Revista de 1la 21
Unidn Matemdtica Argentina
- Volumen 33, 1987.

ON WEIGHTED INEQUALITIES FOR NON STANDARD
TRUNCATIONS OF SINGULAR INTEGRALS

Hugo A. Aimar and Eleonor 0. Harboure

INTRODUCTION. The main purpose of this note is to study weighted
norm inequalities for non-standard truncations of singular integrals.
The non-weighted boundedness properties of the maximal operator for
rectangular truncations have been studied by one of the authors in
[5]1. The weighted case with standard (spherical) truncation was stu
died by Hunt, Muckenhoupt and Wheeden [6] and Coifman and Feffer-

man [3]. We shall refer to the last paper for the basic properties of
Ap weights.

As a basic tool in the proof of the theorem we shall use weighted
inequalities for certain-approximate identities, to be introduced
and proved in section 2. These approximate identities are similar
to those previously considered by M.Carrillo [2] and C.Calderén

[21.

The proof of Theorem (1.3) is given in section 3, where some other
applications are considered.

§1.

Let K(x) = QLE% be a Calderén-Zygmund kernel in R". Here
x
X = (Xp,.00x), |x]| is the euclidean length of x and @ is a func-

tion on R™ homogeneous of degree zero satisfying the following two
standard conditions

(1.1) Cancellation property

J 1Q(x')dx’"= 0, where Sn"1 is the unit sphere in R".
e :

(1.2) Dini type condition
1
J 9§§l dé§ < » , where w(8) = sup |Q(x+*h)-2(x)].

0 xes™”
[h]<s
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Let FO be the family of all the balls centered at the origin of R"
Let F1 be the family of rectangles centered at the origin of R"
‘with sides parallel to the axes; i.e. R € F, if and only if

R = [-al,allx [-az,azlx cee X [-an,an].'Let F2 be the family of all
rectangles centered at the origin of R®, R € Fz“if”and only if R is

a rotation of a rectangle in Fl'

Associated with each one of the families FO, F1 and F2 we have the
corresponding maximal operator

Tif(x) = sup lTAf(x)| , where T,f(x) = J K(y)f(x-y)dy.
AeF, yEA

The known results referred to in the introduction are the following:
E.Harboure (1979) [5]: TT is of weak type (1,1) and T; is Bounded
in LP(dx) for 1 <p < =.

Hunt, Muckenhoupt and Wheeden (1973) [6], Coifman and Fefferman

c: 1 J w <c inf w for every ball
|B| Jp B

B), then Ta is of weak type (1,1) with measure w(x)dx. If 1 <p <

(1974) [3]1: If w € A (i.e. 13

and w € A_ (i.e. 3c: (—l— J w)(—l— I w p"1)"_1 < c for every ball
. P IB] Jg " "IB] Jg

B then T} is bounded in LP (wdx) .

It is also known after a work of Kurtz and Wheeden, [7], that the
Dini type condition on the kernel can not be weakened to a HGrman-
der type condition.

Our main result is the following theorem.

(1.3) THEOREM.

(1.4) If 1 <p <« and w € A_, then [Tl < cC £l H
P LP (wdx) LP (wdx)

w(x)dx < % Il £11

we

61-5) If w € A}, then J

{x:Tff(x)>X} Ll(wdx)

where C depends only on the dimension and on the Ap norm of W.

Observe that T; > Tf,_hence Tf is also LP(wdx) - bounded provided

that w € Ap and 1 < p < =,

In proving Theorem (1.3) the idea, as in the non-weighted case, is
to obtain an upper estimate of T; (i=1,2) by fg plus the maximal
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operator of certain approximate identity. Theorem (1.3) is then a
consequence of weighted inequalities for approximate identities
whiéh we shall obtain in the next paragraph. We will give a detail-
ed proof of Theorem (1.3) on §3.

§2.
Let A be a bounded convex set in R® with non empty interior which
contains- the origin. Let B be the smallest ball centered at the

origin whose closure contains A. The number e = +%+ is a measure
of the excentricity of A.

If k(x) is a real valued function defined on R™ we shall use the

ion: =1 X - 1 p(x) L
notation: ks(x) o k(e) and ks’p(x) o k( = ), where € is a

positive real number and p is a rotation in R%.

In the proof of the next lemma we shall use the following result
due to E.Stein and N.Weiss [9].

LEMMA. Let {Tj}§=1 be a sequence of sublinear operators which are
uniformly of weak type (1,1). Let {Cj} be a sequence of positive
numbers satisfying I cjllog cjl < =, Then the operator % c; Tj is

of weak type (1,1).

(2.1) LEMMA. Let k(x) = 0 be such that

(2.2) k(x) < ] b; X, (x),
jez 3%

where Aj ie a bounded convex set with non empty interior containing
the origin and bj > 0. Set a; = blejl and let e be the excentri-
eity of Aj' Then

(2.3) for 1 <p <=, the maximal operator sup |k
€,0

e, 0 x f| Zs bounded

in LP(wdx) for every w € A, provided that the sum ) a.e;_Y is
jez
finite for every y > 0;

(2.4) the mazimal operator sup |k€* f| Zs of weak type (1,1) with

€>0

measure wdx for every w € Al’ provided that the sum

'Zz a, e;'Y |1og(aje§'Y)| ig finite for every Yy > 0.
€
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’

Proof. In order to prove (2.3) let us first observe that, from (2.2),
we readily have

1

e|o'1(Aj)| Jso”l(A.

*
|k , f(x)]| < 'E bj|Aj|
€sP jez i

)If(x-y)ldy-

Hence

(2.5) sup |k #£(x)| < § aM.f(x)
o e.0 0P jez 7 ’

1
where M.f(x) = sup I | £(x-y)|dy.
] e,p EIPEA) ep(4;)

Let us now ;tudy the LP(wdx) boundedness of Mjf. For w € AP’

1 <p <=, there exists 1 <t <p such that w € Ar (See [3] for a
proof). Let Bj = B(O,rj) be the smallest ball centered at fhe ori-
gin whose closure contains Aj. Applying H6lder's inequality and the

Ar condition for w, we get

—J—J [£0cy) ldy < — J Lt vV ™ ay <
elpa) | Jepa) e"|A.| JB(x,er.)
J | J J
1 xr-1
< ——n1——{J |£] Tt/ F .{J wih T o<
€ lAjI B(x,erj) B(x,erj)
< c.e. {—-—1—— [£]® wH/T
J I w B(x,Erj)

B(x,erj)

Since the weighted maximal function

M g(x) = sup — gl w

s>0 W(B(x,s)) IB(x,s)

is of weak type (1,1) with weight w, we have

r

et
w({x:M£(x) > A} <C —% J|f|r W,
A
In other words, Mjf is of weak type (r,r) with weight w and cons-
tant’e?. On the other hand, it is clear that HMJ.:EIIL°6 <llfHLw. So
that, by Marcinkiewicz interpolafion theorem we obtain

IM. £ <c etP s
J Lp(wdx) J Lp(wdx)
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This estimate, Minkowski's inequality and (2.5) give

Isup |k #£]I <c{§ a, &Py s
€,p 2P LP (wdx) jez 3 LP (wdx)

Let us now prove (2.4). As before we have

(2.6) sup |k _*£(x)] < } o oa.M, f(x) ,
. c jez J 3]
where M.f(x) = sup L I | £(x-y)| dy.
J €>0 |EAJ'| €A.

Let w € Al, then there exist § > 0, ¢ > 0 such that the ''reverse

Holder inequality"

1 1+8 1 1+6
T‘BTL“ <cr f, W

holds for every ball B, (See {31).

Since w € A1 we have

(2.7) 4 J wit® < ¢ inf w!*S
IB| ! B

for every ball B. Consequently, applying Holder's inequality and
then (2.7), it follows that

f LS L
1 x+€Aj 1+§ 1
= IJ £y lay < § ————t 41— [ j£mlay
j €A IEAjl Ix+€Ajw x+£-:Aj
1+8
PSP A P = ]
i R R £ | dy b <
J
IB(x,erj)l fx+€Ajw x+ed
1
BRI I T BPI
‘ Ix+€Ajw x+€Aj .
From the last inequality and (2.6) we get
1
: . 1+6
sup |k *f| <C '} a, e. = M_ .f(x)
where M_ .f(x) = sup 1 J [ £]w
w1 € x+€eA

N



26

From Besicowitch type covering lemmas (see [41), it follows that
the maximal operator MW j is of weak type (1,1) with weight w and ’

norm independent of j. Then, the result is a consequence of the
"entropy'" hypothesis which allows us to apply the preéeding lemma.

A particular case of Lemma (2.1) gives the following weighted exten
sion of M.T.Carrillo theorem which will be used in proving Theorem

(1.3).

(2.8) COROLLARY. Let k = 0 be non-increasing along rays. Suppose
that the sets Aj = {x: k(x) = Zj} are convex and bounded for every
j € 2. Then (2.3) and (2.4) hold true with by = 23,

Proof. Observe that k(x) =. z ZijA (x) , where the Aés satisfy

jez |
the hypotheses of Lemma (2.1).

§3.

In this paragraph we will give several applications of the lemma
proved in §2. The first one is the proof of Theorem (1.3) on non-
standard truncations of singular integrals.

(3.1) PROOF OF THEOREM (1.3). Let R be a rectangle belonging to
Fi‘(i=1,2). We can regard R as a rotation p followed by a dilation
e of a rectangle R' with sides parallel to the axes whose smallest
side is in the xn-direction and has lenght 2. Set

S, = {x €R%: -e <x <e and |[x]| >e}.

Clearly R' C B(0,1) U S1 and hence R C B(0,e) U p(Ss). So that

ITRECO ] < UTy0,e) FOO1 + g GHIHED G

where k(x) = X (x) + — X, (x).
B(0,1) lx'n Sl
Hence T;f(x) < TSf(x) + sup sup (k, £ ,
1¢i<n. €30 Py

where‘pi is a rotation in R" taking the hyperplane x; = 0 into the

hyperplane x = 0. Also

T;f(x) < TAE(x) + sgp szp(ke’pf|f|)(xj.
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It suffices to prove that this kernel falls into the scope of coro
llary (2.8). Since the hypothesis required in (2.4) is stronger
than that of (2.3), we will just check the "entropy'" condition

- 1-
) a; e§ Y llog(ajej N <.

If j > 0, then Aj = {x: k(x) = 23y = g, 1f j <0 the Ags are con-
vex and bounded sets and there exist a constant Cn, depending only

on the dimension, such that

{x: |x.| <1, |x.| <c_273/", 1 <i<n} caA, c
n i n j

c{x: |x | <1, |x;] < 273/m 1 <4 <}

a miash Yy : ey
Thus |A.| < 2".2 mie,. <C' 271" and a, = 29]|A.| <cr 23R,
J J n J J n
Therefore . .
- - iy 1y
I a.el|log(a.el™| <c {, e™ |log C_e™]|
j“'l j J j j nj:-l n ’

which is clearly finite.

In [1] C.Calderdn studies the differentiation properties through
the dilations of unbounded star-shaped sets. As a second applica-
tion of the general result on section 2 we shall obtain weighted
inequalities for approximate identities related to some particular
shapes of those considered by C.Calderdn. (See also [4] page 291).

Let K and ¢ be two non-negative non-increasing functions defined

on R*. Suppose that ¢ is bounded above. Let x' = (xl,xz,...,xn~l)

and |x'| its length. Set E = {x € R": Ix | <o(lx'])} and k(x) =

= K(|x[)xE(x). We shall study weighted boundedness properties of

Mf(x) = sup I(ke*f)(x)l.
€>0

For vy > 0 we set wY(t) = K(t)6Y(t)t* 1Y, With this notation we

have the following result:

(3.2) THEOREM. If
1

(3.3)° J wo(t)dt < and -
0

o

(3.4) J wY(t) |1ong(t)|dt <o , for every Yy > 0 ;
0

then the maximal operator Mf <s of weighted weak type (1,1) for

v
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every weight w € Al'

Proof. We may assume without loss oﬂ generality that ¢ < 1 and that

K< e"1 outside the unit ball. In order to apply the second part
of Lemma (2.1), let us first observe that

k() < K(IxDXo0a) + § KX ) = ky 00 +k, (%)
j20°

where Xo is the characteristic function of the ball B(0,2) and Xj

is the characteristic function of the cylindrical region

A=t fxt] <23 and x| <e@D) s> 0.

The kernel ko(x) is radial and non-increasing so that we have
supl(kO e*f)(x)l < C.f*(x) ,
S b

where f* is the Hardy-Littlewood maximal function and C =fk000dx,

which is finite by (3.3). Then, using the classical result for f*, it re-
mains only to study the kernel k,. With the notation of Lemma (2.1).
for j = 0 we have

b, = k(29); a, = b.|A.| = ck(29)23 "Dy 29y
J j . 373
3 . ) . )
e. = C.—21 and a.el™ = cx(2d).e2)Y. 25717 2d
) o2y

where C depends only on the dimension n. Thus

1-y 1-y ‘ 1-y i WY1+
I ase; V|log(aze; N < jéo a ey [log(k(2)e(21) 1|

+C' Y a.elV(j+C) = I + II.
je0 33

' Since the function

K(£) ()Y |log(K(£)¢(t)") |
is non increasing for t > 1, then

(3.5) I < cjmxtt)¢(t)Y|1og(Kct)¢Y(t))lt““‘Ydt <
} 1

< CleY(t)Ilong(t)|dt + CIIwY(t)log'tdt.

Also

(3.6) 1T <c § k23)e23)Y @292 7Y 10g(23*Cy2d <
320
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(-

< lewy(t)log(C't)dt.

The last integral on the right hand side of (3.5) and the right
hand side of (3.6) are both of the same type. Let 0 < e < y. Since
¢ <1 we have

J prttjlogCt dt < CJ wY(t)fe at = CI K(t)eY () tP 1Y g <
1 1 1

< CI K(t)oY Sty t2~1-(V=€) g¢ |
I B

which is finite because of (3.4) with y-e instead of y.

(3.7) REMARK. Given a curve of the form x_ = ¢(x;), we may genera-
te two different types of solids of revolution, En and E,, accor-
ding we rotate it about the x or the X axis. In the preceding

theorem the first type of solid was used to cut the kernel K. With
a similar reasoning we can get the same conclusion for E, under
the hypotheses (3.3) and

[+

(3.8) J K(t)¢(t)Y(ﬂ-1)t(n“1> (1-v) |logK(t)cb(t)Y(n—l)t(n—l)(I_Y)]dt < o
1

instead of (3.4). Notice that for the unweighted case, i.e. y=1,
(3.8) is weaker than (3.4) as assumption on K. However both sets
of hypotheses are the same if we want to obtain the boundedness
for all the A - weights.

(3.9) REMARK. Similar results hold with other monotomnicity proper-
ties on K and ¢.

(3.10) EXAMPLE. If 9(t) ='1 and K(t) = — *

o fiL,e * Yo,

© ) 00
we have I wY|1ogwyl = J t'l'Yllog'El-Y| dt < » for every y. This
1 1

means that the second part of Theorem (1.3) can also be proved
using Theorem (3.2),

(3.11) EXAMPLE. If we set K=1, hypotheses (3.4) becomes

[ oY ()t 1Y | 1ogeY (1)t 17| dt <
1

for every y > 0. This is satisfied if, for example, ¢ decays expo-
nentially. Theorem (3.2) gives weighted inequalities for the maxi-
mal operator associated to differentiation through certain unboun-
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ded star-shaped sets.

Finally, we can also apply Lemma (2.1) to iterated Poisson kernels
considered by Rudin [8] and M.de Guzmdn [4], page 290. Let

k) = (1 +xH™h o x3)7,

then sup |k *f|

€>0

is of weighted weak type (1,1) for every w € Al’ The proof is a

straighi forward verification that the estimate given in [4] satis-

fies hypotheses of our lemma.

(4]
[5]

[6]

[71

(8l
[9]

REFERENCES

Calderdn,C. "Differentiation through starnlike sets in R™"

dia Mathematica, V. 48 (1973), pp.1-13.

, Stu-

Carrillo,M.T. "Operadores maximales de convolucidn". Tesis doc-
toral, Universidad Complutense de Madrid, 1979.

Coifman,R.R. and Fefferman,C. "Wedighted noam Lnequalities fon
maximal functions and singular L{ntegrafs", Studia Mathematica,
V.51 (1974), pp.241-250.

de Guzmin,M. "Real variable methods in Founiern analysis", Notas
de Matemdtica. 75, North-Holland Math.Studies. Amsterdam (1981).

Harboure,E.0. "Non standard truncations of singular integrals",
Indiana University Mathematics Journal, 28 (1979), pp.779-790.

Hunt,R., Muckenhoupt,B. and Wheeden,R.L. "Wedlghted noam Linequa-
Lities gon the conjugate function and Hilbernt transfoam”, Trans.
Amer.Math.Soc., 176 (1973), pp.227-251.

Kurtz,D.S. and Wheeden,R.L. "A note on singular integrals with
weights", Proc.Amer.Math.Soc. 81 (1981), 391-397.

Rudin,W. "Functions theory 4in polydiscs", Benjamin, N.Y. (1969).

Stein,E. and Weiss,N. "On the convengence of Poisson integrals',
Trans.Amer.Math.Soc. 140 (1969), 34-54.

PROGRAMA ESPECIAL DE MATEMATICA APLICADA, PEMA.
CONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS, CONICET.
Guemes 3450 - 3000 Santa Fe, Repiiblica Argentina.

Recibido en marzo de 1987.



