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ON SOME EXTENSION THEOREMS IN FUNCTIONAL ANALYSIS
AND THE THEORY OF BOOLEAN ALGEBRAS

Daniel Gluschankof and Miguel Til1i

ABSTRACT. We present a simplified proof of the eduivalence‘between
the Hahn-Banach Theorem and the existence of certain measures on a
power-set. Fﬁrthermore, by defining a notion of a Boolean integral
and applying similar techniques, we prove the corresponding set of
equivalences for the Sikorski Extensiqn Theorem (SET).

1. INTRODUCTION

The usual proofs 'of the Hahn-Banach extension theorem (HB) depend
on the Axiom of Choice (AC). Using techniques from non-standard ana
lysis, Luxemburg [8] proved that it can be derived from the Boolean
Prime Ideal Theorem (PI), and Pincus showed in [11] that HB is weak-
er than PI. More precisely, Luxemburg showed, without recourse to
AC, the equivalence of HB with the existence of certain measures in
power-sets.

In §2 below we present, among other things, a proof of this equi-
valence using only elementary concepts of functional analysis and
measure theory. Our proof yields also the well-known equivalence
between HB and Krein's theorem (KT) on the extension of certain po-
sitive functionals, as well as the equivalence of HB with an ap-
parently stronger result on the extension of homomorphisms . in order-
ed semigroups due to M.Cotlar [5].

Our method of proof yields a similar chain of equivalences in the
theory of Boolean algebras. Namely, we prove the equivalence
between: - an extension theorem (MT) due to Monteiro [10] (which
can be seen as a Boolean algebra counterpart of HB);
- the well-known Sikorski extension theorem (SET); cf. [9];
- a "sandwich" extension theorem, due to Cignoli [4].
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(The equivalence between the first two statements was proved by
Bacsich [1]).

Now, in order to complete the analogy between the two chains of
equivalences, we prove on the functional analysis side a ''sandwich"
extension theorem for semigroups analogous to Cignoli's and exten-
ding Cotlar's result. On the other side of the picture, we intro-
duce a notion of a '"Boolean integral" which yields a result simi-
lar to Luxemburg's. Of course, all of this is done whithout AC.

It is well known that PI is weaker than AC (see [7]) and it was
recently proved by Bell [3] that PI is weaker than SET.

Since it is not known whether SET impiies AC, we think it may be
useful to have alternative formulations of SET.

2. EXTENSION THEOREMS IN FUNCTIONAL ANALYSIS

We begin by proving (in ZF) the equivalence of the following state
ments:

HB: Let S be a linear subspace of a real vector space V, p a subli
near functional on V and f a linear functional defined on S
such that f(y) <p(y) (vy € S). Then, there exists a linear
functional f on V such that F(x) < p(x) for every x in V and
?(y) = f(y) whenever y € S.

KT: Let K be a cone of a vector space V, S a subspace and f a 1i-
near functional defined on S such that f(y) > 0 for every y in
K N S. If S contains an internal point of XK (that is, a point
z such that for all v in V\K the open segment (z,v) intersects
K), then there is a linear functional f defined on V satis-
fying £(y) = £(y) for all y in S and £(z) > 0 for all z in K.

MPS (Measures on power-sets): Let X be a set, P(X) its power-set
and I a proper ideal on P(X). Then there exists a finitely ad-
ditive measure p on P(X) with values in the interval [0,1] and
u(a) = 0 whenever a € 1. ‘

STS (Sandwich theorem on semigroups): Let (G,+,<,0) be a preorde-
red abelian semigroup, e an element of G, G(e) the subsemi-
group defined by {g € G:-there exist nonnegative integers n,n',
positive integers r,r' and z,z',z",z'" in G such that ne+z <
< rg+z' and r'g+z" < n'e+z'"'},

Let S be a subset of G(e) containing the element e, p and m
real-valued, order-preserving, respectively subadditive and
superadditive maps on G such that m(0) = p(0) = 0, m(g) <p(g
for all g in G(e) and f a real-valued map defined on S such
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that:
For all (xl,...,xn) cs, (yl,...,ym) cS, z,z' in G,
Exi+z <Eyi+z' implies Ef(xi)+m(z) <2f(yi)+p(z) *)

Then‘there exists an extension f of f defined on G(e) such that
f satisfies (*) for (xl,...,xn) and (yl,...,ym) in G(e).

CT (Cotlar Theorem): Let (G,+,<,0) be a preordered abelian semigroup,
e an element of G, G'(e) the subsemigroup defined by {g € G:
there exist nonnegative integers n,n', a positive integer r and
z,z' € G such that ne < rg+z and g <n'e+z'}. If S is a subset
of G'(e) containing e, p a real-valued, order-preserving subad-
ditive map on G and f a real-valued map defined on S such that:

For all (xl,...,xn) c S, (yl,...,ym) C S, z in G,
IX; SZy;+z implies Ef(xi) <Ef(yi)+p(z) (*%)

Then there exists an extension f of f defined on G'(e) such that
f satisfies (**) for (xl,...,xn) and (yl,...,ym) in G'(e).

REMARKS.

(a) Note that the conditions (*) and (**) of STS and CT trivially
imply that f is additive, order-preserving and m < f < p when all
three are defined. (If G = G(e) then the converse implication
holds as well).

(b) The assumptions of both STS and CT may seem somewhat technical;
their motivation can be found in Cotlar [5], pp.10-11.

(c) STS and CT stand on a relationship similar to that existing
between the statements SET and MT in the theory of Boolean alge-
bras, see Introduction.

PROOFS.

HB = KT: The standard proof, see e.g. [6], pp.143-146, is done
within ZF (i.e. not using AC).

KT = MPS: Let A be a set. In the linear space R® we consider the
.positive cone K = {x e RA/xa > 0 for all a in A}. We identify
P(A) with ZA, which is contained in RA, and call 1Y the character-
istic function of Y C A. Let I be a proper ideal of P(A); then 1A
is not in <I> (the subspace of RA generated by I). For, if x € <I>
then x = Ecixi with c; € R\ {0} and xPer (i=1,...,n). Setting

supp(x) = {a € A: xa'# 0 , we have
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suppCZcixi) < LJsupp(xi) # A (because I is a proper ideal).

We define a linear functional f on the subspace S = <I>$<1A> by

) 0 if x € <I>
f(x) =

c if x = c.1A (c € R)

the formulae:

Since 1A is an internal point of K, KT implies the existence of a
linear extension f of f such that ftz) = 0 for all z in K.

Define wu: P(A) = [0,1] by u(a) = ?(1a). It is easy to see that u
is a measure; clearly, u(a) = 0 whenever a € I.

MPS = STS: We shall prove this implication in two steps. First,
using only ZF, for each point g in G(e)\S we construct an extension

of £ to S U {g} satisfying (*). Then, using MPS, we construct an
extension defined on the whole of G(e).

Let g be a point in G(e)\S; define

Zf(y;) - Zf(x;) + p(z') - m(z)
T

a = inf

where (xl,...,xn), (yl,...,ym) cS, z,z2' € G, r € N and
Exi+rg+z <Z‘yi+z' holds.
In the same way define

Zf(x;) - Z£(y;) + m(z) - p(z")

b = sup =

for all (xl,...,xn), (yl,...,ym), z,z',r such that
Ix;+z <Zy,+rg+z' holds.
We shall show that a < =: since g is in G(e), there exist r' € N,

n' € NU {0} and z",z"' € G, such that r'g+z" < n'e+z'"' ; then we
have

a < n'fe) + pi?"') - m(z") < .

In the same way we can see that b > -=,

Now, 1let (xl,...,xn),(yl,...,ym),(yi,...,x&),(x{,...,x;,)C G(e),
r,r' € N and z,z',2",2'" € G be such that Exi+rg+z s;Eyi+z' and
Ex£+z" < Eyi+r'g+z”' holds. We have, then

r' in+ rExi +r'rg +r'z + rz" <r' Eyi + r'z' 4+ I'Exi + rz" <
<r Eyi + 7! Eyi +rr'g + rz' + r'é‘, and it is easy to prove the

inequalities:
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TE(yy) - 2f(xy) + p(2') - m(2)
T _

r' Ef(yi) - ' Ef(xi) + r'p(z') - r'm(z)
rr'’

JZE(r'yy) - ZE(r'xy) +p(r'z') - m(r'z)
. rrl ) .

;;Ef(r'yi) - Ef(r'xi) + p(r'z'+rz'") - p(rz") - m(r'z+rz")+m(rz")
rr' )

}-Ef(rx'i) - Ef(ry]'..j - p(rz™) + m(rz")
rr'!

}Ef(X,{) - Zf(yj) - p(z") + m(z")
r'

Then we conclude that b < a. We define thé extension fg: SuU{g} »R

by
{ f(z) if z €S
fg_(z) =

3%9 if z=¢g

Looking at the construction it is clear that fg saiisfies *).

Now, repeating the procedure above, we can construct in ZF an ex-
tension fx: SUx = R, for each finite sequence x = (gl,...,gn) C

C G(e) (ordered in some way).
Let X be the set

{x = (gl,...,gn;gJ: gy5---28, € G(e) and T, is a total order on x}

We define a map F: G(e) - R% by posing:

f (g) if ge SUx ' :
F(g) (x) =<{ x )
| o if g ¢ SUx

For each g in G(e) define H(g) = {x€X: g¢ Sux} (%).
Let I be the ideal on P(X) generated by the family (H(g))gec(e).
Assuming that I is not a proper ideal there would be an element of
X, x = (gl,..J,gn;rx), such that (JH(gi) = X and hence x € H(g;)
for some i, 1 < i < n, contradicting the definition of H(gi). (Here
we are only using a finite version of AC!).

Then we can apply MPS and obtain a measure p such that u(X) = 1
and u(a) = 0 whenever a € I.
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If g,g' are in G(e), the subset of X where

F(g+g')(x) = F(g) (x)+F(g') (x) does not hold is contained in

H(g) VH(g') VH(g+g'), whose measure is 0. Then F is additive almost
everywhere (for u).

We also know that, given g in G(e), m(g) < F(g)(x) = fx(g) < p(g)
if g € S U x. The set

{x € X: F(g)(x) <m(g) or F(g)(x) > p(g)} is contained in H(g).

Then, for each g in G(e), m(g) < F(g)(x) < p(g) holds almost every-
where.

In the same way, it is easy to verify that (*) holds for F( )(x)
almost everywhere.

Since F(g) is a bounded function defined on X, one may construct
explicitly (in ZF) a sequence of simple functions (E;)isn on X
such that §; - F(g) uniformly (see [6], IV, Lemma 1.4.7, p.247).

Therefore, for each g in G(e), we can define a Riemann-type integral

%(F(g)(x)du = 1im f, g.(x)du. Then, we have the maps
1+ X °1

i
G(e)'g LI(X,P(X),M) - R, and the composition S oF = %(F( ) (x)du
is an extension of f to the whole of G(e) that satisfies (*):
Let be (xl,...,xn), (yl,:..,ym) C G(e), z,z' in G such that
Exi+z <2yi+z' .
We have that fXF(in) (x)dp = fx\Y F(Exi) (x)du + IYF(Exi) (x)du =

&\Y F(in)(x)du where Y = g H(xi) U'iH(yi) v H(Exi) U H(Eyi).

Similarly, we prove that g{F(Zyg(x)du =X{ F(Eyi)(x)du.
Y

Then, it is easy to verify that

EfF(xi)(x)du + m(z) < EfF(yi)(x)du + p(z) holds.

STS = HB: We consider the additive (semi-)group underlying the 1i-
near space V with the trivial order: g < g' if and only if g = g'.
Obviously V(0) coincides with V. Setting m(g) = -p(-g) we are in
the conditions of STS. Then we obtain an extension of the linear
map f which is a group homomorphism. The subadditive, R-linear map
p defines a locally convex topology on V, for which the extension
of f is continuous and, therefore, R-linear.

REMARK .

If G(e) is a linear space, the map F defined in (%) is linear; fur-
thermore, the integral is also linear. Then, so is the extension.
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This gives a direct proof of MPS = HB without passing through STS.

MPS = CT: In [5] M.Cotlar gives, for each g in G'(e)\ S, an expli-
cit construction (in ZF) of an extension fg: SU{g} = R satisfying

(**). Then, repeating the construction of the second part of the
proof of MPS = STS, we obtain an extension f of f defined on the
whole of G'(e) and satisfying (*%*).

CT = HB: Same proof as STS = HB.

3. EXTENSION THEOREMS IN THE THEORY OF BOOLEAN ALGEBRAS

PI (Boolean Prime Ideal Theorem): Any proper ideal on a Boolean al-
gebra can be extended to a prime one.

Equivalently, this theorem can be stated:

Let B be a non-trivial Boolean algebra, S a subalgebra and f: S > 2
a homomorphism. There exists a homomorphism f: B > 2 such that
?(x) = f(x) for all x in S.

DEFINITION. Let X be a set, B a Boolean algebra. A B-valued measu-
re on P(X) is a Boolean algebra homomorphism u: P(X) - B.

REMARK.

Let X be a set and B a Boolean algebra. A homomorphism ¢: BX > B
defines a B-valued measure on P(X) by setting u(a) = ¢(1a) where 1a

is the characteristic function of a subset a of X.

DEFINITION. Let B be a Boolean algebra and X,Y sets. A homomorphism
¢: BX > BY is called a B-homomorphism iff ¢(bah) = ba¢(h) b € B,

h € BX (identifying b € B with the constant function b).

LEMMA. Let X be a set, B a complete Boolean algebra, ¢: BX » B a B-
homomorphism, then

o(h) > v (bauh i (b))
beB

for every h € BX where u is the measure induced by ¢.
Yy

Furthermore, if h(X) is finite, then the equality holds.

PROOF. If h € Bx, we can write h(x) = Vv (ba1l 21 .(x)).
beB h " (b)
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Then "¢ (h)

o( Vv (bat -1 )) = V ¢(bal -1 ) =
beB h ~(b) beB h™ " (b)

n

v (bauhim))).
beB

DEFINITION. With the/notations'of the preceding lemma we shall say;
that a B-homomorphism from BX to B is a B-Zntegral if h[x\a =0
andbu(a) =0 impiy ¢(h) = 0. We denote ¢ by ]x du and write

thdu for ¢(h).

LEMMA.>Let Lxdu: BX > B be a B-integral. If X = XIUX2 and

X;NX, = @ then [ hdyu = fxl (hlxl)‘dul‘v fxz (hlxz)du2 , where

£ @1; (i =1,2) is the restriction of / du to {h € BX: h =0}.
i. X IX3_i

(identifying this set with BX).

PROOF. We set hi = hi A1x (i =1,2). Then h = h1 vh2 implies that

i

thdu = thlcluvfx hzdu, and since fx hidu coincides with
jk (hlx )dui (i = 1,2), we are done.
i i

Now, using a technique similar to that of §2 we prove the equiva-
lence of the following statements:

SET Let A be a Boolean algebra, B a complete Boolean algebra and
f a B-valued homomorphism defined on a subalgebra of A. Then,
there exists an extension of f to the whole of A.

BI (Boolean integral) Let X be a set, B a complete Boolean algebra
and I a proper idegl on P(X). Then, there exists a B-intégral

%{du defined on BX such that Mg = 0.

LET (Lattice extension theorem) Let G be a distributive lattice, B
a complete Boolean algebra, S a subset of G.containing 0 and 1;
j: G>B and m: G- B a join - and a meet-homomorphism, respec-
tively, preserving 0 and 1; f: S - B a homomorphism satisfying
m < f < j where all three are defined. Then, there exists an
extension f: G = B such that f(g) = f(g) for all g in S, and
m<f<jonG.

MT Let S be a Subalgebra of a Boolean algebra G, B a complete
"Boolean algebra, j: G = B a join-homomorphism preserving 0 and
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1 and f: S > B a homomorphism satisfying £ < j on S. Then the-
re exists an extension f of f to the whole of G such that f< j
on G.

LEMMA. SET implies the conjunction of PI and "every complete Boo-
lean algebra is a retract of its ultrapowers". '

PROOF. This can be found in [9] where it is dome in ZF.

PROOFS.

SET = BI: Let B be a complete Boolean algebra, X a set and I a pro-
per ideal on P(X). By PI we can extend I to a prime ideal P, whose

complement is an ultrafilter U. Since BX/U is an ultrapower of B,
by the lemma above we have a retract r: Bx/U - B. We claim that
the map ro m: BX > B, where w is the canonical map 7: BY ~ BX/U,
is the required integral. For any a C X, we have u(a) = r °n(1a).
Since .a(x) € 2 for all x in X, n(1a) € 2 C B. Since r is a re-

tract, u(a) = 0 implies "(1a) = 0, and also {x € X/ 1a(x)

1} =

= aeP. If, in addition, h € BX and higa = 0 then w(h) = 0, and

ron(h) = 0. It is clear that M1 =0.

BI = LET: In [4] R.Cignoli proved LET using Zorn's Lemma. However,
he proved in ZF that, for each g in G\S there exists an explicit
construction for the extension fg: S U {g} = B such that m(g) <

< fg(g) < j(g). Thus it is possible, for each ordered finite sub-
set x C G\S to construct an extension of f. As in the proof of
MPS = STS, we define a map F: G 9-va(T) and the proper ideal I
of P(X) generated by the sets

H(g) = {x € X: g &€ S U X} .
Now, applying BI, there exists an integral defined on B%X which va-
nishes on I.
As in the proof of MPS = STS, it is seen that IXF( ) (x)du: G > B

is an extension of f meeting the requirements of LET.

The implications LET = MT = SET are well known and trivial.
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L, CONCLUDING REMARKS

i)

ii)

iii)

If, in all four statements of §3 we replace the words '‘com--
plete Boolean algebra" by "the complete Boolean algebra 2",

we obtain a new set of equivalent statements. In particular,
it is easy to see that SET(2) is equivalent to PI.

The prime ideal theorem for distributive lattices is equiva-
lent to the Boolean prime ideal theorem:

~Looking at the specializations of the statements of §3 to the

algebra 2, we have that SET(2) implies LET(2), which in turn
implies the prime ideal theorem for distributive lattices
(set S=2 , j(0) =m(0) =0, j(1) =m(1) =1, m(g) =0 ,
j(g =1 if g € G\S, and f the identity of 2).

The interest of this remark lies in the fact that it is not
necessary to imbed the distributive lattice into a Boolean
algebra in order to prove the implication (see [2]).

The Hahn-Banach theorem can be thought of as a "weak and con-
tinuous'" form of the Boolean prime ideal theorem: BI(2),
which is equivalent to PI, can be stated: "Given a set X and
a proper ideal I of P(X), there exists a measure uvon P(X)
with values in {0,1} and u(a) = 0 whenever a belongs to I".
This obviously implies MPS, which is equivalent to HB.
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