ABSTRACT. In this paper we exhibit a class of complex sequences for which the Weighted Pointwise Ergodic Theorem holds.

1. INTRODUCTION.

Let (Ω,\mathcal{A},μ) be a probability space and let C be the group of automorphisms of (Ω,\mathcal{A},μ); $T \in C$ if $T: \Omega \to \Omega$ is a bijection which is bimeasurable and preserves μ. For each $T \in C$ and $1 \leq p < \infty$ we denote U_T the operator on $L^p(\Omega) = L^p(\Omega,\mathcal{A},\mu)$, $U_Tf = f \circ T$, for $f \in L^p(\Omega)$. We denote by N the set of all nonnegative integers. Now let T be a continuous linear operator on $L^p(\Omega)$ for some $1 \leq p < \infty$. Let $a = (a_n)$ be a sequence of complex numbers.

DEFINITION 1.1. We say that $a = (a_n)$ is a good weight in L^p for T (relative to the Weighted Pointwise Ergodic Theorem) if for every $f \in L^p(\Omega)$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} a_j T^j f(\omega)$$

exists μ-a.e.

In the case $T \in C$, we say that a is a good weight for T in L^1, or simply that a is a good weight for T if a is a good weight in L^1 for the operator U_T induced by T. We have (see [1] and [4])

THEOREM 1.2. Let $a = (a_n)$ be a bounded complex sequence. The following assertions are equivalent:

(i) a is a good weight in L^1 for every ergodic $T \in C$.

(ii) a is a good weight in L^1 for every $T \in C$.

(iii) a is a good weight in L^1 for every Dunford-Schwartz operator.

DEFINITION 1.3. A bounded complex sequence $a = (a_n)$ is said to be a good universal weight if a is a good weight in L^1 for every Dunford-Schwartz operator (equivalently, by Theorem 1.2, for every $T \in C$ ergodic).
DEFINITION 1.4. Let \(a = (a_n) \) be a complex sequence. For \(1 < p < \infty \) define \(\|a\|_p \) by
\[
\|a\|_p^p = \lim_{n \to \infty} \sup \left\{ \frac{1}{n} \sum_{k=0}^{n-1} |a_k|^p \right\},
\]
and let \(\ell(p) = \{a/\|a\|_p < \infty\} \). We also define \(\ell(\infty) \) as the space of all bounded complex sequences and \(\|a\|_\infty = \sup_k |a_k| \) for \(a \in \ell(\infty) \).

We also say that \(a = (a_n) \) has a mean if \(\lim \frac{1}{n} \sum_{j=0}^{n-1} a_j \) exists. We have (see [1])

LEMMA 1.5. Let \(a(k), k \in \mathbb{N} \), and \(a \) be complex sequences such that each \(a(k) \) has a mean. Suppose that \(\|a(k)\|_1 < \infty \) as \(k \to \infty \). Then \(a \) has a mean.

Finally, we consider the space \(S \) of complex sequences \(a = (a_n) \) such that
\[
\gamma_a(k) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} a_j a_{j+k}^* \text{ exists for each } k \in \mathbb{N}.
\]

For all the information that we shall need about \(S \), we refer to [2]. A.Bellow and V.Losert proved (see [2]) the following result

THEOREM 1.6. Let \(D \) be the set of all \(a \in S \cap \ell(\infty) \) satisfying the following conditions:

(1) The spectral measure \(\sigma_{a} \) corresponding to \(a \) is discrete.
(2) The amplitude \(\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} a_j z^j \) exists for all complex numbers \(z \) such that \(|z| = 1 \).

Then every \(a \in D \) is a good universal weight.

In fact more is true. Let \(T \in C \) ergodic. For each \(f \in L^1(\Omega) \) there exists a set \(\Omega_f \subset \Omega \) of probability one such that
\[
\lim \frac{1}{n} \sum_{j=0}^{n-1} a_j \mathcal{F}(T^j w) \text{ exists for any } a \in D \text{ and any } w \in \Omega_f.
\]

Throughout this paper we will denote by \(D_1 \) the class of all bounded complex sequences \(a = (a_n) \) satisfying the following properties:

(1) \(a \) has a mean.
(2) The sequence \(b = (b_n) \) such that \(b_n = a_n \cdot a_{n+1} \) is in \(D \), where \(D \) is the class of Theorem 1.6.

In the next section we shall prove that \(D_1 \) is strictly larger than \(D \) and that every \(a \in D_1 \) is a good universal weight.
2. STATEMENTS AND PROOFS.

We start with the following lemma

LEMMA 2.1. Let \(a \) be a complex sequence. If \(a \in D \) then \(a \in D_1 \).

The proof is easy and we omit it.

The following example shows that \(D \) is strictly contained into \(D_1 \).

EXAMPLE. Let \(\alpha \) and \(\beta \) be two real and nonnegative numbers.

For each \(k \in \mathbb{N} \) let \(I_k \) be the integer interval

\[I_k = \{ n \in \mathbb{N} / 4^k \leq n < 4^{k+1} \} \]

We consider the family \(\{ I_k(j) \} \) of subintervals of \(I_k \), where

\[I_k(j) = \{ n \in \mathbb{N} / 4^k + 3j 2^k \leq n < 4^k + 3(j+1)2^k \}, \ 0 \leq j \leq 2^k - 1. \]

We define the sequence \(a = (a_n) \) in the following way:

\[a_n = \begin{cases} (-1)^j \alpha & \text{if } n \in I_k(j), \ k \text{ even} \\ (-1)^j \beta & \text{if } n \in I_k(j), \ k \text{ odd} \end{cases} \]

It is easy to see that \(a \) has a mean. In fact, let \(n \in \mathbb{N} \) and let \(k \) such that \(n \in I_k \). Thus,

\[\left| \sum_{j=1}^{n} a_j \right| \leq 3.2^k \cdot \max(\alpha, \beta) \] and therefore \(\lim_{n} \frac{1}{n} \sum_{j=1}^{n} a_j = 0. \)

Now let \(b = (b_j) \) such that \(b_j = a_j - a_{j+1} \). If \(j \in I_k \), then \(b_j \neq 0 \) only for \(2^k \) values of \(j \). It follows that

\[\lim_{n} \frac{1}{n} \sum_{j=1}^{n} |b_j| = 0. \]

From this we immediately obtain that \(b \in D \).

We shall prove that \(a \notin D \) by showing that \(\frac{1}{n} \sum_{j=1}^{n} |a_j|^2 \) is not convergent. In fact, we have

\[|a_j|^2 = \begin{cases} \alpha^2 & \text{if } j \in I_k, \ k \text{ even} \\ \beta^2 & \text{otherwise} \end{cases} \]

A simple calculus shows that the sequence \(|a|^2 = (|a_j|^2) \) has not a mean and therefore \(a \notin D \).

THEOREM 1.2. Every \(a \in D_1 \) is a good universal weight. Furthermore, let \(T \in C \) ergodic. For each \(f \in L^1(\Omega) \) there exists a set \(\Omega_f \subseteq \Omega \)
of probability one such that
\[\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} a_j \mathcal{F}(T^j w) \] exists for any \(a \in D_1 \) and any \(w \in \Omega_f \).

Proof. Let \(T \in C \) ergodic. Let us consider the set of all functions \(h \in L^1(\Omega) \) which can be represented in the form
\[h(w) = g(w) - g(T^{-1}w) \]
where \(g \) is a bounded function.
For any function \(h \) of this form, we have
\[\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} b_j \mathcal{F}(T^j w) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} b_j \mathcal{F}(T^j w) + \frac{c}{n} \]
where \(c \) is a constant depending only on \(\|a\|_\infty \) and \(\|g\|_\infty \).
By Theorem 1.6 for each \(g \) there exists a set \(\Omega_g \) of probability one such that
\[\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} b_j \mathcal{F}(T^j w) \] exists for any \(b \in D_1 \) and any \(w \in \Omega_g \).
We conclude that for each \(f \) in the linear span \(V \) of the functions \(h \) and 1, there is a set \(\Omega_f \) of full measure such that
\[\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} a_j \mathcal{F}(T^j w) \] exists for any \(a \in D_1 \) and any \(w \in \Omega_f \).
It is not hard to prove that \(V \) is dense in \(L^1(\Omega) \). (see [2, pp.39]).
Now let \(f \in L^1(\Omega) \). Let \(f_k \in V \) be such that \(f_k \to f \) \(L^1 \). By (2) and the Individual Ergodic Theorem, we can find for each \(k \) a set \(\Omega_k \subset \Omega \) of probability one with the following properties:
\begin{itemize}
 \item[i)] \(w \in \Omega_k \Rightarrow \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} a_j \mathcal{F}_k(T^j w) \) exists for all \(a \in D_1 \).
 \item[ii)] \(\Omega_k = \bigcap_{k} \Omega_k \). For fixed \(w \in \Omega_f \) we consider the sequences \(c(k,w) = (a_j \mathcal{F}_k(T^j w)) \) and \(c(w) = (a_j \mathcal{F}(T^j w)) \).
\end{itemize}
We have \(\|c(k,w) - c(w)\|_1 \leq \|a\|_\infty \|f - f_k\|_{L^1(\Omega)} \), and by lemma 1.5 we deduce
\[\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} a_j \mathcal{F}(T^j w) \] exists for each \(a \in D_1 \).
An application of Theorem 1.2 concludes the proof.
REFERENCES

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
Argentina.

Recibido en abril de 1986.