Revista de la Unión Matemática Argentina Volumen 32, 1986.

THE TAYLOR POLYNOMIAL AS BEST LOCAL APPROXIMATION IN RECTANGLES.

Sergio Favier, Carmen Fernández and Felipe Zó

SUMMARY. Let R_{ε} be the rectangle $0 \le x_1 \le \varepsilon^{\alpha_1}$, $0 \le x_2 \le \varepsilon^{\alpha_2}$, ..., $0 \le x_m \le \varepsilon^{\alpha_m}$ where $\alpha_i \ge 1$ and min $\alpha_i = 1$. Given f in $L^2(R_1)$, set $P_{\varepsilon}(f)$ for the L^2 projection onto the algebraic polynomials of degree not greater than n, where the projection is taken on R_{ε} . If $f \in C^{n_{\alpha}+1}$ with $n_{\alpha} > n \max \alpha_i$, and Tf is the Taylor polynomial of $1 \le i \le m$ f of degree n developed at x=0, then $P_{\varepsilon}f$ converges to Tf as $\varepsilon \ne 0$. Where $\max \alpha_i < (n+1)n^{-1}$, the rectangles R_{ε} can be replaced by a $1 \le i \le m$ family $\{F_{\varepsilon}\}$ regular with respect to $(\alpha_1, \ldots, \alpha_m)$, and we have a similar result with the best L^p approximation on the sets F_{ε} . Throught this note we shall use Peano-like derivatives.

1. INTRODUCTION.

The notion of best local approximation may roughly be described as follows. Let f be a real-valued function defined on the unit cube Q in \mathbb{R}^m , Q = {x / 0 < x_i < 1}, and assume that f is in a normed linear space X with norm || ||. Let V be a subset of X, and suppose we wish to best approximate f by elements of V near a point $x \in Q$, say x=0. Then we consider a family of regions $\{\mathbb{R}_{\varepsilon}\}_{0 < \varepsilon \leq 1}$ shrinking down to zero as $\varepsilon + 0$, and we look for a $\mathbb{P}_{\varepsilon}f \in V$ which minimizes the expression $||(f-P)\chi_{\mathbb{R}_{\varepsilon}}||$ with $P \in V$, where $\chi_{\mathbb{R}_{\varepsilon}}$ denotes the characteristic function of the set \mathbb{R}_{ε} . If such \mathbb{P}_{ε} exists it will be called a best approximation of f on the region \mathbb{R}_{ε} . In case that $\mathbb{P}_{\varepsilon}f$ tends to some $\mathbb{P}_{0}f$ in V, as $\varepsilon \neq 0$, we say that $\mathbb{P}_{0}f$ is a best local approximation of f at x=0 by elements of V.

The general concept of best local approximation as stated above, was introduced by C.Chui et.al., and developed in a serie of papers, [3],[4], etc., where the underlying results are one-dimensional and V is taken as the class of algebraic polynomials, generalized polynomials, or quasi-rational approximation. Recently, higher dimensional results have been obtained in [1],[2].

The purpose of this note is to call the attention to the fact that in higher dimensions it is important how the family $\{R_{\epsilon}\}$ shrinks to zero, even considering as approximating class the algebraic polynomials. It will follow, using the techniques in [2], that if $\{R_{\epsilon}\}$ is

a regular family with respect to the balls centered at the origin, then the best local approximation of f with respect to this family is the Taylor polynomial. Since the balls can be changed for a regular family and still we get the Taylor polynomial, we see that the balls are good regions to obtain a local approximation.

We have a different situation if we take as $\{R_{\varepsilon}\}$ a one-parametric family of rectangles whose sides are parallel to the axis. We shall see that the Taylor polynomial is the best L^2 local approximation with respect to this family. Moreover, we prove that rectangles which are not too flat can be replaced by a regular family with respect to them. But in general not any affine transformation of rectangles will give a suitable family for local approximation. This note is self-contained.

II. NOTATION AND RESULTS.

Let f be a Lebesgue measurable function defined on Q, and $E\subseteq Q$ a measurable set. We set

$$\|f\|_{p,E} = \left(\int_{E} |f(t)|^{p} \frac{dt}{|E|}\right)^{1/p}, \quad 0$$

where |E| denotes the Lebesgue measure of E. We always assume |E| > 0. The expression $||f||_{\infty,E}$ means the essential supremum on E. Thus, we have a norm on $L^{p}(Q)$ for $1 \le p \le \infty$ and a metric otherwise. Let $\alpha = (\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m})$ be an m-tuple of real numbers with $\alpha_{i} \ge 1$ and $\min\{\alpha_{i}\} = 1$. The non-homogeneous dilation $(\epsilon^{\alpha_{1}}x_{1}, \epsilon^{\alpha_{2}}x_{2}, \ldots, \epsilon^{\alpha_{m}}x_{m})$ is denoted by $\delta_{\epsilon}(x)$, and set $R_{\epsilon} = \delta_{\epsilon}Q$. We say that a family $\{F_{\epsilon}\}_{0 \le \epsilon \le 1}$ of measurable sets in \mathbb{R}^{m} is a regular family with respect to α , if there exists a constant c > 0 such that for every ϵ the set F_{ϵ} is contained in R_{ϵ} and $|F_{\epsilon}| \ge c\epsilon^{|\alpha|}$, where $|\alpha| = \alpha_{1} + \alpha_{2} + \ldots + \alpha_{m}$.

The real algebraic polynomials in m variables with degree not grea

ter than n will be denoted by Π^n . Thus if $P \in \Pi^n$ we use the standard notation $P(x) = \sum_{\substack{\beta \\ |\beta| \le n}} a_{\beta} x^{\beta}$, with $x^{\beta} = x_1^{\beta_1}, x_2^{\beta_2}, \dots, x_m^{\beta_m}$. We shall often use the next inequality.

(2.1) Let $\{F_{\varepsilon}\}_{0 < \varepsilon \le 1}$ be a regular family with respect to α and p > 0. Then, there exists a constant c > 0 such that for every $P \in I^n$ and ε , it follows that

 $\|P\|_{\infty,Q} \leq c \varepsilon^{-n |\alpha|_{\infty}} \|P\|_{F_{\varepsilon},P} \quad where \quad |\alpha|_{\infty} = \max_{1 \leq i \leq m} \alpha_{i}.$

Note that in (2.1) the constant c is independent of $P \in \Pi^n$ and ε . Let $f \in L^p(Q)$, 0 < p and assume that there exist $Tf \in \Pi^n$ and a finite number R_f such that $\|f-Tf\|_{F_{\varepsilon}, p} \leq R_f \varepsilon^{n+1}$ for every $0 < \varepsilon \leq 1$. Then we say that Tf is a Taylor polynomial of degree n of f at the origin. If such is the case we write $f \in T_{n+1}^p$. By (2.1) we have the uniqueness of Tf if $|\alpha|_{\infty} < (n+1)n^{-1}$ and elementary examples show the lack of uniqueness for $|\alpha|_{\infty} > (n+1)n^{-1}$. Sometimes the class Π^n is replaced by a smaller one $\Pi^{n,\alpha}$ and we have uniqueness of Tf $\in \Pi^{n,\alpha}$ for every α , see [6].

Given $f \in L^{p}(Q)$ we call $B_{\varepsilon}^{p}(f) = B_{F_{\varepsilon}}^{p}(f)$ the set of all $P_{\varepsilon}f \in \Pi^{n}$ such that $\|f - P_{\varepsilon}f\|_{F_{\varepsilon},p} = \inf_{P \in \Pi^{n}} \|f - P\|_{F_{\varepsilon},p}$. A compactness argument together with (2.1) shows that $B_{\varepsilon}^{p}(f) \neq \emptyset$. For p outside the range $(1,\infty)$, $B_{\varepsilon}^{p}(f)$ may have more than one element. For example we can find an $f \in C^{\infty}$ such that $B_{Q}^{\infty}(f)$ has infinitely many quadratic polynomials, [5]. The next statement is an easy consequence of (2.1).

THEOREM 1. Let $f \in T_{n+1}^p$, $0 . Let <math>\{F_{\varepsilon}\}_{0 < \varepsilon \le 1}$ be a regular family with respect to a with $|\alpha|_{\infty} < (n+1)n^{-1}$. Let Tf be the Taylor polynomial of degree n of f. Then, for every $P \in B_{\varepsilon}^p(f)$ we have

$$\|P-Tf\|_{\infty,Q} \leq cR_f \varepsilon^{n+1-n|\alpha}$$

where the constant c depends on $\Pi^n,$ the family $\{F_c\}$ and p.

We call n_{α} the minimum integer ℓ such that $\ell \ge n|\alpha|_{\infty}$. If $f \in T^p_{n_{\alpha}+1}$ the restriction to π^n of a Taylor polynomial of degree n_{α} is uniquely determined and we shall call it the Taylor polynomial of f of degree n and again denoted by Tf.

THEOREM 2. Let $f \in T^2_{n_{\alpha}+1}$, let Tf be the Taylor polynomial of f of degree n, and $P_{\varepsilon}(f)$ the $L^2(R_{\varepsilon})$ projection of f onto Π^n . Then $\|P_{\varepsilon}(f) - Tf\|_{\infty, 0}$ tends to zero as $\varepsilon \to 0$.

III. PROOFS.

The next Lemma is a general version of a similar one in [2]. The proof is included here for the sake of completness.

LEMMA. Let $\{\mu_{\varepsilon}\}_{0 < \varepsilon \le 1}$ be a family of measures on Q uniformly absolutely continuous with respect to the Lebesgue measure. Suppose that $\mu_{\varepsilon}(Q) = 1$ for every ε . Then there exists a constant c > 0, c = c(p,n) such that for any $P \in \Pi^n$ and $\varepsilon > 0$ we have

 $c \|P\|_{\infty,Q} \leq \left(\int_{Q} |P(x)|^{p} d\mu_{\varepsilon}(x)\right)^{1/p} \leq \|P\|_{\infty,Q}$

In fact, suppose for the moment that for some p > 0, the statement does not hold. Then there exist sequences $\{P_{\ell}\}$ in Π^n and $\{\varepsilon_{\ell}\}$ such that for every ℓ we have $\|P_{\ell}\|_{\infty,Q} = 1$ and $(\int_{Q} |P_{\ell}(x)|^p d\mu_{\varepsilon}(x))^{1/p} \le 1/\ell$.

Now assume, by taking a subsequence, if necessary, that for some $P_o \in \Pi^n$, $\|P_{\ell} - P_o\|_{\infty,Q} \neq 0$ as $\ell \neq \infty$. Then $\|P_0\|_{\infty,Q} = 1$ and given $\varepsilon > 0$ for all ℓ large we have $(\int_Q |P_o(x)|^p d\mu_{\varepsilon_{\ell}}(x))^{1/p} \leq \varepsilon$.

Given $\delta > 0$ we set $N_{\delta} = \{x \in Q / |P_{o}(x)| < \delta\}$. Then, for ℓ large we have $\varepsilon^{P} > \delta^{P}(1-\mu_{\varepsilon_{\ell}}(N_{\delta}))$. Since $P_{o} \neq 0$, $|N_{\delta}| \rightarrow 0$ as $\delta \rightarrow 0$, we arrive at a contradiction in the last inequality by observing that our measures are uniformly absolutely continuous. So the Lemma is proved.

In order to get (2.1), set $P^{\varepsilon}(t) = P(\delta_{\varepsilon}t)$ and $d\mu_{\varepsilon}(t) = \frac{\varepsilon |\alpha|}{|F_{\varepsilon}|} \chi_{F_{\varepsilon}}(\delta_{\varepsilon}t)$. Observe that $\sup_{\substack{0 \le \varepsilon \le 1 \\ 0 \le \varepsilon \le 1}} \mu_{\varepsilon}(E) \to 0$ as $|E| \to 0$, if $\{F_{\varepsilon}\}$ is a regular family with respect to α .

Thus, a change of variables and the Lemma yield

 $\|P^{\varepsilon}\|_{\infty,Q} \leq c \|P\|_{p,F_{\varepsilon}}$ for any $P \in \Pi^{n}$ and $\varepsilon > 0$.

Moreover, the norm $\|P^{\varepsilon}\|_{\infty,Q}$ is equivalent to $\max_{\substack{\alpha \in \beta \\ |\beta| \le n}} \varepsilon^{\alpha \cdot \beta} |a_{\beta}|$, where

$$P(x) = \sum_{\substack{\beta \mid \le n}} a_{\beta} x^{\beta} \text{ and } \alpha.\beta = \alpha_1 \beta_1 + \alpha_2 \beta_2 + \ldots + \alpha_m \beta_m.$$
 Thus, we obtain

(3.2)
$$\varepsilon^{\alpha,\beta}|a_{\beta}| \leq \|\sum_{|\beta| \leq n} a_{\beta}x^{\beta}\|_{p,F_{\varepsilon}}, |\beta| \leq n$$

Clearly, (3.2) implies (2.1).

REMARK 1. The inequality (2.1) remains valid if we consider polynomials $P(x) = \sum_{i=1}^{k} a_i u_i(x)$ in the sense of [1]. That is, we assume that each u_i is C^{n+1} in a neighborhood of zero, and the Wronskian determinant of the square matrix $(\partial^{\beta} u_i(0))$, $|\beta| \le n$, i = 1, ..., k being nonzero. Here, $k = card\{\beta: |\beta| \le n\}$. Then for $n|\alpha|_{\infty} < n+1$ and any ε small we have

$$P\|_{\infty,Q} < c \varepsilon^{-n|\alpha|_{\infty}} \|P\|_{p,F}$$

p>0 and $\{F_{\varepsilon}\}$ regular with respect to $\alpha.$ In fact, by the Taylor theorem

$$P(\mathbf{x}) = \sum_{\substack{|\beta| \leq n}} \frac{1}{\beta!} A_{\beta}(0) \mathbf{x}^{\beta} + \sum_{\substack{|\beta|=n+1}} \frac{1}{\beta!} A_{\beta}(\xi) \mathbf{x}^{\beta} = P_{1}(\mathbf{x}) + R(\mathbf{x})$$

where $A_{\beta}(\xi) = \sum_{i=1}^{k} a_{i} \partial^{\beta} u_{i}(\xi)$.

11

Now, for a constant c, not necessarily the same on each ocurrence, we have

$$\|P\|_{p,F_{\varepsilon}} \leq c\varepsilon^{n+1} \max_{1 \leq i \leq k} |a_{i}| \leq c\varepsilon^{n+1} \|P\|_{\infty,Q}$$
$$\|P_{1}\|_{p,F_{\varepsilon}} - c \|R\|_{p,F_{\varepsilon}} \leq c \|P\|_{p,F_{\varepsilon}}$$

and by (2.1), we have

$$\|P_1\|_{\infty,Q} \leq c \varepsilon \|P_1\|_{p,F_{\varepsilon}}$$

Since the vectors $(A_{\beta}(0))$ and (a_{i}) are related by a nonsingular matrix the norm $\|P_{1}\|_{\infty,Q}$ is equivalent to $\|P\|_{\infty,Q}$ and the remark follows. Theorem 1 is a consequence of the definition of $B_{\varepsilon}^{p}(f)$ and (2.1). In fact, for $P \in B_{\varepsilon}^{p}(f)$ we have $\|P-Tf\|_{\infty,Q} \leq c\varepsilon^{-n|\alpha|_{\infty}} \|P-Tf\|_{p,F_{\varepsilon}} \leq c(p) \varepsilon^{-n|\alpha|_{\infty}} \|f-Tf\|_{p,R_{\varepsilon}}$, and Theorem 1 follows.

We can not expect, in general, convergence of the best approximation polynomial $P_{\varepsilon}(f)$ to the Taylor polynomial when $|\alpha|_{\infty} > (n+1)n^{-1}$. Thus, if $|\alpha|_{\infty} > (n+1)n^{-1}$ it is easy to find a regular family $\{F_{\varepsilon}\}$ such that $||P_{\varepsilon}(f)||_{\infty,Q}$ tends to infinity for smooth functions f. If $|\alpha|_{\infty} = (n+1)n^{-1}$ the norm of $P_{\varepsilon}(f)$ will remain bounded, but in general, the polynomial $P_{\varepsilon}(f)$ will not converge to Tf. We shall give an example. First consider a further observation. Set $P_{\kappa}(f)$ for the L² projection onto Π^{n} , where the L² norm is ta-

Set $P_E(f)$ for the L⁻ projection onto I", where the L⁻ norm is taken over the set E.

Let L be a nonsingular affine transformation of \mathbb{R}^m onto \mathbb{R}^m . Then for $f \in L^2(\mathbb{Q})$ and measurable $E \subseteq \mathbb{Q}$ we have

$$(3.3) P_{LF}(f) = P_{F}(f \circ L) \circ L^{-1}$$

To obtain (3.3), we use a change of variables and the uniqueness of the L^2 projection. Thus, the L^p version of (3.3) is also true for 1 .

(3.4) EXAMPLE. Set $\Pi^n = \Pi^1(x,y)$ and $E = \{(x,y) / 0 \le y \le c(x), 0 \le x \le 1\}$, where c is a positive continuous function. Suppose for the moment that there exists c(x) such that $P_E(x^2)(x,y) = a_0 + a_1x + a_2y$ has the coefficient $a_2 \ne 0$. Now let $F_{\varepsilon} = \delta_{\varepsilon}E$ where $\delta_{\varepsilon}(x,y) = (\varepsilon x, \varepsilon^{\alpha}y)$. Then (3.3) yields $P_{F_{\varepsilon}}(x^2)(x,y) = \varepsilon^2(a_0 + a_1\varepsilon^{-1}x + a_2\varepsilon^{-\alpha}y)$. Therefore, $\|P_{F_{\varepsilon}}\|_{\infty,Q}$ tends to infinity for $\alpha > 2$ and if $\alpha = 2$, $P_{F_{\varepsilon}}$ does not converge to the Taylor polynomial. It remains to find a function c(x) with the required conditions. But $a_2 \ne 0$ iff

$$\Delta(c) = \begin{vmatrix} \int_{0}^{1} c(x) dx & \int_{0}^{1} x c(x) dx & \int_{0}^{1} x^{2} c(x) dx \\ \int_{0}^{1} x c(x) dx & \int_{0}^{1} x^{2} c(x) dx & \int_{0}^{1} x^{3} c(x) dx \\ \int_{0}^{1} c^{2}(x) dx & \int_{0}^{1} x c^{2}(x) dx & \int_{0}^{1} x^{2} c^{2}(x) dx \end{vmatrix} \neq 0$$

Now if $c \in \pi^1(x)$, $c(x) = b_0 + b_1 x$, the determinant $\Delta(c) = \Delta c(b_0, b_1)$ belongs to $\pi^4(b_0, b_1)$. But $\Delta(c)$ is not the zero polynomial. So there exist (b_0, b_1) such that $\Delta(c) \neq 0$. Moreover we can choose a positive c(x). Since for b_1 fixed $\Delta(c)(b_0, b_1) \in \Pi^4(b_0)$ then $\Delta c(b_0, b_1) \neq 0$ for all large b_0 .

The next property for the L^2 projection P_0 will be used.

(3.5)
$$P_{Q}(x^{\beta})(x) = \sum_{\substack{|\gamma| \le n \\ \gamma \le \beta}} a_{\gamma}(\beta) x^{\gamma}$$

Here $\gamma \leq \beta$ means that for each component holds $\gamma_i \leq \beta_i$. In fact, let V_0, V_1, \ldots, V_n be an orthonormal system in Π^n of [0,1]. Then $V_{\gamma}(x) = V_{\gamma}(x_1) V_{\gamma}(x_2) \ldots V_{\gamma}(x_m)$, $|\gamma| \leq n$ is an orthonormal system in Π^n of Q. Clearly, $V_{\gamma}(x) = \sum_{\sigma \leq \gamma} a_{\sigma}^{\gamma} x^{\sigma}$. Now in the expression

$$P_{Q}(x^{\beta}) = \sum_{|\gamma| \le n} (x^{\beta}, V_{\gamma}) L^{2}(Q) V_{\gamma}$$

we have $(x^{\beta}, V_{\gamma})_{L^{2}(Q)} = 0$ if $\gamma \leq \beta$ does not hold.

By using the form for $V_\gamma(x)$ and a change in the order of sums we get

$$P_{Q}(x^{\beta})(x) = \sum_{\substack{|\gamma| \le n \\ \gamma \le \beta \\ \gamma \le \beta \\ \gamma \le \beta \\ |\sigma| \le n}} (\sum_{\substack{(x^{\beta}, V_{\sigma}) \\ \gamma \le \beta \\ |\sigma| \le n}} (x^{\beta}, V_{\sigma}) x^{\gamma}) x^{\gamma}$$

and (3.5) is proved. We make a few comments on (3.5). This property implies that if $f \in L^2(Q)$ is independent of some set of variables then $P_Q f$ does not depend on the same set of variables. We can replace Q in (3.5) by E = AQ+v, $v \in \mathbb{R}^m$ and A a diagonal positive matrix and still have the same order in the sum. This follows at once by (3.3).

(3.6) EXAMPLE. Let E be the square with vertices $(\pm 1,0), (0,\pm 1)$ and P_E the projection on Π^n , polynomials in the variables x and y. Then there exists ℓ such that $P_E(x^{\ell})$ depends of the two variables x and y. Thus (3.5) is not invariant by rotations. The example (3.6) could "be proved" by a long calculation or else we may use the next argument. Let y = c(x), $-1 \leq x \leq 1$ the piecewise polynomial function which gives the upper boundary of E. We claim that $P_E(c^2)$ is a polynomial in Π^n which does depend on the variable y. Otherwise, $c^2(x) - P_E(c^2)(x)$ will be orthogonal to the subspace $M = \{x^i c^j(x): i+j \leq n, j \text{ even}\}$, where the $L^2[0,1]$ is taken with the measure c(x)dx. But this is a contradiction since $c^2 \in \Pi^n$ and

260

 $P_E(c^2) \neq 0$. Now approaching c^2 by polynomials in the variable x we get our claim.

Now we prove Theorem 2. First note that if $f \in T^2_{n_{\alpha}+1}$ by (2.1) and (3.2) the restriction to Π^n of the Taylor polynomial of degree n_{α} is uniquely determined. We write

 $f(x) = Tf(x) + \sum_{n < |\beta| \le n_1} a_{\beta} x^{\beta} + R(x) \text{ with } Tf \in I^n \text{ and } ||R||_{2,R_{\varepsilon}} \le R_f \varepsilon^{n_{\alpha}+1}.$

Since $\|P_{\varepsilon}(R)\|_{2,R_{\varepsilon}} \leq 2\|R\|_{2,R_{\varepsilon}}$, by (2.1) and (3.2) $\|P_{\varepsilon}(R)\|_{\infty,Q} \neq 0$ as $\varepsilon \neq 0$.

On the other hand, by (3.2) and (3.5), we have

$$P_{\varepsilon}(x^{\beta})(x) = \sum_{\substack{|\gamma| \le n \\ \gamma \le \beta}} \varepsilon^{\alpha \cdot \beta - \alpha \cdot \gamma} a_{\gamma}(\beta) x^{\gamma}$$

So if $|\beta| > n$ we have $P_{\epsilon}(x^{\beta}) \rightarrow 0$, and the Theorem follows.

REMARK 2. Theorem 2 is no longer true if Q is replaced by a rotation of it. This follows from example (3.6).

REMARK 3. In Theorem 2 the sets R_{ϵ} can be replaced by $R_{\epsilon}^{*} = [0, \phi_{1}(\epsilon)] \times \ldots \times [0, \phi_{n}(\epsilon)]$ where the positive functions ϕ_{i} behave. Iike powers. That is, there exists s > 0 such that for every pair i,j we have $\phi_{i}^{s}(\epsilon) = o(\phi_{j}(\epsilon))$. Now we should assume a smoothness condition according to s and n.

It could be of some interest to obtain a similar result to Theorem 2 for $p \neq 2$.

REFERENCES

- C.K.Chui, H.Diamond and L.A.Raphael, Best local approximation in several variables, J.Approx.Th.40 (1984), 343-350.
- [2] C.K.Chui, H.Diamond and L.A.Raphael, On best data approximation, J.Approx.Th. and its Appls. 1 (1984), 37-56.
- [3] C.K.Chui, O.Shisha and P.W.Smith, Pade approximants as limits of best rational approximants, J.Approx.Th. 12 (1974), 201-204.
- [4] C.K.Chui, O.Shisha and P.W.Smith, Best local approximation, J.Approx.Th.15 (1975), 371-381.
- [5] T.J.Rivlin and H.S.Shapiro, Some uniqueness problems in approximation theory, Comm.Pure Appl.Math.13 (1960), 35-47.
- [6] C.Sadosky and M.Cotlar, On quasi homogeneous Bessel potential operators, Proce. Symposia in Pure Math.AMS 10 (1967), 275-287.

Sergio Favier^(*), Carmen Fernández^(*) and Felipe Zó^{(*),(**)}

- (*) Facultad de Ciencias Físico Matemáticas y Naturales-Universidad Nacional de San Luis - Chacabuco y Pedernera-5700 San Luis-ARGENTINA
- (**) IMALS Universidad Nacional de San Luis CONICET.

Recibido en diciembre de 1986.

262