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ABSTRACT. We present a simplified proof of the equivalence between 
the Hahn-Banach Theorem and the existence of certain measures on a 
power-set. Furthermore, by aefining a notion of a Boolean integral 
and applying similar techniques, we prove the corresponding set of 
equivalences for the Sikorski Extension Theorem (SET). 

1. I NTRODUCT I ON 

The usual proofs 6f the Hahn-Banach extension theorem (HB) depend 

on the Axiom of Choice (AC). Using techniques from non-standard an~ 
lysis, Luxemburg [8] proved that it can be derived from the Boolean 
Prime Ideal Theorem (PI), and Pincus showed in [111 that HB is weak­
er than PI. More precisely, Luxemburg showed, without recourse to 

AC, the equivalence of HB with the existence of certain measures in 
power-sets. 

In § 2 below we present, among other things, a proof of this equi­
valence using only elementary concepts of functional analysis and 
measure theory. Our proof yields also the well-known equivalence 
between HB and Krein's theorem (KT) on the extension of certain po­
sitive functionals, as well as the equivalence of HB with an ap­
parently stronger result on the extension of homomorphisms in order­

ed semigroups due to M.Cotlar [51. 

Our method of proof yields a similar chain of equivalences in the 
theory of Boolean algebras. Namely, we prove the equivalence 
between: - an extension theorem (MT) due to Monteiro [101 (which 

can be seen as a Boolean algebra counterpart of HB); 
- the well-known Sikorski extension theorem (SET); cf. [91; 

- a "sandwich" extension theorem, due to Cignoli [41. 

This work was in part supported by a CONICET (Consejo Nacional de 
Investigaciones Cient!ficas y T~cnicas) fellowship granted to D.G. 
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(The equivalence between the first two statements was proved by 
Bacsich [1]). 

Now, in order to complete the analogy between the two chains of 

equivalences, we prove on the functional analysis side a "sandwich" 
extension theorem for semigroups analogous to Cignoli's and exten­

ding Cotlar's result. On the other side of the picture, we intro­
duce a notion of a "Boolean integral" which yields a result simi­

lar to Luxemburg's. Of course, all of this is done whithout AC. 

It is well known that PI is weaker than AC (see [7]) and it was 
recently proved by Bell [3] that PI is weaker than SET. 

Since it is not known whether SET implies AC, we think it may be 
useful to have alternative formulations of SET. 

2. EXTENSION THEOREMS IN FUNCTIONAL ANALYSIS 

We begin by proving (in ZF) the equivalence of the following state 
ments: 

HB: Let S be a linear subspace of a real vector space V, p a subll 
near functional on V and f a linear functional defined on S 

such that fey) ~ p(y) (V yES). Then, there exists a linear 
functional f on V such that f(x) ~ p(x) for every x in V and 
fey) = fey) whenever yES. 

KT: Let K be a cone of a vector space V, S a subspace and f a li­
near functional defined on S such that fey) ~ 0 for every y in 

K n S. If S contains an internal point of K (that is, a point 
z such that for all v in V \ K the open segment (z, v) intersects 
K), then there is a linear functional f defined on V satis­

fying fey) = fey) for all y in Sand fez) ~ 0 for all z in K. 

MPS (Measures on power-sets): Let X be a set, peX) its power-set 
and I a proper ideal on P(X). Then there exists a finitely ad­

ditive measure ~ on P(X) with values in the interval [0,1] and 
~(a) = 0 whenever a E I. 

STS (Sandwich theorem on semigroups): Let CG,+,~,O) be a preorde­
red abelian semigroup, e an element of G, G(e) the subsemi­
group defined by {g ~ G: ·there exist nonnegative integers n,n', 

positive integers r,r' and z,z',z",z'" in G such that ne+z ~ 
~ rg+z' and r'g+z" ~ n'e+z'''}. 
Let S be a subset of G(e) containing the element e, p and m 

real-valued, order-preserving, respectively subadditive and 

superadditive maps on G such that m(O) = pCO) = 0, meg) ~peg) 
for all g in G(e) and f a real-valued map defined on S such 
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tpat: 

For all (xl' .•• 'xn) C S , (YI, ••. ,Ym) C S , z,z' in G, 

l:xi+z ..,;;l:yi+z' implies l:f(xi)+m(z) "';;l:f(yi)+p(z) (*) 

Then there exists an extension f of f defined on G(e) such that 

f satisfies (*) for (xl' ... ,Xn) and (YI, ... ,Ym) in G(e). 

CT(Cotlar Theorem): Let (G, + ,..,;; ,0) be a preordered abelian semi group, 
e an element of G, G'(e) the subsemigroup defined by {g E G: 
there exist nonnegative integers n,n', a positive integer rand 
z,z' E G such that ne"';;rg+z and g ..,;; n'e+z'}. If S is a subset 
of G'(e) containing e, p a real-vaiued, order-preserving subad­
ditive map on G and f a real-valued map defined on S such that: 

For all (xI, ... ,xn) C S, (Y1, ... ,Ym) C S, z in G, 

(**) 

Then there exists an extension f of f defined on G' (e) such that 
f satisfies (**) for (xI, •.. ,xn) and (Y1, •.. ,Ym) in G'(e). 

REMARKS. 

(a) Note that the conditions (*) ~nd (**) of STS and CT trivially 
imply that f is additive, order-preserving and m ..,;; f ..,;; P when all 
three are defined. (If G = G(e) then the converse implication 
holds as well). 

(b) The assumptions of both STS and CT may seem somewhat technical; 
their motivation can be found in Cotlar [5], pp.l0-l1. 

(c) STS and CT stand on a relationship similar to that existing 
between the statements SET and MT in the theory of Boolean alge­
bras, see Introduction. 

PROOFS. 

HB * KT: The standard proof, see e.g. [6], pp.143-146, is done 
within ZF (i.e. not using AC). 

KT * MPS: Let A be a set. In the linear space RA we consider the 

positive cone K = {x E RA/xCl ;> 0 for all Cl in A}. We identify 

peA) with ZA, which is·contained in RA, and call 1 the character-y 

istic function of Y ~ A. Let I be a proper ideal of peA); then lA 

is not in <I> (the subspace of RA generated by I). For, if x E <I> 

then x = l:c.xi with c. E R\ {OJ and xi E I (i = 1, •.. ,n). Setting 
1 1 

supp(x) = {Cl E A: xCl ; 0 , we have 
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supp (2:c .X i ) ~ U supp (xi) f. A (because I is a proper ideal). 
~ 

We define a linear functional f on the subspace S = <I>$<l A> by 

the formulae: 

-- { cO f(x) 
if x E <I> 

if x = c. 1 A (c E R) 

Since lA is an internal point of K, KT implies the existence of a 

lihear extension l of f such that l(z) > 0 for all z in K. 

Define ~: peA) ~ [0,1] by ~(a) l(l a). It is easy to see that ~ 

is a measure; clearly, ~(a) = 0 whenever a E I. 

MPS ~ STS: We shall prove this implication in two steps. First, 

using only ZF, for each point g in G(e)\S we construct an extension 
of f to S U {g} satisfying (*). Then, using MPS, we construct an 
extension defined on the whole of G(e). 

Let g be a point in G(e)\S; define 

];f(y.) - ];f(x.) + p(z') - m(z) 
a = inf ~ ~ 

r 

where (xl'" .,xn), (YI'" "Ym) C S, z,z' E G, r EN and 

];xi +rg+z ';;;];y i +z' holds. 

In the same way define 

b 
~f(x.) - ];f(y) + m(z) - p(z') 

sup ~ 
r 

for all (xl, ... ,xn), (YI""'Ym)' z,z',r such that 

!:xi +z .;;;];y i +rg+z' holds. 

We shall show that a < 00: since g is in G(e), there exist r' EN, 
n' E N U {O} and z",z'" E G, such that r'g+z" .;;; n'e+z'" ; then we 
have 

a .;;; n'f(e) + p(z"') - m(z") < 00. 
r' 

In the same way we can see that b > -00. 

Now, let (xI, ... ,xn)'(YI""'Ym),(Yi, ... ,y~,),(xi""'x~,)C G(e), 

r,r' EN and z,z' ,z",z'" E G be such that ];xi+rg+z .;;;];yi+z' and 

];xi+z" .;;; ];Yi+r' g+Z'" holds. We have, then 

r' l::xi+r];xi + r'rg + r'z + rz" ';;;r' ];Yi + r'z' + r];xi + rz"';;; 

';;;r];Yi + r' l::Yi + rr'g + rz'" + r'z', and it is easy to prove the 

inequali ties: 



1:f(Yi) - 1:f(xi ) + p(z') - m(z) 
r 
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r' 1: fey i) ,. r' 1: f(x) + r'p (z') - r'm(z) 
rr' 

1:f(r'y.) -1:f(r'x1.} +p(r'z') - m(r'z) 
;;;. . 1 

rr' 

'l:f(r'y.) - 1:f(r'x1.) + p(r'z'+rz"') - p(rz"') 
;;;. 1 

- mer' z+rz")+m(rz") 
rr' 

1: f (rx!) - 1: f (ry !)- P (r z III ) + m (r z") 
;;;. 1 1 ;;;. 

rr' 

1:f(x!) - 1:f(y!) - p (z''') + m(z") 
;;;. 1 1 

r' 

Then we conclude that b ~ a. We define the extension f : S U{g} ~R 
g 

by 

{ 
fez) 

fg(z) = . a? 
if zES 

if z = g 

Looking at the construction it is clear that f satisfies (*). 
g 

Now, repeating the procedure above, we can construct in ZF an ex­
tension fx: SUx ~ R, for each finite sequence x = (g1' ... ,gn) C 

C G(e) (ordered in some way). 

Let X be the set 

{x = (g1' ... ,gn;rx): g1' ... ,gn E G(e) and rx is a total order on x} 

We define a map F: G(e) ~ RX by posing: 

-- { fOX (g) F (g) (x) 
if gESUx 

if g~SUx 

For each g in G(e) define H(g) {i E X: g ~ S U x} Ct). 

(t) 

Let I be the ideal on P(X) generated by the famIly (H(g))geG(e). 

Assuming that I is not a proper ideal there would be an element of 

X, x. = (g1' .. :,gn;rx)' such that UH(gi) = X and hence x E H(g) 

for some i, 1 ~ i ~ n, contradicting the definition of H(gi). (Here 

we are only using a finite version of AC!). 

Then we can apply MPS and obtain a measure ~ such that ~(X) 
and ~(a) = 0 whenever a E I. 
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If g,g' are in G(e), the subset of X where 
F(g+g')(x) = F(g)(x)+F(g')(x) does not hold is contained in 
H(g) UH(g') UH(g+g'), whose measure is O. Then F is additive almost 
everywhere (for ~). 

We also know that, given g in G(e), meg) ~ F(g)(x) = fx(g) ~ peg) 
if g E S U x. The set 

{x EX: F(g)(x) < meg) or F(g)(x) > peg)} is tontained in H(g). 

Then, for each g in G(e), meg) ~ F(g)(x) ~ peg) holds almost every­
where. 

In the same way, it is easy to verify that (*) holds for F( lex) 
almost everywhere. 

Since F(g) is a bounded function defined on X, one-may construct 

explicitly (in ZF) a sequence of simple functions (g .. ). N on X 
I. I.e: 

such that gi 4 F(g) uniformly (see [6], IV, Lemma 1.4.7, p.247). 

Therefore, for each g in G(e), we can define a Riemann-type integral 

f.xF(g)(x)d~ = lim f.x g.(x)d~. Then, we have the maps 
1 +00 I. 

G(e)~ Ll(X,p(X),~) i R, and the composition f 0 F = fxF( )(x)d~ 
is an extension of f to the whole of G(e) that satisfies (*): 

Let be (x1, •.. ,xn), (yl'· ... 'ym) C G(e), z,z' in G such that 

l:xi+z ~l:Yi+z'. 

We have that fxF(l:xi)(x)d~ = fx\y F(l:xi)(x)d~ + fyF(l:xi)(x)d~ = 

f F(l:x.)(x)d~ where Y = U H(x.) uuH(y.) U H(l:x.) U H(l:y.). 
x\ y I. i I. i I. I. I. 

Similarly, we prove that 

Then, it is easy to verify that 

STS * HB: We consider the additive (semi-)group underlying the li­
near space V with the trivial order: g ~g' if and only if g = g'. 
Obviously V(O) coincides with V. Setting meg) = -pC-g) we are in 
the conditions of STS. Then we obtain an extension of the linear 
map f which is a group homomorphism. The subadditive, R-linear.map 
p defines a locally convex topology on V, for which the extension 
of f is continuous and, therefore, R-linear. 

REMARK; 

If G(e) is a linear space, the map F defined in (t) is linear; fur­

thermore, the integral is also linear. Then, so is the extension. 
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This gives a direct proof of MPS ~ HB without passing through STS. 

MPS ~ CT: In [5] M.Cotlar gives, for each g in G' (e) \ S, an expli­
cit construction (in ZF) of an extension f : S U{g} ~ R satisfying g 

(**). Then, repeating the construction of the second part of the 
proof of MPS ~ STS, we obtain an extension f of f defined on the 
whole of G' (e) and satisfying (**). 

CT ~ HB; Same proof as STS ~ HB. 

3. EXTENSION THEOREMS IN THE THEORY OF BOOLEAN ALGEBRAS 

PI (Boolean Prime Ideal Theorem): Any proper ideal on a Boolean al­
gebra can be extended to a prime one. 

Equivalently, this theorem can be stated: 

Let B be a non-trivial Boolean algebra, S a subalgebra and f: S ~ 2 
a homomorphism. There exists a homomorphism f: B~ 2 such that 
f(x) = f(x) for all x in S. 

DEFINITION. Let X be a set, B a Boolean algebra. A B-vaZued measu­

re on P(X) is a Boolean algebra homomorphism~: P(X)·~ B. 

REMARK. 

Let X be a set and B a Boolean algebra. A homomorphism $: BX ~ B 
defines a B-valued measure on P(X) by setting ~ (a) = $(1 a) where 1 a 

is the characteristic function of a subset a of X. 

DEFINITION. Let B be a Boolean algebra and X,Y sets. A homomorphism 

$: BX ~ BY is called a B-homomorphism iff $(b 1\ h) = b 1\ $(h) b E B, 

hE BX (identifying b E B with the constant function b). 

LEMMA. Let X be a set, B a complete Boolean algebra, $: BX ~ B a B­
homomorphism, then 

$(h) ~ V (bl\~(h-I(b))) 
be:B 

for every h E BX whe~e ~ is the measure induced by $. 

Furthermore, if heX) is finite, then the equality holds. 

PROOF. If h E BX, we can write hex) = V (b 1\ 1 -I (x)). 
be:B h (b) 
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Then 'CP(h) cp( V (bl\ 1 -1 ));;;. V cp(bl\ 1 -1 ) 
be:B h (b) be:B h (b) 

-1 v (b 1\ Il (h (b)) ) . 
be:B 

DEFINITION. With the notations·of the preceding lemma we sha11 say; 

that a B-homomorphism from BX to B is a B-integraZ if hlx\a =0 

and Il(a) = 0 imply <P(h) = O. We'denote cP by Ix dll and write 

Ix hdll for cP (h) • 

LEMMA. Let Ix dll: BX -+ B 

Xl n X2 = 0 then Ix hdll 

be a B-integral. If X = Xl U X2 and. 

Ix (h Ix )d1l1 v Ix (h I x ) dll~ , where 
1 1 2 2 

x . 
is the restriction of I xdll to {h E B : hlx . = o}. 

3-1 

(identifying this set with BX). 

PROOF. We set h. = h. 1\ 1 x (i = 1,2). Then h = hl v h2 implies that 
1 1 i 

Ix. (hlx.)dll i (i = 1,2), we are done. 
1 1 

Now, using a technique similar to that of §2 we prove the equiva­
lence of the following statements: 

SET Let A be a Boolean algebra, B a complete Boolean algebra and 
f a B-valued homomorphism defined on a subalgebra of A. Then, 
there exists an extension of f to the whole of A. 

BI (Boolean integral) Let X be a set, B a complete Boolean algebra 
and I a proper ideal on P(X). Then, there exists a B-integral 

IXdll defined on BX such that 1111 = O. 

LET (Lattice extension theorem) Let G be a distributive lattice, B 
a complete Boolean algebra, S a subset of G containing 0 and 1; 

j: G -+ Band m: G -+ B a join - and a meet-homomorphism, respec­
tively, preserving 0 and 1; f: S -+ B a homomorphism satisfying 
m .;;; f E;; j where a11 three are defined. Then, there exists an 
extension f: G -+ B such that f(g) = f(g) for all g in S, and 
m E;; f E;; j on G. 

MT Let S be a subalgebra of a Boolean algebra G, B a complete 
Boolean algebra, j: G-+ B a join-homomorphism preserving 0 and 
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1 and f: S ~ B a homomorphism satisfying f ~ j on S. Then the­
re exists an extension f of f to the whole of G such that f ~ j 
on G. 

LEMMA. SET implies the conjunction of PI and "every complete Boo­
lean algebra is a retract of its ultrapowers". 

PROOF. This can be found in [9] where it is done in ZF. 

PROOFS. 

SET ~ BI: Let B be a complete Boolean algebra, X a set and I a pro­
per ideal on P(X). By PI we can extend I to a prime ideal P, whose 

complement is an ultrafilter U. Since BX/u is an 11ltrapower of B, 

by the lemma above we have a retract r: BX/u ~ B. We claim that 

the map r 0 'IT: BX ~ B, where 'IT is the canonical map 'IT: BX ~ BX / u ' 

is the required integral. For any a C X, we have jl(a) = r o'IT(l a ). 

Since 'a (x) E 2 for all x in X, 'IT (1 ) E2!:B. Since r is a re-
a 

tract, jl (a) 0 implies 'IT(1) = 0, and also {x E X / 1 a (x) 1} 

= a E P. If, in addition, h E X 
Band h Ix\ a 0, then 'IT(h) 0, and 

r 0 'IT (h) = O. It is clear that jll1 = o. 

BI ~ LET: In [4] R.Cignoli proved LET using Zorn's Lemma. However, 
he proved in ZF that, for each g in G\S there exists an explicit 
construction for the extension f : S u {g} ~ B such that meg) ~ 

g 

~ f (g) ~ j(g). Thus iL is possible, for each ordered finite sub-
g 

set x ~ G\S to construct an extension of f. As in the proof of 

MPS ~ STS, we define a map F: G ~ BX (t) and the proper ideal I 

of P(X) generated by the sets 

H(g) = {x E X: g e S u x} (*) • 

Now, applying BI, there exists an integral defined on BX which va­
nishes on I. 

As in the proof of MPS ~ STS, it is seen that JxF( ) (x)djl: G ~ B 

is an extension of f meeting the requirements of LET. 

The imp~ications LET ~ MT ~ SET are well known and trivial. 
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4. CONCLUDING REMARKS 

i) If, in all four statements of §3 we replace the words "com­
plete Boolean algebra" by "the complete Boolean algebra 2", 
we obtain a new set of equivalent statements. In particular, 
it is easy to see that SET(2) is equivalent to PI. 

ii) The prime ideal theorem for distributive lattices is equiva­
lent to the Boolean prime ideal theorem: 

Looking at the specializations of the statements of §3 to the 
algebra 2, we have that SET(2) implies LET(2), which in turn 
implies the prime ideal theorem for distributive lattices 
(set S=2 ,j(O) m(O) = 0 j(l) = mCl) = 1 , meg) = 0 , 
j (g) = 1 if g E G\S, and f the identity of 2). 

The interest of this remark lies in the fact that it is not 
necessary to imbed the distributive lattice into a Boolean 
algebra in order to prove the implication (see [2]). 

iii) The Hahn-Banach theorem can be thought of as a "weak and con­
tinuous" form of the Boolean prime ideal theorem: BI(2), 
which is equivalent to PI, can be stated: "Given a set X and 
a proper ideal I of P(X), there exists a measure p on P(X) 
with values in {O,l} and pea) = 0 whenever a belongs to I". 
This obviously implies MPS, which is equivalent to HB. 

ACKNOWLEDGEMENTS. The authors are very gratefu1 to M.A.Dickmann 
and R.O.Cignoli, who kindly and patiently read 
our manuscript and gave us some interesti~g 
suggestions. 



54 

REFERENCES 

[1] P.D.BACSICR, EX~~n4ion 00 Bool~an homomo~phi4m4 wi~h bounding 
4~mimo~phi4m4, Journal far Mathematik Band 253 (1971 24-27 

[2] R.BALBES and P.DWINGER, Distributive Lattices (University of 
Missouri Press, 1974). 

[3] J.L .BELL, On ~h~ 4~~~ng~h 00 ~h~ SikOJL4ki EX~~Mion Th~M~m 
oo~ Bool~an a..e.g~b~a4, The Journal for Symbolic Logic, Vo1.48, 
3 (1983), pp.841-845. 

[4} R.CIGNOLI, A Hahn-Banach Th~o~~m oo~ Vi4~~ibu~iv~ La~~ic~4, 
Revista Uni5n Matemitica Argentina, 25 (1971) pp.335-342. 

[5] M.COTLAR, Sob~~ la ~~o~la alg~b~aica d~ la m~dida y ~l ~~o~~­
ma d~ Hahn-Banach, Revista Uni5n Matem§tica Argentina, XXVII 
(1955)·pp.9-24. 

[6] M.COTLAR and R.CIGNOLI, An Introduction to Functionai Analy-
sis (North Rolland Publish Co., 1974). . 

[7] J.D.RALPERN and A.LEVY, Th~ Bool~an Pnim~ Id~al Th~on~m dO~4 
no~ imply ~h~ Axiom 00 Choir. o_, AMS Proc.in Axiomatic Set 
Theory (1971), pp.83-134. 

[8] W.A.J.LUXEMBURG, R~duc~d Pow~n4 00 ~h~ R~al. Numb~n SY4~~m and 
Equival~n~4 00 ~h~ Hahn-Banach Ex~~n4ion Th~o~~m, Int.Symp. 
of the Appl.of Mod~l Theory to Algebra, Analysis and Probabi­
lity (CIT 1967) pp.123-137. 

[9] W.A.J.LUXEMBURG, A n~mank on Sikon4ki'4 ~x~~n4ion ~h~on~m 
oon homomonphi4m4 in ~h~ ~h~ony 00 Bool~an alg~bna4, Fund. 
Math.LV (1964) pp.239-247. 

[10] A.MONTEIRO, Glnlnali4a~ion d'un ~hlo~em~ d~ R.Siko~4ki 4U~ 
l~4 alg~bn~4 d~ Bool~, Bull.Sc.Math., 2° serie, 89 (1965) 
pp.65-74. 

[11] D.PINCUS, Ind~p~nd~nc~ 00 ~h~ P~im~ Id~al Th~o~~m Onom ~h~ 
Hahn-Banach Th~on~m, Bull.AMS, 78 (1972) pp.766-770. 

[12] R. SIKORSKI, A ~h~o~~m on ~x~~Mion 00 homomonphi4m4, Ann. Soc. 
Pol.Math., 21 (1948) pp.332-335. 

Departamento de Matem§ticas 
Facultad di Ciencias Exactas y Naturales 
Universidad de Buenos Aires 
1428 Buenos Aires 

Recibido en marzo de 1987 
Versi6n corregida noviembre de 1987. 


