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The class of symbols Sm & was introduced by HBrmander in [11] where 
p, 

he proved that they give L2 bounded pseudo-differential operators 
when m=O and 0 .;;; & '< p ';;;1. Other continuity results within this 
framework were given in [12], [14], [15], [17]. Then Calder6n and 
Vaillancourt proved ([4], [5]) that to obtain boundedness, it is 
enough to assume m .;;; 0, 0 .;;; & .;;; p .;;; 1, & < 1 (these conditions are 

necessary for L2 continuity ([8], [12])) and this improvement had a 
remarkable application to local solvability [3]. 

The next step was to strive for minimizing the number of derivati­
ves of the symbol needed to control the norm of the operator [10], 
[13], [16]. 

In [9] Coifman and Meyer developed a systematic approach to study 
boundedness of pseudo-differential operators, proving among a num­
ber of results, the following 

THEOREM 1. Let n ~ 1 be an integer and set N = [n/Z]+l. Assume 

that a(x,f;) and its derivatives D~D~a(x,f;)' 1a.1, 1131 ... N are aon­

tinuous in Rn x Rn and satisfy 

(1. 1) 

where 0 .;;; & < 1 and C > 0 are two aonstants. Then the operator 

(1 • Z) a(x,D)u(x) = (Z1T)-n J eix.f; a(x,f,;)Q(f;) df; 

Theorem 1 is optimal in the sense that N [n/Z] +1 cannot be re-

placed by a smaller integer. The symbol 

a(x,f;) = eix·f;(1+1f;12)-n/4e-lxI2 satisfies (1.1) with & o for 
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lal ~ n/Z and all a and yet a(x,D) is not bounded in L2( [9]). 

In this work we fill the gap between n/Z and [n/Z]+1 by considering 

Holder classes of symbols. If we denote by S~,o(N), N E Z+, the 

space of symbols that satisfy (1.1) for lal, lal ~N, theorem can 
be expressed as: N > n/Z implies that a(x,D) is bounded when 

a E S~,o(N). Considering Holder classes we may define S~,o(N) for 

any real N > 0 (precise definitions are given in §Z). We then have 

THEOREM Z. Let a(x,~) belong to Sm ~(N). x,~ ERn. If m,o,p,Nflre p,u 

real numbers satisfying m ~ O. N > I ' 0 ~ 0 ~ p ~ 1 , 0 < 1 and 

a(x,D) is given by (1.Z) then a(x,D) is bounded in L2(Rn). 

The proof of theorem Z uses the techniques of Coifman and Meyer, in 
particular, the almost orthogonality principle in the sharp form 
given by Alvarez Alonso and Calder6n [1], [Z]. The paper is organ­
ized as follows: in §Z we define the appropriate classes of sym~ols 
(related classes appear in [6] and [7]), in §3 we prove some tech­
nical lemmas, in §4 we prove theorem Z and in §5 we discuss the ne­
cessity of the regularity hypotheses of theorem 2. 

§ 2. CLASSES OF SYMBOLS 

Consider a function a(x,~) in Rn x Rn. We define the partial finite 

differences in x and ~ by 

1 d a (x, 0 
y 

Then we define for 0 ~ £ ~ 1, 

a(x+y,O-a(x,S) 

a(x, ~+11) -a(x, 11) . 

supIYI-£ldla(x,~)1 
y'lO y 

t.;a(x,~) '" SUpl11I':'£ld2a(x,~)1 
., 11'10 11 

Let m,p,o be real numbers satisfying 0 ~ p ~ 1, 0 ~ 0 < 1. If k is 

a non-negative integer and N '" k+£, 0 ~ £ < 1, we denote by Sm o(N) p, 
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the space of measurable functions a(x,l;) defined in Rn x Rn such 

that its weak derivatives D~D~a(x.I;), of order a,a E Nn , 

lal = al+ ... +an .;;; k , lal .;;; k. are locally integrable functions 

which satisfy for almostevety x, I; the following estimates 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

ID~D~a(x,i) I .;;; Ca ,a(1+it;lym+t'i la l -p ISI 

llEDaD~a(x.l;) ..;;; C' (l+!I;j)m+t'i< la l+E)-pISI 
x x ~ a,S 

ll~D~D~a(x, 1;) .;;; C~. S(1+ I I; I) mH la I-p( I S I +E) 

ll€ t"Da.D~a(x,l;) ";C'" (l+ll;j)mH(la l+€)-p(ISI+e:) 
x,~ x ~ a.S 

Notice that (2.2), (2.3) and (2.4) are superfluous if €=O. "The sum 

of the best constants C S' C' S' CIt S' C'" S' that appear in a, a, a, a, 

(2.1}, ... ,(2.4) is a norm that turns Sm ~(N) into a Banach space p,u 

and will be denoted by 

PROPOSITION 2.1. S;,t'i(N) is a Banaah spaae. This spaae inareases if 

m and t'i inarease and p and N dearease. If a E S;,t'iCN) and 

10.1, lsi.;;; N , it follows that 

and if b E S;:t'i(N) , it follows that ab E Sm+m' (N) . 
p,t'i 

We now indicate the proof of S;,t'i(N) C S;,t'i(N') when N ~ N'. Assume 

first that N=€ , N'=e:' ,0 ..; €' < € < 1. Then, if a E S;,t'i(€) we 

have, for instance, 

..; C I y i € ( 1 + I I; I ) mH E • 

Iyl-€' Id1a(x,l;) I 
y 

la(x,l;) I .;;; C(l+ll;i)m • Idla(x,l;) I .;;; y 

These estimates imply that 

The function fer) = min(r-€' ,ArE- E'), r > 0, A> 0, has a maximum 

at r = A-lIE equal to fer ) = AE'/E. It follows that 
o 0 

Iyl-E' Idla(x,l;) I .;;; 2C(1+1~I)m+oE' so llEa(x,i;) .;;; 2C(1+II;I)m+t'iE' 0 

y x 

The other estimates follow in a similar fashion and we obtain 

S;.t'i(E) h S;.t'i(E'). 



34 

If a E S~ 15(1), the estimate ID~a(x,~) I ..;; C(l+I~i)m-p, 1131 1 .. 

together with the mean value theorem yield 

(2.5) Inl ..;; 1~I+l. 

On the other hand, from the triangular inequality 

(2.6) 

Thus, (2.5) and (2.6) imply 

~~a(x,~) .;;; C"(l+I~i)m-p , 

as p .;;; 1. Uslng this estimate and la(x,O I .;;; C(l+I~i)m we get 

Id~a(x,~) I .;;; const.(1+1~I)m-pelnle. Similarly, we get the other 

estimates required to show that Sm ~(1) ~ Sm ~(e). It follows now p,u p,u 

inductively that 

S~,Q(k+l) b S~,Q(k+e) f S~,Q(k+e') f S~,Q(k) , kEN, 0 <e' < e<1. 

In the next section we will consider the space of Holder functions 

A eRn). Let us recall some well known facts. If r=O, A = Loo(Rn) , 
r 0 

if 0 < r < 1 ,A is the subspace of A of the functions satisfying 
r 0 

If(x)-f(y) I .;;; Clx-yJr a.e., the class of f contains a continuous 

representative. For general r > 0 , we write r = [r]+r- [r] = k+e , 

kEN, 0 .;;; e < 1, and Ar is the space of the functions f E A with 
o 

weak derivatives Daf E Ae for lal .;;; k. When 0 < r < 1, the norm x 

III fill r is the maximum between II fll co and the essential supremum of 

the quotients If(x)-f(y) I \x_yl-r. When r = k+e, 0 .;;; e < 1, kEN, 

III f 10 r = max III D a f In "' 
lalSk r 

§3. BASIC LEMMAS 

The following is a discrete version of a lemma of Alvarez-Calder6n 
([1] , [2]) and may be refered to as the sharp almost-orthogonality 
principle. We include the proof for completeness. 

LEMMA 3.1. Let s > n/2 and set -r = l-n/2s. Then, there is a positi­

ve constant C = C(s,n) such that for any finite number of functions 

f E HS k E Zn , we have 
k ' 
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(3.1) 

Here, HS indicates the Sobolev space in Rn with norm 

. and e k indicates the operator of multiplication by the bounded 

function exp(ik.x), i = r-T , x.k = x1k1+ ••. +xnkn • 

Px:oof. If 

for 2s > n , 

there is a positive constant C = C(s,n) such that wA(~) ~ CA-n/2~ 
for ~ ERn and 0 < A ~ 1. Then, by Parseval's formula 

It is enough to ta~e 

to obtain (3.1). 

Let k 1:e a ron-negative integer, e: a real number, 0 < e: < 1, and set 
s = k+e:. It is well known that an equivalenLnorm for the space 

HS is given by 

(3.2) II fll2 
S 

where ftex) = fex+t). 

LEMMA ·3.2. Let s, N be real. numbers n/2 < s < N and consider a 

symbol a(x,i;) E SO (N). x, E; ERn, such that aex,~) = 0 if 
00 

I~I ;> Ill. Then there exists a constant C = C(N,s,n) such that 

e3.3) lIa(x,D)1I 2 EO;; C sup Dla(x, .)IB 
l(L ) x N 
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(3.4) IIa(x,D)II 2 .;;; e IIail 
.t (L ,R 8 ) SO (N) 

00 

(The norm 01 IKN was defined at the end of § 2) • 

Proof. It is enough to prove the lemma when s = k+8' ,N k+8, 
0<8 < 8' < 1 , k E Z+. Setting 

w(y) 

we have for f E S 

Integrating both sides of this estimate we get 

(3.5) IIa(x,D)II 2';;; e sup IIa(x, .)11 • 
£(L ) x 8 

Using (3.2) and the fact that a(x,s) vanishes for lsi ~ Ill, we can 

estimate lIa(x, .)11 8 by IIla(x, .)III N • This gives (3.3). 

Set g(x) a(x,D)f(x), f E S. For I~I .;;; k we may write 

(3.6) 

with 

(3.7) 

D~g(x) = a~(x,D)f(x) 

~ t D (g(x+t)-g(x)) = a~(x,D)f(x) 

L ~~ (a~) -1 [(~-a) ~l-lsaa(x, s) 
as.~ 

Taking account of (3.2), and (3.6), we get 

Ii gil 2 .;;; e(L lIa (x,D)1I 2 2 + 
8 1~Is.k ~ .t(L ) 

(3.8) 

Thus, (3.4) follows from (3~8) and the next lemma. 

LEMMA 3.3. With notation (3.7), 
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. lIa~(x,D)1I 2 < Cltl£'1Ia1l 
t(L ) SO (N) 

00 

pzooof. By (3 .• 3), it is enough to estimate Ilaa(x, .)IIIN and 

Ula~(x, .)tIlN. This is easily done using the following 

·PROPOSITION 3.1. Let f{x,~) E SO (£')~ 0 < £'< 1 and assume that 
00 

f(x,~) = 0 if I ~ I > Iii and set 

ft(x,~) • eiL~f(x'+t,~) -f(x,~) 

Then~ tnezoe is a positive constant C = C(n) such that 

(3.9) 

(3.10) 

P1'oof. We prove (3.-10), the proof of (3.9) is simpler. It is easy 

to check that 

(3.11 ) 

(the difference operators d~, d~ were defined in § 2). Thus (3.10) 

follows from the trivial estimate le iL -ll < m~n(ILI,2), L E R. 

LEMMA 3.4. Let s~ N be zoeal numbezos~ n/2 < s < N. and· considezo a 

symbol a E S~o(N) such that a(x,~) = 0 if I~I is large enough. 

Jhen thezoe e~ists a positive constant C = C(N,s,n) such that 

(3.12) r l-r 
lIa(x,D)II 2 < C(supllla(x, .)ION ) lIall 0 ' 

t(L ) x Soo(N) 

whezoe r = l-n/2s. 

Pzooof •. Set g = a(x,D)f, f E S , and consider a: function 4> E C:(Rn) 

supported in I~I < Iii such that 

Then g can be written as a finite sum, 
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where 

In particular, it follows from Lemma 3.2, that 

IIgk"! <; C supllla(x, .)IU~IIfk,,2 
x 

Applying Lemma (3.1) to g and observing that L II fk" 2 
follows. 

11£11 2 (3.12) 

§ If •. PROOF OF THEOREM 2 

Since Sm increases with m and I'l, we may assume that m=O and I'l=p. p,1'l 

There is no loss of generality in assuming that a(x,~) vanishes if 

I~I <; 1 and we do so. Choose a non-negative function $ E C:(Rn ) 
00 

supported in 1/3 ~ I~I ~ 1 and such that L $(2-j~) = 1 if 
j=O 

I~I ~ 1/2. The dyadic decomposition of a(x,~) is 

(4.1) 

Since I~I 

a(x,~) = I $(2-j~) = r a.(x,~). 
j=O j=O J 

2j when (x,~) is in the support of a. we get with 
J 

N = k+€ = [!]+€ , 0 < € < 1 , 

Cl a 
nxn~aj(x,~) ~C 2j I'l( I Cl I-I a I ) 

l:!. €nCln 13a . (x ~) 
x x ~ J ' 

<;C 2 j I'l( I a I +£-113 I ) 
(4.2) 

2 j I'l( I a I-I 13 I· -€) € a a 
~C l:!.~nxn~aj(x,~) 

€ a a 
~C 2j l'l(l a l-I 13 I) 

l:!. ~nn~a.(x,~) x, x J 

Let $ ~ 0 E S be such that ~(~) 

I~I ~ 2-3 and set 

1 if I~I ~ 2-4 and ~(~) o if 
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a j = Pj+qj. 

Since J~ = 1 it is clear that Pj satisfies estimates (4.2) with 

the same constant C. Therefore, if we set p. (x, 1;) = p. (2-0jx,iSj l;) 
J J 

we obtain from (4.2) 

(4.3) IIp.1I ..;;; C 
J SO (N) 

00 

(4.4) 

with C independent of j. Applying Lemma (3.4) we conclude that 

IIp.(x,D)1I 2 is uniformly bounded in j, and observing that 
J £(L ) 

IIp.(x,D)1I 2 = IIp.(x,D)1I 2' 
J £(L ) J £(L ) 

we get IIp.(x,D)1I 2";;; C. On the other hand, it is easy to chek 
J £(L ) 

that if for any f E S, we set gj(x) = Pj(x,D)f(x) hj(x) 
A j-2 

= Pj(X,D)f(x) , then &j and h j are supported in the annulus 2 ..;;; 

..;;; 11;1..;;; 2j +1 , where U indicates the Fourier transform of u and 

p*(x,D) is the adjoint of p(x,D). In particular, 

Pj(x,D)p~(x,D) = Pj(x,D)Pk(x,D) = 0 if Ij-kl ~ 3. So we get 

M 
(4.5) Ill: p.(x,D)1I 2";;;C 

j=O J £(L ) 
M E Z. 

For the symbols qj(x,l;) 

(4.6) II q.1I ..;;; C 
J SO (N) 

00 

(4.7) 

Estimate (4.6) is obtained as (4.3). To prove (4.7) observe that 

for 1 f31 ..;;; k 

ID~qj(x,l;) 1 = IJd:yD~aj(x,I;)~(2jY)2njdYI ..;;; 

";;;C 2j{e:-I f3 I)o JIYIe:H2jY)2njdY = C 2j [e:(o-1)-1 f3 l o] 
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Analogously, 

.;;; C 2j[E(O-1)-(I~I+E)O)lnIE I ~ I .;;; k. 

The above estimates imply (4.7). Using (4.6), (4.7) and Lenima 3.4 
we obtain 

IIq.(x,D)1I 2 
J £(L ) 

,, - (D)" ..... C 2jE (o-1)(l-n/2s) q. x, 2'" 
J £(L ) 

Thus IIq.(x,D)1I 2 is dominated by a geometric convergent series, 
J £ (L ) 

and together with (4.5), this implies 
M 

II I a.(x,D)1I 2';;; C. 
j=O J £(L ) 

M 
Since I 

j=O 
plete. 

a.(x,D)f(x) converges to a(x,D)f in S' the proof is com­
J 

§ 5. NECESSARY CONDITIONS OF REGULARITY 

In this section we consider separate regularity in the variables 
x and ~. If N = k+E, N' = k'+e:', k,k' E N, 0 .;;; E, E' < 1, we de-

fine Sm o(N,N') by the followin,g estimates, valid for 1a.1 .;;; k, p, 

i ~ I .;;; k' , 

6~'D~D~a(x,~) .;;; C~,~(1+1~I)m+&Ia.I-p(!~I+E') 

6E,E'Da.D~a(x,~) .;;; C'" (1+1~i)m+O(Ia.I+E)-p(I~I+E') 
x,~ x ~ a.,~ 

where we have used the indicates 

the essential supremum n ERn. We 

indicate with S-~eN,N') the intersection n Sm ~(N,N') with the 
m p,u 

projective limit topology. In the same way we may define 

Sm o(~,N'), S-~e~,N'), etc. 
p, 2 

The example of CoHman and Meyer ([9]) a(x,~) = (1+1~12)-n/4eiX.~-lxl 
. Rn Rn h'b' b l' SO en ) ~n x ,ex ~ ~ ts a sym 0 ~n 00"2 ,~ for which a(x,D) is 
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unbounded in L2, showing that lack of regularity in x cannot be 

compensated for with high regularity in ~. In this section we pro­
ve 

THEOREM 3. Assume that a(x,DJis L2-bounded fop all a(x,~J in 

S-oo(oo,N). Then N > ~i. 

Observe that Theorem 2 shows that all symbols in SO(N,N') yield 

bounded operators if N, N' > n/2. We do not know if all symbols in 

SO(oo,~) give bounded operators. 

Let us denote by L(N) the closed subspace of S~o(oo,N)of those 

symbols vanishing for I~I > In. Theorem 3 follows from 

LEMMA 5.1. Assume a(x,D) is L2-bounded fop all a(x,~) in L(N). 

Then N > n/2. 

Ppoof. We will consider symbols given by sums of exponentials as in 
[8] and [12]. By the closed graph theorem there is a continuous 

seminorm p in SO (oo,N) such that 
00 

(5.1) II a(x,D) II .so;; pea) 
l 

a E L(N) . 

Take $ E C:(Rn), equal to one in the cube maxl~il .so;; 1/4 and vanis­

hing outside the cube maxl~il .so;; 1/2. 

For any positive integer A, set 

(5.2) 
. -1 

aA(x,~) = I e-1A n.xA-N$(A~_n) 
neA A 

where AA is the set of non-negative multi-indices n E N+ such that 

max n i .so;; A-l. In particular, the cardinal of AA is An and aA(x,~)· 

vanishes if maxl~.1 > 1. The terms in (5.2) have disjoint supports 
1 

and it is a simple exercise in Holder functions to show that if p is 

a continuous seminor in SO (oo,N) , 
00 

(5.3) p(aA) .so;; C 1 ,2, •.. 

To estimate the norm of aA(x,D), take fo E S , IIfolio 

f is supported in the cube maxl~.1 < 1/4 and set 
° 1 

1, so that 
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As the terms are orthogonal, 

II fll2 
o 1. 

A A 

On the other hand, since ~ fo f o ' 

so 

g(x) a(x,D) f(x) 

and 

(5.4) ;;;. II gil 
o 

An - 2N • 

It follows from (5.1), (5.3) and (5.4) that An- 2N is bounded for 

A = 1,2, ••• , so n- 2N 0;;;; O. 

REFERENCES 

[I] J .. ALVAREZ ALONSO, Ex,U • .tence 06 6unc.tiona.t ca.tcu.ti ovelt ~ome 
a.tgeblta~ 06 p~eudo-di66elten.tia.t opelta.tolt~ and lte.ta.ted .topic~. 
Notas ·de Curso, n017, Departamento de Matematica da UFPE, 
1979. 

[2] J . ALVAREZ ALONSO and A. CALDERON, Func.tiona.t ca.tcu.ti 6 OJr. p.6eudo­
di66eJr.en.tia.t opeJr.a.toJr.~, I, Proceeding of the Seminar held at 
El Escorial, 1-61, 1979. 

[3] R.BEALS and C.FEFFERMAN, On .toca.t ~o.tvabi.ti.ty 06 .tineaJr. paJr.­
.tia.t di66eJr.en.tia.t equa.tion~, Ann.Math.97, 482-498, 1973. 

[4] A.CALDERON and R.VAILLANCOURT, On .the boundedne~~ 06 p~eudo­
di66eJr.en.tia.t opelta.tolt~, J.Math.Soc. Japan 23, 374-378, 1971. 

[5] A.CALDERON and R.VAILLANCOURT, A c.ta~~ 06 bounded p~eudo-di6-
6eJr.en.tia.t opelta.toJr.~, Proc.Mat.Acad.Sc.USA 69, 1185-1187, 
1972. 

[6] A.G.CRILDS, On .the L2-boundedneu 06 p~eudo-di66eJr.en.tia.t ope­
Jta.tolt~, Proc.Amer.Math.Soc.61, n02, 252-254, 1976. 

[7] A.G.CRILDS, L2-boundedne~~ 60Jr. p~eudo-di66eJr.en.tia.t opelta.tolt~ 
wi.th unbounded ~ymbo~, Proc.Amer.Math.Soc.72·, n 01, 77-81, 
1978. 

[8] C.CRING, P~eudo-di66elten.tia.t opelta.tolt~ wi.th non-ltegu.taJt ~ym­
bo.t, J. Differential Equations II, 436-447, 1972: 



43 

[9] R.COIFMAN et Y.MEYER, Au deid de4 ope~a~eu~4 p~eudo-d~66e~en­
~~ei~,Asterisque 57, 1-185, 1978. 

[10] H.CORDES, On eompae~ne~~ 06 eommu~a~o~~ 06 mul~~pi~ea~~on 
and eonvolu~~on~ and boundedne~~ 06 p~eudo-d~66e~en~~al ope­
~a~o~~, J.Funct.Anal. 18, 85-104, 1975. 

[11] L.HORMANDER, P~eudo-d~66e~en~~al ope~a~o~~ and hypoeil~p~~e 
equa~~on~, Amer.Math.Soc.Symp.Pure Math., Vol.10, 1967, Sin­
gular Integral Operators, 138-185. 

[~2] L.HORMANDER, On ~he eon~~nu~~y 06 P~eudo-d~66e~en~~al Ope~a­
~o~~, Comm.Pure Appl.Math., 24, 529-535, 1971. 

[13] T.KATO, Boundedne~~ 06 p~eudo-d~66e~en~~al ope~a~o~~, Osaka 
J.Math. 13, 1-9, 1976. 

[14] H.KUMANO-GO, Algeb~a~ 06 p~eudo-d~66e~en~~ai ope~a~o~, J. 
Fasc.Sc.Univ. Tokio 17, 31-50, 1970. 

[15] H.KUMANO-GO, Algeb~a~ 06 p~eudo-d~66e~en~~al ope~a~o~~ ~n 
Rn , Proc.Japan Acad. 48, 402-407,1972. 

[16] H.KUMANO-GO, P~eudo-d~66e~en,Hal ope~a~o~~ 06 mui~~ple ~ym­
bol and ~he Calde~6n-Va~llaneou~~ ~heo~em, J.Math.Soc. Japan 
27, 113-120, 1975. 

[17] A.UTERBERBERGER et J. BOKOBZA, Le~ ope~a~eu~~ de Calde~6n-Zygmund 
e~ de~ e~paee~ HS, C.R.Acad.Sc.Paris, 3265-3267, 1965. 

Recibido en mayo de 1987. 

Universidade Federal de Pernambuco, 

BRASIL . 


