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A CLASS OF BOUNDED PSEUDO-DIFFERENTIAL OPERATORS

Jorge Hounie

§ 1. INTRODUCTION

The class of symbols Sz 5 was introduced by H8rmander in [11] where

he proved that they give L% bounded pseudo-differential operators
when m=0 and 0 < § < p<.1. Other continuity results within this
framework were given in [12], [14], [15], [17]. Then Calderén and
Vaillancourt proved ([4], [5]) that to obtain boundedness, it is
enough to assume m <0, 0 < 8§ <p <1, § <1 (these conditions are

necessary for L2 continuity ([8],([12])) and this improvement had a
remarkable application to local solvability [3].

The next step was to strive for minimizing the number of derivati-
ves of the symbol needed to control the norm of the operator [10],
(131, [16l.

In [9] Coifman and Meyer developed a systematic approach to study
boundedness of pseudo-differential operators, proving among a num-
ber of results, the following

THEOREM 1. Let n = 1 be an integer and set N = [n/2]1+1. Assume
that a(x,E) and its derivatives D;Dga(x,E), lal, |B] <N are con-

tinuous in R™ x R® and satisfy

(1.0 ffacx,e) | <caisledUel-IBD 1 p e gn
where 0 < 8§ < 1 and C > 0 are two constants. Then the operator
(1.2) a(x,D)u(x) = (21:)‘“Jei"'E a(x,£)0(8) dg

18 bounded in LZ(RP).

Theorem 1 is optimal in the sense that N = [n/2]+1 cannot be re-

placed by a smaller <nteger. The symbol

. 2
a(x,g) = elx'g(1+15|2)—n/4e-|x| satisfies (1.1) with 6 = 0 for
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|a] < n/2 and all B and yet a(x,D) is not bounded in L2(191).
In this work we fill the gap between n/2 and [n/2]+1 by considering
H6lder classes of symbols. If we denote by Sg 6(N), N € Z+, the

space of symbols that satisfy (1.1) for |a|, |B| <N, theorem 1 can
be expressed as: N > n/2 <mplies that a(x,D) is bounded when

a € Sg 6(N). Considering HOlder classes we may define Sz G(N) for
L t]

any‘real N > 0 (precise definitions are given in §2). We then have

THEOREM 2. Let a(x,E) belong to 52 sN), x,& € R". If m,§,p,N are
real numbers éatisfying m<O0, N> % ,0<86§<p<1,8<1 and
a(x,D) is given by (1.2) then a(x,D) is bounded in L*(R®).

The proof of theorem 2 uses the techniques of Coifman and Meyer, in
particular, the almost orthogonality principle in the sharp form
given by Alvarez Alonso and Calderén [1], [2]. The paper is organ-
ized as follows: in §2 we define the appropriate classes of symbols
(related classes appear in [6] and [7]1), in §3 we prove some tech-
nical lemmas, in §4 we prove theorem 2 and in §5 we discuss the ne-
cessity of the regularity hypotheses of theorem 2.

§ 2. CLASSES OF SYMBOLS

Consider a function a(x,g) in R™ x R®. We define the partial finite
differences in x and £ by

dia(x,i) = a(x+y,£)-a(x,¢&)

a?a(x,€) = a(x,E+m)-alx,n).
Then we define for 00 <e <1,

a%a(x,8) = suply| *|dja(x, )|

y#0
Aga(x,g) = suplnl;eldia(x,g)l
n#0
€ _ -€ -€) 41,2
Ay, g2(x,8) = yf3$0|Yl In|™*ld dra(x,8)].

Let m,p,8 be real numbers satisfying 0 <p < 1, 0 <8 < 1. If k is

a non-negative integer and N = k+g, 0 <e <1, we denote by Sg’s(N)
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the space of measurable functions a(x,£) defined in R® x R® such
that its weak derivatives Dnga(x,E), of otder ®,8 € N* ,
laf = a;*...va <k, |8] <k, are locally integrable functions

which satisfy forvalmost'évery x, & the following estimates

(2.1 |Dipfacx,E)| < Ca;8(1+ig;3m+5|“|‘p|31

(2.2) AiDzDga(x,g) <C&’B(1+|g|)m+5(|°‘|.+E)"O|B|
(2.3) aE0%0fa(x,6) < Cy (1+[gymrelal-etiBlre)
(2.4) A:’EDzDga(x,E) < cg’ﬁ(1+1g|)mf5(lul+e)—p(lsl+s)

Notice that (2.2), (2.3) and (2.4) are superfluous if e€=0. The sum
of the best constants Ca,B’ C&,B’ C&,B’ C:,B’ that appear in

(2.1),...,(2.4) is a norm that turns Sz 6(N) into a Banach space

and will be denoted by I I .
. SD,G(N)

PROPOSITION 2.1. SE 6(N) is avBanach space. This space increases if
b4
m and 8§ increase and p and N decrease. If a € 52 S(N) and
) b4

al, |B] SN, 2t follows that
DGDga € SﬁZS'SI‘6|“I(N-max(|a|,|B|D

1]
and if b € SE'S(N) , it follows that ab € sﬁf@ (N) .

We now indicate the proof of Sz’GEN) c SE’G(N') when N > N'. Assume
first that N=e , N'=¢' , 0 <¢' < e < 1. Then, if a € 82,6(6) we
have,’for instance, |a(x,£)| <C(1+|g])™ , |d;a(x,5)| <

< C|y|€(1+|gl)mf6e. These estimates imply that

lyI7%" latacx, &) | < zc(r+lgD ™minCly] ™", (141 E 1y (5750

The function f(r) = min(r'e',ArE'E'), r >0, A>0, has a maximum
- a-l/e _ p€'/e h
at r_ = A equal to f(ro) = A . It follows that
- T +6 \]
yI175" jalacx, e | < 2c1+]e™ % so aZalx,E) < 2C(1+|[)™OC
The other estimates follow in a similar fashion and we obtain

S:’s(e) c 8% s(eN.
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If a € Sz s(1), the estimate IDSa(x,E)I <c(i+le™"P, |8l =1,

together with the mean value theorem yield
2 m-p
(2.5) ldjalx,e)| < cO+[gD™"Inl - In] < [g]+1.
On the other hand, from the triangular inequality
(2.6) |a2a(x,8)| <c'(i+gh™ , neR".

Thus, (2.5) and (2.6) imply
Aéa(x,a) <cr(i+gh™ ",

as p < 1. Using this estimate and |a(x,£)| < C(1+|g])™ we get:
|d§a(x,£)| < const.(1+l§l)m'pe|n|€. Similarly, we get the other
estimates required to show that Sz s(M < S? s(€). It follows now

inductively that

s‘;’a(kn) C S‘;’s(kﬂ:)_ [« s‘g,s(k«»e') [« S':;’G(k) , keN, 0<e'< e<l.

In the next section we will consider the space of H&lder functions
Ar(RP). Let us recall some well known facts. If r=0, A = L(R™) ,
ifo<r<1, Ar is the subspace of Ao of the functions satisfying
[ £(x)-f(y) | < C|x-yjr a.e., the class of f contains a continuous
representative. For general r > 0 , we write r = [r] +r- [r] = k+e ,
keN, 0<e<1, and 4r is the space of the functions f € A with
weak derivatives sz € A® for |a| <k. When 0 <r <1, the norm
WEM_ is the maximum between [ fll  and the essential supremum of
the quotients |£(x)-£f(y)||x-y| ®. When r = k+¢, 0 <e <1, k€N,

WeEW_ = max  WDYEM_..
T Jalsk v

§ 3. BASIC LEMMAS

The following is a discrete version of a lemma of Alvarez-Calderén
([11,[2]) and may be refered to as the sharp almost-orthogonality
principle. We include the proof for completeness.

LEMMA 3.1. Let s > n/Z»and set r = 1-n/2s. Then, there is a positi=
ve constant C = C(s,n) such that for any finite number of functions

f, € H®, k € Z" , we have
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(3.1) 13 e £ 2 < cne =g '™ .
k k k

Here, H® indicates the Sobolev space in R™ with norm
wa? = o1k 2o+ g H%e L 2@ - je‘ix'sf(x)dx :

~and e indicates the operator of multiplication by the bounded

functiqn exp(ik.x), i = V-1 , x.k = x1k1+...+xnkn.

Proof. If

w, (&) = 1 (1+A|£-klzs)°1 , for 2s >n ,
kezl :

there is a positive constant C = C(s,n) such that wk(g) < Ck'“lzs

" for £ € R" and 0 < A < 1. Then, by Parseval's formula
v 2 -n 2
Hzekfkuo < (2m) Jlé?k(ﬁ-k)l dt <
-n ‘142841 % 2
< (2m ]§(1+x(s-k) )12, (6-10 |20, () dE <
-n/2s 2 2
< Cx (QUENS + ATNENYD)
k k
It is enough to take

2 2
A= TNENZ /7 TN

to obtain (3.1).

Let k be a mon-negative integer, € a real number, 0 < e < 1, and set
s = k+e. It is well known that an equivalent :norm for the space

H® is given by

(3.2 ne2= 3 el .+ § D% (£ _-£)112|¢] > 2€at
8 k °o t °

al< |u|=kJ|t|51

where ft(x) f(x+t).

LEMMA 3.2. Let s, N be real numbers n/2 < s < N and consider a
symbol a(x,&) € ng(N), X, E € R®, such that a(x,£) = 0 if

|&] = vn. Then there exists a constant C = C(N,s,n) such that

(3.3) la(x,D)Il 5. <C sup Ma(x,.)MN
. L(L%) x N
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(3.4) laGeDl, o <Clal

(L%,8%) §° (M)

oo

(The norm I i

N Was defined at the end of §2).

Pioof. It is enough to prove the lemma when s = k+e' , N = k+g,
0 <e<e'<1, kez*. Setting

k(x,y) = (Zw)_njeix'ga(x,i)dﬁ . w(y) = (1+]y|H7s

we have for f € S
aGoD£00 |2 = | [k £y ay]? < [k 1%t onay @ie) e

<C llatx, )12 *|£1H 0.

Integrating both sides of this estimate we get

(3.5) lla(x,D)Il < C sup Ha(x,.)ﬂg.
£ x

w?)

Using (3.2) and the fact that a(x,%) vanishes for |g| > /n, we can
estimate l!a(x,.)"S by Ma(x,.)mN. This gives (3.3).
Set g(x) = a(x,D)f(x), £ € S. For |a| <k we may write

D*g(x) = a (x,D)£(x)

(3.6) )
D*(g(x+t)-g(x)) = ag(x,D)£(x)
with |
a (x,8) = T at(81) 7 (a-8)t17 P a(x, 8)
B<a
(3.7

af(x,8) = e*®'%a (x+t,8)-a (x,8) .

Taking account of (3.2), and (3.6), we get

2 : 2
gt < C( la_ (x,D)Il +
s |§|5k o L)
(3.8)

)

j ua;(x,n)u2 ) |t|'“‘2€dt)ufu§.
lal=k ’|e|s1 L%

Thus, (3.4) follows from (3.8) and the next lemma.

LEMMA 3.3. With notation (3.7),
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Haa(x,D)H£ .. < C lall o

w? 52, ()

Natx,D)l <clt|€ nal
HCR TN LI LT L TN

2
L oo

(™)

Proof. By (3,3), it is enough to estimate Maa(x,.NHN and

Ma;(x,.ﬂHN. This is easily done using the following
'PROPOSITION 3.1. Let £(x,£) € Sgo(e'), 0 <e' <1 and assume that
£(X,E) = 0 Zf |E| > /A and set ’
£5(x,8) = el SE(xrt,E)-£(x,8)
Then, there is a positive comnstant C = C(n) sueh that

(3.9) 1£506,8) | < ) (a7 £, )+ £, ) ) [£]

(3.10)  |a2£°x,0) | < Cm) (a5 L£0x, )5 £0, )+ ECer, ) ) |21 ]

Proof. We prove (3.10), the proof of (3.9) is simpler. It is easy
to check that

2et(x,8) = ot *MalaZe(x, )+ (et NV nyale(x,6) +
(3.11)

+ et B elt My £(xst,E)

(the difference operators dt, di were defined in 82). Thus (3.10)

follows from the trivial estimate leiT-1| < min(|t],2), T € R.

LEMMA 3.4. Let s, N be real numbers, n/2 < s <N, and consider a
symbol a € Szo(N) such that a(x,g) =0 Zf |&| <s large enough.
Then there exists a positive constant C = C(N,s,n) such that

(3.12)  la(x,D)Il, < C(suplla(x,.)lg)%al']"
L(L%) x

OO(N)

where T = 1-n/2s.
Proof. Set g = a(x,D)f, £f € S , and consider a function ¢ € C:(Rp)
supported in |£| < vn such that

I e%E-K = 1.
keZ

Then g can be written as a finite sum,
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g=1e8 5 g = a(x,Df
where
2@ =0, ®FE)  , a(x,8) = alx,e+k)é(E).
In particular, it follows from Lemma 3.2, that
g2 <c supllax, g, i

2 2
g2 <cial?

Soo(N)

2
HeN=.

Applying Lemma (3.1) to g and observing that Xufkﬂz = IIfII2 (3.12)
follows.

§ 4. PROOF OF THEOREM 2

Since'S'::"S increases with m and §, we may assume that m=0 and §=p.
There is no loss of generality in assuming that a(x,£) vanishes if
|€] <1 and we do so. Choose a non-negative function ¢ € C:(Rn)
supported in 1/3 < || < 1 and such that -§0¢(2'j£) =1 if

J
|&] = 1/2. The dyadic decomposition of a(x,&) is

(4.1 a(x,€) = ] ¢(2778) = ] ai(x,8).

j=0 j=0
Since |E| ~ 23 when (x,£) is in the support of a; we get with
N=kte = [Fl+e , 0 <e <1,

anB isClal-18])
Dngaj(X,E) <C 2

e lo|-8]
€n0LB jis(|la|-|Bl-€)
AngDEaj(x,g) <C 2

N D“DBaj(x,g) <c 238Cfal-]8D

x,8x7E

Let y >0 € S be such that $(£) = 1 if |g] <27 and $(&) = 0 if
lel > 273 and set

pj(x,8) = Jaj(x-y,a)w(zjy)znjdy
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a5,8) = [(a;(xy,0) -2, 0w (2y) 27 ay
a3 = Pj*ay-

Since Jw = 1 it is clear that pj satisfies estimates (4.2) with
the same constant C. Therefore, if we set 5j(x,£) = pj(f@jxﬁﬁji)

we obtain from (4.2)

(4.3) - Ip. <cC
378% ()
oo
(4.4) ij(x,.NHN <C

with C independent of j. Applying Lemma (3.4) we conclude that
Hﬁj(x,D)H 5 1is uniformly bounded in j, and observing that
L)

2 b4

Hpj(x,D)H£(L2) = Ilpj(x,D)II.c(L ,

we get Hpj(x,D)N£ < C. On the other hand, it is easy to chek

2
that if for any f(é ;, we set gj(x) = pj(x,D)f(x) hj(x) =
= p?(x,D)f(X), then éj and ﬁj are supported in the annulus 2372 <
< lg|< 2j+l, where i indicates the Fourier transform of u and
p*(x,D) is the adjoint of p(x,D). In particular,
pj(x,D)p;(x,D) = p?(x,D)pk(x,D) =0 if |j-k| > 3. So we get

M
(4.5) I p.(,DI , <C , MeZ.
. J £(

j=0 L)

For the symbols aj(x,g) = qj(Z_ij,ZsjE) we obtain

(4.6) uajn <cC

o
Soo(N)

: (8-1)¢€j
(4.7) IquJ.(x,.)IIIN <C2

Estimate (4.6) is obtained as (4.3). To prove (4.7) observe that
for |8] <k

I0fa 0,001 = |[al pfa (x,000(2iy)2May| <

<c 2ite-18D)s lelew(ij)andy _ ¢ pile(s-1)-18]8]
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Analogously,

2,8 o (4241 1B, ¢ Juyoni
|a2fa(x, )| = |[a2al pfacx, vziy)zniay| <

The above estimates imply (4.7). Using (4.6), (4.7) and Lemma 3.4
we obtain

la D), =03, (xDI , <c zie@-D /2
] £ J £

Thus qu(x,D)Ht(Lz) is dominated by a geometric convergent series,

and together with (4.5), this implies

M
] a.(x,D)Il < C.
jZO 3 £?

M

Since } aj(x,D)f(x) converges to a(x,D)f in S' the proof is com-
j=0

plete.

§ 5. NECESSARY CONDITIONS OF REGULARITY

In this section we consider separate regularity in the variables
x and £€. If N = k+e, N' = k'+e', k,k' € N, 0 <¢e, e¢' < 1, we de-

fine Sz 6(N’N') by the following estimates, valid for o]l <K,
8] <k,
+8|a|-
Ip2facx,y) | <, g(1+lgh™elel-e ]

s20%pbacx,E) <oy GC1+]g)ymroclelver-els]

AE'DiDga(X’E) < C&’B(1+|€I)m+6|a|—p(lB|+e')

2228 000facx,5) < cy p(1+|gpymroclalrereclBlren)

, .
where we have used the notation of §2 and Ai’é a(x,&) indicates

the essential supremum of |y|'e|n|'€'|d;dﬁa(x,5)|, y, n € R®. We
indicate with S"°(N,N') the intersection N S s(N,N') with the
. m P
projective limit topology. In the same way we may define
ST ((=,N"), ST7(=,N"), etc.
ps8 : e Ilz
The example of Coifman and Meyer ([9]) a(x,§) = a+lg]H™ elx-E-ix

in R" x R® , exhibits a symbol in Sgo(%,w) for which a(x,D) is
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unbounded in Lz, showing that lack of regularity in x cannot be -

compensated for with high regularity in £. In this section we pro-
ve

THEOREM 3. Assume that a(x,D)is L%-bounded for all a(x,E) in
S™"(=,N). Then N > 2.

Observe that Theorem 2 shows that all symbols in SO(N,N‘) yield
bounded operators if N, N' > n/2. We do not know if ail symbols in

S°(w,5) give bounded operators. v
Let us denote by L(N) the closed subspdce of Sgo(m;N)'of those

symbols vanishing for |£] > vn. Theorem 3 follows from

LEMMA 5.1. Assume a(x,D) <Zs Lz-bounded for all a(x,&) <n L(N).
Then N > n/2.

Proof. We will consider symbols given by sums of exponentials as in
[8] and [12]. By the closed graph theorem there is a continuous

seminorm p in Sgo(w,N) such that
(5.1 Ha(x,D)H£ <p(a) , a€L).

Take ¢ € C:(Rn), equal to one in the cube max|&;| < 1/4 and vanis-
hing outside the cube max|g,| < 1/2.
For any positive integer A, set

: |
(5.2) a,(x,8) = [ e M Ny
: aeAA

where AA is the set of non-negative multi-indices o € N" such that
max o < A-1. In particular, the cardinal of AA is A" and al(x,E)
vanishes if maxlgil > 1. The terms in (5.2) have disjoint supports
and it is a simple exercise in HSlder functions to show that if p is

a continuous seminor in Sgo(w,N),
(5.3) p(a,) <C , A =1,2,...

To estimate the norm of ak(x,D), take f° €S, IIfOHo = 1, so that
~

£, is supported in the cube max|£i| < 1/4 and set

ey = 1 E(-a).
aeAA
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As the terms are orthogonal,

On the other hand, since ¢ %o = %

SO

and

(5.4)

HEn2 = 5 a™nen? - 1.
o
ueAl

O,

A s4-1 A
a(x,8)E(8) = [ e TemNE (apgy,
asAA

g(x) = a(x,D)f(x) = (Zﬂ)'“A“'NJeix‘Efo(AE)dE

Na, (x,D)Il > llgl = Am"2N,
A ’ £(L2) [o]

It follows from (5.1), (5.3) and (5.4) that ART2N is bounded for

A =1

(1]

(2]

[3]

[4]

[5]

(6]

(7]

(8]

32,..., SO N-2N < 0.
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