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THE TAYLOR POLYNOMIAL AS BEST LOCAL APPROXIMATION IN RECTANGLES 

Sergio Favier, Carmen Fernandez and Felipe Zo 

a 1 a 2 
SUMMARY. Let Re; be the rectangle ° .,;; Xl .,;; e; ,0.,;; x 2 .,;; e; , ... , 

a ° ";;Xm ";;e; m where a i ~ 1 and min a i = 1. Given f in L2(RI) , 
1~i~m . 

set Pe;(f) for the L2 projection onto the algebraic polynomials of 

degree not greater than n, where the projection is taken on Re;. If 
n +1 

f E C a with na > n max a. and Tf is the Taylor polynomial of 
l~i~m 1. 

f of degree n developed at x=O, then Pe;f converges to Tf as e; + 0. 

Where max a i < (n+l)n- l , the rectangles Re; can be replaced by a 
l";i~m 

family {Fe;} regular with respect to (a l , ... ,am), and we have a si-

milar result with the best LP'approximation on the sets F • e; 

Throught this note we shall use Peano-like derivatives. 

1. I NTRODUCT I ON. 

The notion of best local approximation may r6ughly be described as 

follows. Let f be a real-valued function defined on the unit cube 

Q in Rm , Q = {x / ° .,;; x . .,;; 1} , and assume that f is In a normed 
1. 

linear space X with norm ~ II. Let V be a subset 6f X, and suppose 
we wish to best approximate f by elements of V near a point x E Q, 
say x=:O. Then we consider a family of regions {R}o 1 shrinking e; <e;~ 

down to zero as e;o + 0, and we look for a P fE V which minimizes e; 

the expression ~ (f-P)XR ~ with P E V, where XR denotes the charac-
. e; e; 

teristic function of the set Re;. If such Pe; exists it will be call-

ed . a best approximation of f on the region Re;. In case that Pe;f 

tends to some Pof in V, as e; + 0, we say that Pof is a best local 

approximation of f at x=o by elements of V. 

The general concept of best local approximation as stated above, 
was -introduced by C.Chui et.al., and developed in a serie of papers, 

. [3] , [4], etc., where the underlying results are one -dimens ional and 
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V is taken as the class of algebraic polynomials. generalized poly­

nomials. or quasi-rational approximation. Recently. higher dimensio 

nal results have been obtained in [1]. [2] • 

The purpose of this note is to call the attention to the fact that 

in higher dimensions it is important how the family {R } shrinks to e: 
zero. even considering as approximating class the algebraic polyno­

mials. It will follow. using the techniques in [2]. that if {Re:} is 

a regular family with respect to the balls centered at the origin. 

then the best local approximation of f with respect to this family 

is the Taylor polynomial. Since the balls can be changed for a re­

gular family and still we get the Taylor polynomial. we see that 

the balls are good regions to obtain a local approximation. 

We have a different situation if we take as {Re:} a one-parametric 

family of rectangles whose sides are parallel to the axis. We shall 

see that the Taylor polynomial is the best L2 local approximation 

with respect to this family. Moreover. we prove that rectangles 
which are not too flat can be replaced by a regular family with res 

pect to them. But in general not any affine transformation of rec­

tangles will give a suitable family for local approximation. 

This note is self-contained. 

I I. NOTATION AND RESULTS. 

Let f be a Lebesgue measurable function defined on Q. and E ~ Q a 

measurable set. We set 

where lEI denotes the Lebesgue measure of E. We always assume 

lEI> O. The expression IIflioo E means the essential supremum on E . 
• 

Thus. 'we have a norm on LP (Q) for 1 0;;; P 0;;; 00 and a metric otherwise. 

Let a = (a 1 .a2 •...• a m) be an m-tuple of real numbers with a i ~ 1 

Ul u2 Urn 
and min{a i } = 1. The non-homogeneous dilation (e: xl'e: x2.···.e: xm) 

is denoted by 0e:(x). and set Re: = 0e:Q. We say that a family 

{F } of measurable sets in Rm is a regular family with res-e: O<e:~l 

pect to u. if there exists a constant c > 0 such that for every e: 

the set F is contained in R and IF I ~ ce: lul • where e: e: e: 

+ ••• + a . 
m 

The real algebraic polynomials in m variables with degree not gre~ 
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ter than n will be qenoted by nn. Thus if PEnn we use the stan-
_ t 13· 13 13 1 13 2 13m dard notation P(x) - L af3x, wIth X Xl ,x 2 , ... ,x 

If3lsn m 

We shall often use the next inequality. 

(2.1)· Let {F }O< <1 be a reguz.ar famiZ.y with respect to a and p > O. 
E E_ 

Then, there exists a constant c > 0 such that for every 

E, it fOZ.Z.ows that 

IIPlloo,Q .;;;;; CE -nlaloollPIiF 
E'P 

where 

P E lIn and 

Note that .in (2.1) the constant c is independent of PEnn and E. 

Let f E LP(Q), 0 < P and assume that there exist Tf E nn and a fini 
n+1 . 

te number Rf such that IIf-TfIlFE,p .;;;;; Rf E for every 0 < E .;;;;; 1. 

Then we say that Tf is a Taylor polynomial of degree n of f at the 

origin. If such is the case we write f E T~+i' By (2.1) we have the 

uniqueness of Tf if lal oo < (n+l)n- 1 and elementary examples show 

the lack of uniqueness for lal oo > (n+l)n- 1 . Sometimes the class nn 

is replaced by a smaller one nn,a and we have uniqueness of Tfenn,a 

for every a, see [6]. 

Given f E LP(Q) we call BP(f) = BFP (f) the set of all P f E lIn such E E E 
that IIf-P fliF = inf IIf-PIi F . A compactness argument together 

E E'P PEnn E'P 

with (2.1) shows that B~(f) f 0. For p outside the range (1,00), 

B:(f) may have more than one element. For example we can find an 

f E COO such that B~(f) has infinitely many quadratic polynomials, 

[5]. The next statement is an easy consequence of (2.1). 

THEOREM 1. Let f E T~+l' 0 < p .;;;;; 00. Let {FE}O<e:,l be a reguz.ar fa­

miZ.y with respect. to a with I a I 00 < (n+l)n-· 1 • Let Tf be the TayZ.or 

poZ.ynomiaZ. of degree n of f. Then, for every P E BPCf) we have 
E 

where the constant c depends on nn, the family {F } and p. 
E 

We call n the minimum integer t such that t ~ nlal oo ' If f E TP 
a na+1 

the restriction to nn of a Taylor polynomial of degree na is uni-

quely determined and we shall call it the Taylor polynomial of f 

of degree n and again denoted by Tf. 
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THEOREM 2. Let f ~ T! +1' Zet Tf be the TayZor poZynomiaZ of f of 
a. 

degree n, and P£(f) the L2 (R£) projection of f onto TIn. Then 

"P£(f)-Tf"oo,Q tends to zero as £ + O. 

I I I. PROOFS. 

The next Lemma is a general version of a similar one in [2]. The 

proof is included here for the sake of completness. 

LEMMA. Let {Il }·O< <1 be a famiZy of measures on Q uniformZy absoZu-
£ £-

teZy continuous with respect to the Lebesgue measure. Suppose that 

1l£(Q) = 1 for every £. Then there exists a constant c > 0, 

c = c(p,n) such that for any P E TIn and £ > 0 we have 

J IIp 
c "P"oo Q ,,( IP(x) IP dll (x)) ""P"oo Q 

'Q £ , 

In fact, suppose for the moment that for some p > 0, the statement 

does not hold. Then there exist sequences {P~} in TIn and {£~} such 

J p IIp 
that for every ~ we have "P~"~,Q = 1 and ( QIP~(x) I dll£(x)) " 

" 1/~. 

Now assume, by taking a subsequence, if necessary, that for some 

Po E TIn, "P~.-Po"oo,Q + 0 as ~ + 00. Then "Po"oo,Q= and given £ > 0 

for all ~ large we have (f Ip (x) IP dll (x))l/p" £. 
Q 0 £~ 

Given 0> 0 we set No = {XEQ / Ip~(x)1 < oJ. Then, for ~ large we 

have £P > oP (1-11 (N ... )). Since P # 0, IN ... I + 0 as 0 + 0, we arri-
£~ u 0 u 

ve at a contradiction in the last inequality by observing that our 

measures aTe uniformly absolutely continuous. So the Lemma is pro­
ved. 

I a.1 
In order to get (2.1), set p£(t) = P(o£t) and dll£Ct) = _£.- XF (o£t). 

IF £ I £ 

Observe that sup 11 (E) + 0 as lEI + 0, if {F£} is a regular family 
0<£.::1 £ 

with respect to a.. 
Thus, a change of variables and the Lemma yield 

"p£"oo,Q "c "P"P,F£ for any P E TIn and £ > O. 

Moreover, the norm "p£"oo,Q is equivalent to a.. 13 I· I h max £ a 13 , were 
113I~n 
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(3.2) 

I 
lal'5 n 

Clearly, (3.2) implies (2.1). 
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REMARK 1. The inequality 
k 

(2.1) remains valid if we consider polyno-

mials P(~)= I a.u.(x) 
i= I 1. 1. 

in the sense of [1]. That is, we assume 

that each u. is Cn+1 in a neighborhood of zero, and the Wronskian 
1. 

determinant of the square matrix C.aaui(o)), lal .. o;;;;n, i = 1, ... ,k 

being nonzero. Here, k = card{a:lal 0;;;; n}. Then for nlal", < n+1 and 

any e small we have 

-nlal", 
II PII "', Q < cell PII F 

p, e 

p > 0 and {F } regular with respect to a. e 
In fact, by the Taylor theorem 

P(x)·= I 1 a I 1 a aT Aa(O)x + aT Aa(l;)x 
lal:O;n lal=n+1 

PI (x) + R(x) 

where 

Now,. for a constant c, not necessarily the same on each ocurrence, 
we have 

II PII F 0;;;; cen+1 max la.1 0;;;; ce n+1 II PII "', Q 
P, e I<i<k 1. 

- c II RII 
p,Fe 

and by (2.1), we have 

Since the vectors (Aa(O)) and (a i ) are related by a nonsingular ma­

trix the norm "PI""',Q is equivalent to IIPII""Q and the remark follows. 

Theorem 1 is a consequence of the definition of BPCf) and C2.1). In . e 

fact, for P E BP(f) we have 
e 

IIP-Tfll""Q o;;;;ce -nlal", IIP-Tfll F 
P, e 

0;;;; c(p) e~nlal", IIf-Tfll R 
p, e 
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and Theorem 1 follows. 

We can not expect, in general, convergence of the best approxima­

tion polynomial PE(f) to the Taylor polynomial when lal oo > (n+l)n- l . 

Thus, if lal oo > (n+l)n- l it is easy to find a regular family {FE} 

such that "P (f)" Q tends to infinity for smooth functions f. If 
E 00, 

lal oo = (n+l)n- l the norm of PE(f) will remain bounded, but in gene-

ral, the polynomial PE(f) will not converge to Tf. We shall give 

an example. First consider a further .observation. 

Set PE(f) for the L2 projection onto rrn, where the L2 norm is ta­

ken over the set E. 

Let L be a nonsingular affine transformation of Rm onto Rm. Then 

for f E L2(Q) and measurable E ~ Q we have 

(3.3) 

To obtain (3.3), we use a change of variables and the uniqueness 

of the L2 projection. Thus, the LP version of (3.3) is also true 

for 1 < p < 00. 

(3.4) EXAMPLE. Set rrn = rrl(x,y) and E = {(x,y) / 0 ~ y ~ c(x) , 
o ~ x ~ 1} , where c is a positive continuous function. Suppose for 

2 the moment that there exists c(x) such that PE(x )(x,y) = ao + alx + a2y 

has the coefficient a 2 ~ O. Now let FE = 0EE where 0E(X,y) = 
a 2 2 -1· -a = (EX, E y). Then (3.3) yields PF (x )(x,y) = E (ao + alE x + a2E y). 

E 

Therefore, "PF"oo Q tends to infinity for a > 2 and if a = 2, PF 
E ' E 

does not converge to the Taylor polynomial. It remains to find 
a function c(x) with the required conditions. But a 2 ~ 0 iff 

II (c) 

Now if c E 

belongs to 

J: c(x) dx J: x c(x) dx ( x 2c(x) dx 

( x c(x) dx ( x 2c(x) dx J: x 3c(x) dx ~ 0 

( c 2 (x) dx J: x c 2(x) dx ( x 2c 2(x) dx 

rrl(x) , c(x) = bo + blx, the determinant lI(c) = lIc(bo,b l ) 
4 rr (bo,b l ). But lI(c) is not the zero polynomial. So there 

exist (bo,b!) such that lI(c) ~ O. Moreover we can choose a positi-
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I 
ve c(x). Since for b l fixed ~(c)(bo,bl) E rr4(b o) then 6c(bo ,b 1) f 0 

for all large boo 

The next property for the L2 projection PQ will be used. 

(3.5) 

Here y ~ a means that for each component holds Yi ~ Si. 

In fact, let VO,V1, ... ,Vn be an orthonormal system in nn of [0,11. 

mal system in rrn of Q. Clearly, Vy(x) 

sion 

L a~xa. Now in the expre~ 
a<;;y 

we have (x S , V ) 2 = 0 if y ~ S does not hold. 
y L (Q) 

By using the form for V (x) and a change in the order of sums we 
y 

get 

and (3.5) is proved. 

We make a few comments on (3.5). This property implies that if 

f EL 2 (Q) is independent of some set of variables then P Qf does not 

depend on the same set of variables. We can replace Q in (3.5) by 

E = AQ+v, v E Rm and A a diagonal positive matrix and still have 

the same order in the sum. This follows at once by (3.3). 

(3.6) EXAMPLE. Let E be -the square with vertices (± 1 ,0), (O,± 1) and 

PE the projection on rrn, polynomials in the variables x and y. Then 

there exists ~ such that PE(x~) depends of the two variables x and 

y. Thus (3.5) is not invariant by rotations. The example (3.6) 

could "be proved" by a long calculation or else we may use the next 

argument. Let y = c(x), -1 ~ x ~ 1 the piecewise polynomial func­

tion which gives the upper boundary of E. We claim that PE(c 2) is 

a polynomial in nn which does depend on the variable y. Otherwise, 

c 2 (x) - PE(c 2)(x) will be orthogonal to the subspace 

M = {xic j (x): i+j ~ n, j even} , where the L2 [0,1] is taken with 

the measure c(x)dx. But this is a contradiction since c 2 E rrn and 
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PE(C 2) f O. Now approaching c 2 by polynomials in the variable x we 

get our claim. 

Now we prove Theorem 2. First note that if f E T!a+ l by (2.1) and 

(3.2) the restriction to TIn of the Taylor polynomial of degree na 

is uniquely determined .. We write 

8 na+ l 
f(x) = Tf(x) +. I aax +R(x) with Tf E TIn and ORtl2 R <RfE . 

n < I i3 I ~ n 1 .., , E' 

Since OP (R)1I 2 R < 20RII 2 R ' by (2.1) and (3.2) OP (R}O .... 0 
E • ,E ' E E ·co,Q 

as E .... O. 

On the other hand, by (3.2) and (3.5), we have 

P (xB)(x) = I Ea.B-~.l a (B) xl 
E Ill~n l 

HB 

So if 181 > n we have P (x 8) .... 0, and the Theorem follows. 
E 

REMARK 2. Theorem 2 is no longer true if Q is replaced by a rota­
tion of it. This follows from example (3.6). 

REMARK 3. In Theorem 2 the sets RE can be replaced by 

R~ = [O,<P l (E)] x ... x [O,<Pn(E)] where the positive functions ¢i beha­

ve, like powers. That is, there exists s > n such that for every 

pairi,j we have <P~(E) 
~ 

O(<P.(E)). Now we should assume a smoothness 
J 

condition according to sand n. 

It could be of some interest to obtain a similar result to Theorem 2 
for p r 2. 
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