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INTRODUCTION. The main purpose of this note is to study weighted 

norm inequalities for non-standard truncations of singular integrals. 

The non-weighted boundedness properties of the maximal operator for 

rectangular truncations have been studied by one of the authors ill 

[5]. The weighted case with standard (spherical) truncation was st~ 

died by Hunt, Muckenhoupt and Wheeden [6] and Coifman and Feffer

man [3]. We shall refer to the last paper for the basic properties of 

Ap weights. 

As a basic tool in the proof of the theorem we shall use weighted 

inequalities for certain,approximate identities, to be introduced 

and proved in section 2. These approximate identities are similar 

to those previously considered by M.Carrillo [2] and C.Calderon 
[2] • 

The proof of Theorem (1.3) is given in section 3, where some other 

applications are considered. 

§1. 

Let K(x) = n(x) be a Calderon-Zygmund kernel in Rn. Here 
jxjn 

x = (x l , ... ,xn), Ixl is the euclidean length of x and n is a func-

tion on Rn homogeneous of degree zero satisfying the following two 
standard conditions 

(1.1) Cancellation property 

f n(x')dx'= 0, where Sn-l is the unit sphere in Rn. 
sn-l 

(1.2) Dini type condition 
1 f w~o) do < 00 where 
o 

w( 0) sup In (n.h) -n (x) j • 
XES n - l 

Ihl<o 
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Let Fa be the family of all the balls centered at the origin of Rn 

Let Fl be the family of rectangles centered at the origin of Rn 

with sides parallel to the axes; i.e. R E FI if and only if 

R = [-al,a l ] x [-a2 ,a2] x ••• x [-an,an]. Let F2 be the family of all 

rectangles centered at the origin of Rn, REF 2-i£ and only if R is 

a rotation of a rectangle in Fl. 

Associated with each one of the families Fa' FI and F2 we have the 
corresponding maximal operator 

where TAf(x) = f K(y)f(x-y)dy. 
y¢A 

The known results referred to in the introduction are the following: 

E .Harboure (1979) [5]: Ti is of weak type (1,1) and Ti is bounded 

in LP(dx) for 1 < p < 00. 

Hunt, Muckenhoupt and Wheeden (1973) [6], Coifman and Fefferman 

(1974) [3]: If WEAl (i.e. 3 c: I~I fB w ..; c inf w for every ball 
B 

B), then T~ is of weak type (1,1) with measure w(x)dx. If 1 < p < 00 

I 

and w E Ap (i.e. 3c: (I~I fBW)(I~1 JB w-p-l)p-l ..; c for every ball 

B then T~ is bounded in LP(wdx). 

It is also known after a work of Kurtz and Wheeden, [7], that the 

Dini type condition on the kernel can not be weakened to a Horman

der type condition. 

Our main result is the following theorem. 

(1.3) THEOREM. 

(1.4) If 1 < p < 00 and w E A , then II Ti" ..; C 11£11 
P LP(wdx) LP(wdx) 

(1.5) If WEAl' then f w(x) dx ..; f II fll I 
{x:Ttf(X»A} L (wdx) 

where C depends onZy on the dimension and on the A norm of w. 
P 

Observe that Tz ~ Ti, hence Ti is also LP(wdx) -bounded provided 

that w E A and 1 < p < 00. 

P 

In proving Theorem (1.3) the idea, as in the non-weighted case, is 

to obtain an upper estimate of Tt (i=1,2) by i; plus the maximal 
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operato~ of certain approximate identity, Theorem (1.3) is then a 
consequence of weighted inequalities for approximate identities 
which we shall obtain in the next paragraph. We will give a detail
ed proof of Theorem (1.3) on § 3. 

§ 2. 

Let A be a bounded convex set in Rn with non empty interior which 
contains the origin. Let B be the smallest ball centered at the 

origin whose closure contains A.The number e = 
of the excentricity of A. 

hi 
IAI 

is a meaS1:lre 

If k(x) is a real valued function defined on Rn we shall use the 

notation: k~ (x) = -'- k (~) and k (x) = J...- k (.el&) where e: is a 
Co e:n e: e:, p e:n e:' 

positive real number and p is a rotation in Rn. 

In the proof of the next lemma we shall use the following result 
due to E.Stein and N.Weiss [9]. 

LEMMA. Let {Tj};=l be a sequenae of subZinear operators whiah are 

uniformZy of weak type (1,1). Let {c.} be a sequenae of positive 
] 

numbers satisfying r c.llog c.1 < 00. Then the operator r c. T. is 
] ] ] ] 

of weak type (1,1). 

(2.1) LEMMA. Let k(x) ;;. 0 be suah that 

(2.2) k(x) ~ L b. XA.(x) , 
j e:Z] ] 

where A. is a bounded aonvex set with non empty interior aontaining 
] 

the origin and b. > O. Set a. = b.IA.1 and Zet e. be the exaentri-
J J J J ] 

aity of Aj" Then 

(2.3) for 1 < p < 00, the maximaZ operator sup I k * f I is bounded 
e:,p e:,p 

in LPCwdx) for every w E A provided that the sum 
P 

finite for every y > 0; 

L 
je:Z 

I-y a.e. 
] ] 

is 

(2.4) the maximaZ operator sup I k * fl 
e:>O e: 

is of weak type (1,1) with 

measure wdx for every WEAl' prqvided that the sum 

L a. eJ~-y Ilog(a.e~-Y)I is finite for every y > O. 
je:Z J J J 
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Proof. In order to prove (2.3) let us first observe that, from (2.2), 
we readily have 

Hence 

(2.S) sup Ik *f(x) I .;;; L ajMjf(x) 
e:,p 

e:,p je:Z 

where M.f(x) = sup 1 
Je:P(A.) 

If(x-y)ldy. 
J e:,p e:! p (A.) I 

J 
J 

Let us now study the LP(wdx) boundedness of M.f. For w E A , 
J P 

1 < p < 00, the~e exists 1 < r < p such that w E A (See [3] for a r _ 

proof). Let B. = B(O,r.) be the smallest ball centered at the ori-
J J 

gin whose closure contains Aj . Applying HOlder's inequality and the 

Ar condition for w, we get 

Since the weighted maximal function 

M g (x) = sup Jig I w 
w s>o w(B(x,s)) B(x,s) 

is of weak type (1,1) with weight w, we have 

e r 
w({x:M.f(x) > A}) .;;; C ~ Jlflr w-. 

J Ar 

In other words, M.f is of weak type (r,r) with weight wand cons
J 

tante~. On the other hand, it is clear that IIM.fll . .;;; II fll . So 
J J L~ Loo 

that, by Marcinkiewicz interpolation theorem we obtain 

IIM.fll .;;; C e:/ p IIfll 
J LP(wdx) J LP(wdx) 
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This estimate, Minkowski's inequality and (2.5) give 

Let us now prove (2.4). As before we have 

(2.6) sup IkE*f(x) I < I a.M. f(x) , 
E j EZ J J 

where M.f(x) = sup _1_'_1 J If(x-y) I dy. 
J E>O EAj EAj 

Let w E AI' then there exist 0 > 0, c > 0 such that the "reverse 

Holder inequality" 

holds for every ball B, (See {31). 

Since w E Al we have 

(2.7) -'- J w1+O < C inf w1+o 
IBI B B 

for every ball B. Consequently, applying Holder's inequality and 
then (2.7)~ it follows that 

w -
{ 

J 1+0} 1 x+EA. .1+0 
-'- J I f(x-y) Idy < J • 
I E\ I EAj I EAj I { , J I f ( y) I d y} < 

f + A w x+EA. x E j J 

{ 
r 1+0 )_1 
J B ( x , E r . ) w 1+0 

IB(X,~rj)1 1~0 { 1 J e· --'--- X+EA.lf(y)1 
j . f x+EA. w J 

J 

< c.e~~O{ , 
.J f X+EA.w 

. J 

From the last inequality and (2.6) we get 

where 

sup IkE*fl < CI 
E j EZ 

1 
1+8" a. e. 

J J 
M .fex) 

W, J 

M .f(x) 
W, J sup J I flw 

E f x+EA ~ X+EAj 
J 
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From Besicowitch type covering lemmas (see [4]), it follows that

the maximal operator M . is of weak type (1,1) with weight wand 
W, J 

norm independent of j. Then, the result is a consequence of the 
"entropy" hypothesis which allows us to apply the preceding lemma. 

A particular case of Lemma (Z.1) gives the following weighted exte!! 
.sion of M. T. Carrillo theorem which will be used in proving Theorem 
(1.3). 

(Z.8) COROLLARY. Let k ~ D be non-increasing aZong rays. Suppose 

that the sets A. = {x: k(x) ~ zj} are convex and bounded for every 
J 

j a z. Then (Z.3) and (Z.4) hoZd true with b. = Z~ 
J 

<;' j Proof. Observe that k(x) 9!!. l.. Z XA • (x) , where the A~s satisfy 
jEZ J J 

the hypotheses of Lemma (Z.1). 

§ 3. 

In this paragraph we will give several applications of the lemma 
proved in §Z. The first one is the proof of Theorem (1.3) on non
standard truncations of singular integrals. 

(3.1) PROOF OF THEOREM (1.3). Let R be a rectangle belonging to 
Fi (i=1 ,Z). We can regard R as a rotation p followed by a dilation 
E of a rectangle R' with sides parallel to the axes whose smallest 
side is in the x -direction and has lenght Z. Set 

n 

S = {x E Rn : -E .;;; X .;;; E 
E n 

and Ixl ;;Os}. 

Clearly R' c B(D,1) U S1 and hence R C BCD,E) u P(SE)' So that 

where 

Hence 

ITRf(x) I .;;; ITB(O,E/(x)1 + (kE,p*lfl)(x) , 

1 
k(x) = XB(O, 1) (x) + -- X (x). Ixl n 8 1 

where Pi is a rotation in Rn taking the hyperplane xi 

hyperplane x = D. Also 
n 

T*2f(X) .;;; T*of(x) + sup sup(k ¥Ifl)(x). p E E,p 

o into the 
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It suffices to prove that this kernel falls into the scope ofcor~ 
llary (2.8). Since the hypothesis required in (2.4) is stronger 
than that of (2.3), we will just check the "entropy" condition 

If j > 0, then A. = {x: k(x) ~ 2j } = 0. If j ~ 0 the A!s are con-
J . J 

vex and bounded sets and there exist a constant Cn' depending only 
on the dimension, such that 

{x: Ix I n 
~ 1, ~C 

n 
2- j / n ; 1 ~i <n} C;:A. C 

J 

Ix.1 ~ 2- j / n ; 1 ~ i < nL 
1 

-j (1_1) 
Thus IA.I ;:;:: 2n .2 n .;;;: C' 2- j / n d J "'" e j ... n an a j 

Therefore 
ir. 

en 

which is clearly finite. 

In (1) C .Calderon studies the differentiation properties through 
the dilations of unbounded star-shaped sets. As a second applica
tion of the general result on section 2 we shall obtain weighted 
inequalities for approximate identities related to some particular 
shapes of those c~nsidered by C.Calder6n. (See also (4] page 291). 

Let K and 4> be two non-negative non-increasing functions defined 
on R+. su~ose that 4> is bounded above. Let x' = (x l ,x 2 ,·· .,xn_l ) 

and Ix'i its length. Set E = {x ERn: Ix I ~ Hlx' In and k(x) n 

= K(lxl)XE(x). We shall study weighted boundedness properties of 

Mf(x) = sup I (k *f) (x) I. 
£>0 £ 

For y ~ 0 we set W (t) = K(t)4>Y(t)tn - l - y With this notation we y • 

have the following result: 

(3.2) THEOREM. If 

(3.3) JO

l wo (t)dt < 00 and 

(3.4) JOO W (t) IlogW (t)ldt < 00 , for every y > 0 
o y y 

then the maximaZ operator Mf is of weighted weak type (1,1) for 
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every weight WEAl' 

Proof. We may assume without loss of, generality that q, .;;; 1 and that 

K .;;; e-1 outside the unit ball. In order to apply the second part 
of Lemma (Z.1), let us first observe that 

where Xo is the characteristic function of the ball B(O,Z) and Xj 

is the characteristic function of the cylindrical region 

'+1 . 
A. = {x: I x' I .;;; ZJ and I x I .;;; q, (ZJ)} ; j ;;;. O. 

J n 

The kernel ko(x) is radial and non-increasing so that we have 

sup I (ko d) (x) I .;;; C. f* (x) , 
E ,E 

where f* is the Hardy-Littlewood maximal function and C =fko(x)dx, 

which is finite by (3.3). Then, using the classical result for f*, it re
mains only to study the kernel koo . With the notation of Lemma (Z.1) 
for j ;;;. 0 we have 

b. = K(Zj); a. = b.IA.1 = CK(Zj)zj(n-l)HZ j ) ; 
J J, J J 

e. e;; c.--L and a.e~-Y '=.CK(Zj).q,(zj)Y.(zj)n-l-Y. z j , 
J q,(zJ) J J 

where C depends only on the dimension n. Thus 

+ C' I 
j ~o 

a.e~-Y(j+C) 
J J 

I + II. 

Since the function 

is non increasing for t ;;;. 1, then 

(3.5) 

Also 

(3.6) 

I .;;; cJ:K(t)q,(t)YllOg(K(t)q,Y(t))ltn-I-Ydt .;;; 

.;;; cJoo1/l (t) Ilog1/l (t) I dt + cJoo 1/1 (t) log t dt . 
1 Y Y 1 Y 

II .;;; C r K(Zj)q,(zj)Y(zj)n-l-y 10g(Zj+C')zj .;;; 
j~O 
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.;;;cJOO1/! (t)log(C't)dt. 
I Y 

The last integral on the right hand side of (3.5) and the right 
hand side 6f (3.6) are both of the same type. Let 0 < E < y. Since 
Ij) .;;; 1 we have 

which is finite because of (3.4) withY-E instead of y. 

(3.7) REMARK. Given a curve of the formxn = CP(X I ) , we may. genera

te two different types of solids of revolution, En and EI , accor

ding"we rotate it about the xn or the xl axis. In the preceding 

theorem the first type of solid was used to cut the kernel K. With 

a similar reasoning we can get the same conclusion for EI under 
the hypotheses (3.3) and 

(3.8) (K(t)lj> (t) Y (n-l) t (n-l) (l-y) IlogK(t) cp(t) y(n-I\ (n-I)(l-Y) Idt < 00 

instead of (3.4). Notice that for the unweighted case, i.e. y=l, 
(3.8) is weaker than (3.4) as assumption on K. However both sets 
of hypotheses are the same if we want to obtain the boundedness 
for all the Al - weights. 

(3.9) REMARK. Similar results hold with other monotonicity proper
ties on K and Ij). 

(3.10) EXAMPLE. If wet) ='1 and K(t) = ;n X[l,oo) + X(O,I) , 

we have [001/! Ilog1/! I = [OOt-I-YIIOg t-1-YI dt < ex> for every y. This 
I Y Y 1 

means that the second part of Theorem (1.3) can also be proved 
using Theorem (3.2). 

(3.11.) EXAMPLE. If we set K=l, hypotheses (3.4) becomes 

J:.Y(t)tn-l-YIIOgIj)Y(t)tn-I-YI dt < 00 

for every Y > O. This is satisfied if, for example, Ij> decays expo
nentially. Theorem (3.2) gives weighted inequalities for the maxi

mal operator associated to differentiation through certain unboun-
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ded star-shaped sets. 

Finally, we can also apply Lemma (2.1) to iterated Poisson kernels 
considered by Rudin [8] and M.de Guzman [4], page 290. Let 

then 

k(x) 2 -1 2 -1 
(1 + xl) . .. (1 + xn) , 

sup I k *f I 
e:>0 e: 

is of weighted weak type (1,1) for every wEAl' The proof is a 

straight forward verification that the estimate given in [4] satis

fies hypotheses of our lemma. 
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