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GENERALIZED OPERATOR RICCATI EQUATIONS WITH TWO
POINT BOUNDARY CONDITIONS

Lucas Jbodar

ABSTRACT. Boundary problems for genefalized Riccati equations whose
coefficients are time-dependant closed linear operators densely de-
fined on a separable complex Hilbert space H are studied. Necessary
and sufficient conditions for the existence of solutions are given.

1. INTRODUCTION.

This paper ‘is concerned with the resolution problem of generalized
Riccati operator equations with two point boundary conditions of
the type

du/dt U(t) = A(t)+B(t)U(t)—U(t)C(t)-U(t)D(t)U(t)}
1.1
E U(b)-U(O)F = G a.1)

This equation arises in control theory, [10], transport theory,

[14], and filtering problems, [1]. The Cauchy problem for this equa-
tion has been studied in [8], when C(t) = -B(t)*, being B(t)* the
adjoint operator of B(t). If H is finite-dimensional, the coeffi-
cient operators are time-invariaﬁt, and E=F=1, G=0, C=-B*, problem
(1.1) has been studied in [17]. In a recent paper, [16], we study
the problem (1.1), when the coefficient operators which appear in
the differential equation are time-invariant bounded linear opera-
tors on H. In the following we study the problem (1.1) for the time-
dependant case, and the coefficient are closed linear operators den-
sely defined on a complex separable Hilbert space H.

The key idea is to reduce the boundary problem to the resolution
problem of an algebraic operator equation of Riccati type

M+ NX - XP - XQX = 0 ‘ (1.2)

From conditions for the resolution problem (1.2), conditions for the
resolution problem (1.1) are obtained. Solutions of (1.1) are express-
ed in terms of solutions of (1.2). We apply the results to the
study of the existence problem of b-periodic solutions for the dif-
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ferential equation which appear in (1.1).

If S is a linear operator on H, with domain D(S) we denote the nu-
merical range of S by

0(S) = {z€C ; (Sx,x) =z 3 llxl = 1}

and ¢(S) its spectrum. In accordance with the definition given in
(8], when S is a closed operator on H and generates an analytic
semigroup denoted by exp(tS), we define the fractional powers:
% = (s—u)—l

-ima ®©

sT% =& I etS 21 g¢ (o > 0)

I'(a) 0
We wish to express our thanks to Professors Hendrisk Kuiper and .
Hiroki Tanabe for providing us with preprints and copies of their

papers.

2. ASSUMPTIONS ON ABSTRACT EVOLUTION EQUATIONS.

For the sake of convenience, we state some results from the theory
of abstract evolution equations which will be used in the sequel.
The results of this section can be found in [7],[8], and [9]. In
what follows, we denote by I a fixed closed angular domain

I = {x; |A] <8+m/2} , 0 <8 < m/2. Let us consider the abstract
evolution equation

d/dt u(t) = V(t)u(t) , 0<t<b, (2.1)

in a Hilbert space W. u = u(t) is a function on [0,b] to W and V(t)
is a function on [0,b] to the set of closed densely defined linear
operators acting in W.

We first state the assumptions to be made in the theorems.
(H.1) For each t € [0,b], V(t) is a densely defined, closed linear

operator. The resolvent set p(V(t)) of V(t) contains Z. The resol-
vent of V(t) satisfies :

II-v(e) ™ < M/|A| ‘
for any A € £ and t € [0,b], where M is a constant independent of

A and t.

(H.2) (-V(t))'l, which is a bounded operator for each t, is conti
‘nuously differentiable in t € [0,b] in the uniform operator topo-
logy.

(H.3) For any » € £ and t € [0,b], the following inequality holds
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N

9 -1
5{»(AI-V(t)) < T;TT:E

where N and o are constants independent of t and o with 0 <a < 1.

(H.4) d(-V(t))'1 is H3lder continuous 'in t € [0,b] in the uniform
topology.
Under the hypothesis (H.1)-(H.4), there exisfs a fundamental ope-
rator U(t,s) for the equation (2.1) which satisfies

12 Uce,s)l = IV(E)UCE, s)I < +Sa
ot ’ ’ - t-s ’

and consequently, a Cauchy problem for equation (2.1) has only one .
strongly continuous differentiable solution (see the proof and
examples in [7]). ‘
If weR, 0 <68 <m/2, we denote S 4 = {z € C; |arg(z-w)| < 9+m/2}
and Zw 5 is the closure of the complement of Sy 5 in the complex

' ’
plane C. Are also sufficient conditions for ensuring the existence
of a fundamental operator, the following hypothesis: a

(H.5) V(t) is a densely defined, closed linear operator and
D(V(t)) nD(V(s)) is dense for any s,t in [0,b].

(H.6) 6(V(t)) Czy6 , w<0 , 0<8<m/2 ,te€ [0,b].
(H.7) There exists a, 0 < a <1, and a constant CV such that

Ve -vev s <cy |t-v|?
uniformly for all 0 <t, v, s <b.

From hypothesis (H.5)-(H.7) and lemma 7 of [8], the domains
D(V(t)) are independent of t, and there exists a fundamental solu-
tion U(t,s) for equation (2.1), (see [8],1[9]1).

3. ON THE RESOLUTION OF THE BOUNDARY PROBLEM.

The first result is a necessary condition for the resolution pro-
blem (1.1).

THEOREM 1. Let U(t) be a solution of (1.1), where the coefficient
operators A(t), B(t), C(t), D(t) for all t in the interval [0,D]
and E, F and G are bounded linear operators on H. Suppose that the

following condzttons are satisfied:

(1) The operator function t --+ A(t)+B(t)U(t), generates a funda—
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mental operator.‘

(ii) The operator function’ t --> c(t) D(t) , generates a funda-
' A(t) B(t)

mental operator U(t,s).

Then Uo = U(0) satisfies the algebraic operator equation

M+ NX - XP - XQX = 0 (3.1)
where
M = E Uy(b,0) - GU (b,0) , P=F Ulgb,O)] 5.2
= EU,(b,0) - GU,(b,0). , Q=FU,(b,0) '
U(t,s) = ful(t’s) UZ(t’S)} (3.3)
U,(t,s) U, (t,s) '

Proof. From the hypothesis (i), there exists only one solution of
the following problem

d/dt Y(t) = (C(t)+D(t)U(t))Y(t) ; Y(0) =1
If we define Z(t) = U(t)Y(t), computing it follows that
d/dt Z(t) = (A(t)+B(t)U(t))Y(t) ; Z(0) = U(0) = U,.

Y (t)] [Y(O)} [ 1]
Thus , satisfies = , -and
LZ(t)] Z(0) U,

Y ()] [C(t) D(t)} [Y(t)] [Y(t)]
d/dt, = W(t) (3.4)
LZ(t)] A(t)  B(t)] [Z(v) Z(t)]
From hypothesis (ii), and the properties of a fundamental operator,
it follows that

[Y(t)} { 1] [Ul(t,0)+U2(t,0)Uo}
= U(t,0) = (3.5)
Z(t) L Us(t;0)+U, (t,0)U,

Since U(t) satisfies the boundary condition associated with (1.1),
from the expression of Z(t) it follows that

EZ(b) = E U(b)Y(b) = (G+U,F)Y(b)
and from (3.5)

E(U3(b,0)+U4(b,0)Uo) = (G+U0F)(Ul(b,0)+U2(b,0)Uo) (3.6)
(EU3(b,0)—GU1(b,O))+(EU4(b,0)—GUz(b,O)UO—UoF Ul(b,O)-UOFUz(b,Qﬂ%= 0
From (3.2) the result is proved.

The following theorem is a reciprocal one of theorem 1.
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THEOREM 2. Let U, be a solution of equation (3.1) with coefficient
given by (3.2). If hypothesis (ii)of theorem 1 is satisfied and

(iii) Ul(t,O)+U2(t,0)Uo is invertible for all t <n [0,b],
then (1.1) s solvable, and a solution is given by the expression

UCt) = (Uy(t,0)+U, (¢, 00U ) (U, (t,0)+U, (t,0)U )~} (3.7)

Proof. From hypothesis (ii) of theorem 1, there exists a fundamental
solution of problem (3.4). Now, we define Y(t) = Ul(t,0)+U2(t,0)U

o’

and Z(t) = U3(t,0)+U4(t,O)UO, for all t in [0,bl. Thus U(t) given

by (3.7) can be expressed by U(t) = Z(t)Y(t)_l. It is easy to

check that.the operator function t --» [gg:%] satisfies (3.4)

with the initial condition [ZES;J = L}]. By differentiation, it
o

follows that

d/dt U(t) = {d/dt Z(t)}(Y) ™ -2(t) (Y(t))~led/deY () }(Y(t))~! =
= A(t) + B(t)U(t) - U(t)C(t) - U(t)D(t)U(t)
with U(0) = Uo. Since Uo is a solution of (1.2) then satisfies

(3.6) and postmultiplying this equation by (Y(b))"l, it follows
that EU(b) - U(0)F = G.

The following corollary contains as a particular case theorem 2 of
[16], when the coefficient are time-invariant linear operators on H.

COROLLARY 1. Let us consider problem (1.1), where A(t) = A, B(t) = B,
C(t) = C, D(t) = D are densely defined closed linear operators on

H. If the operator
C D
W =
A B
Ul(t,s) Uz(t,s)]

generates a fundamental operator U(t,s) =
U3(t,5) U4(t,5)

such that U0 is a solution of (1.2) and
Ul(t,O) + Uz(t,O)Uo is invertible for all t in [0,b]

then U(t) given by (3.7) is a solution of (1.1).
Proof. Is immediate from theorem 2.
REMARK 1. If A,B,C and D are bounded linear operators on H, then

operator W of corollary 1 generates the fundamental operator defi-
ned by U(t,s) = exp(W(t-s)), and from corollary 1, it follows theo-
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rem 2 of [16].

COROLLARY 2. (Lyapunov equations). Let us consider the following
boundary problem :

d/dt U(t) = A(t) + B(t)U(t) - U(t)C(t)
EU(b) - U(O)F = G

(3.8)

If the operator functions t --» B(t) and t --» C(t) are generators
of fundamental operators UB(t,s) and Uc(t,s), respectively, A(t) is

bounded for all t in [0,b] and

N=EU_(b,0) ; P=FU.(b,0)
' B ¢ (3.9)

M

b
-G Uc(b,O) + E JO UB(b,s)A(s)UC(s,O)ds

then problem (3.8) is solvable, if and only if, the equation
M+ NX - XP = 0 is solvable. Moreover the relationship between
solutions of both problems is given by

t
U(t) = U, (t,00U U (0,t) + Jo Uy (t,s)A(s)Ug(s,t)ds (3.10)

Proof. It is easy to show that the operator

UC(t,s) ,0

u(t,s) = (3.11)

. .
JS UB(t,V)A(v)UC(V,s)dv UB(t,s)

is a fundamental operator of system (3.4) with D(t) = 0. If U(t) is
a solution of (3.8) and if Y(t) is the only solution of

a/dt Y(t) = C(£)Y(t) ; Y(0)

I ; te [0,b]

then Z(t) = X(t)Y(t) satisfies d/dt Z(t) (A(t) + B(B)X(t))Y(t),

for all t in [0,b]. Thus [g%i%] satisfies (3.4), with D(t) = 0, and

[%Eg%] = [X%O)]' In analougous way to the proofs of theorems1 and 2,

with D(t) = 0, the result is proved. In fact, the hypothesis -(iii)
of theorem 2 is satisfied since Ul(t,O) = UC(t,O) and Uz(t,O) = 0;

thus (3.8) is solvable, if and only if, the equation M+NX-XP = 0 is
solvable. Substituting expressions U;(t,0) and U,(t,0) of (3.7) by
the correspondent blocks given by (3,11), the result is concluded.

In the previous section, the resolution problem (1,1) has been re-
duced to an algebraic operator equation (3.1). This equation ap- :
pears in control problems, [2],[11],[15], and the quadratic eigen-
value problem [5]. It has been studied in different contexts, [3],
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61, [12].

L. APPLICATIONS.

In this section we apply some last results for obtaining b-periodic
solutions of generalized operator Riccati equations. Let us consi-
der a generalized operator Riccati equation of the type

d/dt U(t) = A(t)+B(t)U(t)-U(t)C(t)-U(t)D(L)U(t) 4.1

The following fact gives sufficient conditions for the existence of
b-periodic solutions of (4.1).

THEOREM 3. With the hypothesis of theorem 2, when E=F=I, G=0 and
the coefficient functions A(t), B(t), C(t) and D(t) are b-periodics,
the operator function U(t) given by (3.7) is a b-periodic solution

of (4.1).

Proof. This is a consequence of theorem 2, for obtaining a solution
in [0,b]. Extending b-periodically this solution, the result is pro
ved.

THEOREM 4. Let us consider (4.1) with D(t) = 0. If A(t), B(t) and
C(t) are b-periodic (b > 0) operator functieons which satisfy the
hypothesis of corollary 2; if N, M and P are given by (3.9) and

oa(N) N on(P) =@ (4.2)
where oa(N) = {A € C; A-N <s not onto} and GW(P) is the approximate

point spectrum of P, then there exists a solution U, of M+NX-XP = 0
and U(t), given by (3.10), ¢s a b-periodic solution of (4.1), with
D(t) = o.

Proof. From hypothesis (4.2) and theorem 5, p.1387, ([4], there
exists a solution U, of equation M+NX-XP = 0. Now, from corollary 2,
U(t) given by (3.10) is a solution in [0,b]. Extending b-periodical-
ly U(t), the result is concluded.

COROLLARY 3. Substituting hypothesis (4,2) in theorem 4 by
o(N) no(P) = ¢ (4.3)

there exists only one b-periodic solution of (4.1) with D(t) = 0.

Proof. It is a consequence of theorem 4 and Rosemblun's theorem,
(131, p.8.
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