) = u(1)}, and Au := -Ju 
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where 

is.the standard symplectic structure on R2N. 

(4.3) LEMMA (cf. [1]). 

(i) A is self-adjoint~ has closed Fange and a compact Fesolvent. 

(ii) a(A) = 2wZ , and each 1 E a(A) is an eigenvalue of multipli-

city 2N. 

(iii) FOF each l E a(A)~ the eigenspace ker(lI-A) is spanned by 
the oFthogonal basis t + (cos 2nH)ek + (sen 2nlt)Jek .' 

k = 1, ••• , 2N. 

In particular, ker(A) 
functions. 

R2N , that is, it consists of the constant 

Now, F: H + H is defined by F(u)(t) := K (u(t),t) , t E [0,1] and x 
u E H. 

The assumptions imply that F is a continuous potential operator on 
H, the potential t being given by 

t(u) = I: K(u(t),t) dt ~ u E H. 

Clearly, classic periodic solutions of (4.2) are precisely the so­
lutions u E dom(A) of equation Au = F(u). Moreover, (4.1) and the 
mean value theorem imply that there exist constants a,a E R such 
that hypothesis (F) of (1.1) is satisfied. Without loss of genera1i 
ty, we suppose a < 0 < a and lal,.a > 2n. Then, 

(4.4) a(A) n (a,O) and cr(A) n (O,a) are non vacuous. 

Therefore, Z = R2N $ Rn where R2N = ker(A) and Rn is the direct 

sum of the eigenspaces ker(lI-A), A E (a,a) n cr(A) and A ; O. More-

over, A := AIRn is non-singular and, from (4.4), 0 < index (A) < n. 

On the other hand, if w E Q C R2N , then 

-- Iol II t(u+w) K(u(t)+w,t) dt = 0 K(u(t),t) dt t(u) because K is 

Q-periodic. 

We have seen that all. conditions in order to apply theorem (3.1) 
and its corollary (3.15) are verified. Consequently, there exist at 
least 2N+l periodic mappings u1, .•. ,u2N+1 that are classic solutions 

of (4.2) such that PO(ul), ... ,PO(u2N+1) are pairwise inequivalent 
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module the. lattice n. 
This last condition implies clearly that y 0 u 1 , ... , y 0 u 2N+1 are di!. 

ferent periodic solutions of.~ the hamiltonian vector field XK , and 

the proof of the main theorem is finished. 
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