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HOROSPHERES IN PSEUDO-SYMMETRIC SPACES

Jorge Vargas

Let G be a connected complex semisimple Lie group and G, an inner
real form of G. In this paper we study the space 6 of all orbits
in G/G, of the totality of unipotent maximal subgroups of G.

INTRODUCTION

Let G, G,, 6 be as above. In this paper we provide a cross sec-
tion of the action of G in 6 (Theorem 4). We also prove that the
orbits of a unipotent maximal subgroup of G in G/G, are closed (Pro-
position 6) and an analogous of the Bruhat decomposition for G
(Proposition 1).

STATEMENTS AND PROOFS

Let G be a complex; connected, semisimple, Lie group. G, an inner
real form of G, and B a Borel subgroup of G, such that HO =B N Go
is a compact, Cartan subgroup of G,. Let H be the complexification
of Hy. Lie groups will always be denoted by capital Roman letters.
The corresponding Lie algebra will be denoted by the corresponding
lower case german letter. The complexification of a real vector
space, will be denote by adding the upperscript C.

Let ¢(g,h) denote the root system of the pair (g,h). Fix K a maxi-
mal compact subgroup of G,, such that H, N K is a maximal torus
of K. K determines a Cartan decomposition of g, = k®p., If a is a

root of the pair (g,h) its corresponding root space lies in G or

pC. In the former case o is called compact and in the second case

noncompact . Let o or bar denote the conjugation of g with respect
to g,. Then for each o in ¢(g,kh) it is possible to find root vec-
tors Y, Y_, such that:
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Y, lies in kG, o(Y Y s [Y,Y 1 = 2, and a(z)

+ ta) = = 2 for a
compact.
. .. C _ _
Ytu lies in p™~, G(Yta) = Y;a , [Ya’Y-a] = Za and a(Za) = 2 for a

noncompact.

Two roots are called strongly orthogonal if neither their sum nor
their difference is a root. Let ¥ denote the system of positive
roots in ¢(g,h) determined by the Lie algebra n of the unipotent
radical N of B. For each noncompact root o in ¥, let

Cy = exp(% (Y_a- Y

))

¢

the inner automorphism associated to cy is usually called "The
Cayley transform associated a'". In [S] is proved that if two posi-
tive noncompact roots are strongly orthogonal, then the associ-
ated Cayley transform commutes. Thus, if S denotes a subset of V¥
consisting of noncohpact strongly orthogonal roots, then, the prod
uct

is well defined.
For any two Lie groups G D H, let

W(G,H) "The Weyl group of H in G"
"denote the normalizer of H in G divided by H. Keeping in mind the
notation written from the beginning we state and prove the first
result of this paper.

PROPOSITION 1. G =VG, cgwB.

S
Here, the union runs over a set of representatives of W(G,H) and

all the subsets S of ¥, such that S consists of strongly orthogo-
nal noncompact roots.

Proof. Since every Borel subgroup of G is equal to its own normal-
izer , the coset space G/B can be identified with the set of maxi-

mal solvable subgroups of G via the map xB - xBx~!. It follows that
this map is equivariant. Now if B, is any Borel subgroup of G, B;
contains a ¢g-invariant Cartan subgroup. Because o(Bj) is another
Borel subgroup of G and by Bruhat's lemma B, N o(B;) contains a
Cartan subgroup. Fix a regular element h in B; N o(B;) since, in
[F] pag.479 is proved that for any regular element h, zh + zo(h)
is regular for suitable z in C, we have that B; contains a ¢-in-
variant regular element. Thus, B; contains a o-invariant Cartan
subgroup T. In [S] is proved that if T is any o¢-invariant Cartan
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subgroup of G, there exists a strongly orthogonal subset S of the
set of noncompact roots in ¥, such that T is G -conjugated to

cg H cgl. Therefore B; is G,-conjugated to a Borel subgroup contain

ing cg H cgl, for some strongly orthogonal set of noncompact roots
in ¥. Since any two Borel subgroupsof G containing H are W(G,H)
conjugated, we conclude that

-1 -1 -1
: Bl =g cg V B w cs' g (g € Go, w € W(G,H) and Cg

a Cayley transform)

- \
Now, if x is in G, B1 =x B x 1 is a Borel subgroup, hence, via the
map between G/B and the set of maximal solvable subgroups of G

described above, we have that x = g cg W b.
Q.E.D.

COROLLARY. If A is any Borel subgrbup of G, then A contains a o-in-
variant Cartan subgroup.

Towards the uniqueness of the decomposition in proposition 1 we
prove

LEMMA 2. Let a be any Borel subalgebra of g and hy,h, two o-inva-
riant Cartan subalgebras of g contained in a. Then, there exists
X € A N G, such that hy, = Ad(X)h; . Here, A stands for Borel sub-
group of G, corresponding to a.

Proof. Let n be thé nilpotent radical of a. Since a = h; @ n and
that a Cartan subalgebra of g, is a Cartan subalgebra of a (I[F]
17.7), and any two Cartan subalgebras of a are A-conjugated ( [F]
17.8) we have that hy, = Ad(n)h;, where n is an element of the uni-
potent radical of A. Because h; and hp are o-invariant we have
that

hy = o(hy) = o(Ad(n)hy) = Ad(o(n))o(hy) = Ad(n)hy

Hence, Ad(n_la(n))hl = h;, so if H; is the Lie group with Lie al-
gebra hl, we have that n'lo(n) = w is in W(G,H ).

If z € hy, in [F] is proved, for any n in the unipotent radical of
a that
Ad(n)Z = Z + n(Z)

where n(Z) is an element of n, which depends on Z and n.
Therefore, for any Z € hl’ since n = o(n)w we have that
Z + nl(Z) = Ad(w)Z + nZ(Z)

where nl(Z) is in n and n,(Z) is an element of n plus its opposite,
Lie algebra. Because g is the direct sum of a plus the opposite Lie
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algebra to n, we have that
Ad(W)Z = Z for any Z in hl'

This allows us to conclude that

n o(n)h° with h0 in Hl'

The equality hj o(n) " !n implies o(h,) = h;l, and because H; is

abelian connected and o-invariant, we can find h1 in H1 such that
= h2 . = -1
hO = h1 H c(hl) h, "

Let n, = nhIl, then n, is in B. On the other hand,

o(n) = o(mo(h]") = o(mh; = o(mh hi'= o(n)o(n) lnh]! = ma]! = n

.. _ =1 _
Thus n, is in A N GO. Also Ad(nl)h1 = Ad(n) Ad(h1 )hl = Ad(n)h1

]
P

Q.E.D.

COROLLARY. If A is any Borel subgroup of G and Hy, H, are o-inva-
riant Cartan subgroups of G which are in A, then H,; is G, N A con-
jugated to H,.

We keep the hypothesis and notation as in proposition 1 and lemma 2.

LEMMA 3. We write

G, cg WB = G, cg,w' B *)

Here Cgs Cgy are Cayley transforms and w,w' are in W(G,H).

Then, the equality (=) holds if and only if there exists W3 in
W(G,,H) such that w3{S U (-S)) = 8' U (-S') and there exists W in

W(G,H) which <s cg-conjugated to an element of W(qy(cgkgl)rﬁGJ),
and <1f w, Zs in W(G,H) satisfying

CS.=W Ca W

3 7S

w, w. w <<n W(G,H).

' =
then w Wy W, W

Proof. If the equality holds, then, there are g.in G, and b in B,
such that

g C. Wb = Cgr w'

S
Hence, A = gc, wb B b_lw-lc;lg'1 =cg, W' B w ol cg}, or
_ -1, -1_-1_-1 _ ' =1 -1
A=g Cg W B “w cg 8 Cgr W Bw Cg
Thus cowHw!lcIlgt =gec H cilgl and ¢, w' Hw ™l Dt -
g Cs s 8 g Cs s s s

-1

= Cgr H Cgr are o-invariant Cartan subgroupsof A [S]. Because of
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lemma 2, there exists b1 €EAN Go which carries g Cg H cglg-1 onto

cgr Hcgr. Thus, cg H cgl and cge H c;} are Go-conjugated. [S] im-
plies that there exists Wy € W(GO,H) such that
w3(S<U (-S)) = s' U (-5").

Now, if B is any noncompact root cg is equal to '"the reflection
about B". Thus, cg is equal to c_g times an element of W(G,H). More

over , in [Vl is proven that, if w € W(GO,H), then c,g is equal to
chw'l or WCBSBW-I (SB = "reflection about B") depending on whether

Ad(w)YB =Y or Ad(w)YB = -Y

w(B) w(B) "

Therefore, we conclude that the equality gcgwb = cg.w' implies that
there exist w3 € W(G,,H), w, product of reflections about roots
in S, such that
= =1,
g Cg W b = WaCgW, Wy W

Set g = wglg, and wy = w4w§1w' then we have that g, is in G, wg
is in Wg and

g, Cg ¥ b = Cg W

1 -1

wl = wBw!

1

Thus, wbBb~ is a Borel subgroup containing wHw = = H,

-1 _ .
hence (wBw ") N Go = H° (Go is inner!').

1 1

-1 -1 -1 -1 -1 _ -1 -1 -1 - -1 -1 .
Now, Cs & csw6Hw6 Cg 8Cg = C5 8 cSHcS g,Cg = wbHb “w is a
o-invariant Cartan subgroup of wBw 1. By lemma 2, there exists h

1

in (wa'l) N G, = H, such that wbib~Yw™! = nHh™! = H. Therefore, b

lies in the normalizer of H in G and in B, which implies b is in H.
Thus w and wb represent the same element of W(G,H). Finally, let

_ -1 -1 = -1,
Wy = Cg W3 gCg. Because W WWa W wb, we have that LA € W(G,H).

Hence w, is in W(G,H) n cgl

conjugated to an element of the Weyl group of cSHr;1 in Go.

-1 .
W(G,_,(cdcg) N G )cg. In words, wg is

Therefore we have proven
Gcg W B = Gocs,w'B implies that
there are wy in W(GO,HO), L in W(G,H) such that
w3(S U (-S)) = S' U (-S")

w_ is in W(G,H) and is conjugated by Cg to an element of

5
W(Go,(cSHcgl) N Go);and if w, is in W(G,Ho) such that

_ -1
Cgr = WaCoW, W,y

' =
then w WaW, WW .
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Conversely. Let w, W3 » W, , Wo and w' as in the hypothesis of the
lemma. Then

-1
' = : =
Gocs,w B G°w3csw4w3 WaW, W W B

= -1 =
Gocswsw B = GocswscS CgW B = Gocsw B.

Q.E.D.

Lemmas 2 and 3 allow us to parametrize in a useful manner the space

of orbits of G,\G by the action of the maximal unipotent subgroup
of G.

Let N; be any maximal unipotent subgroup of G. The orbit of N; by
Gox in G\G is the set {Gxn:ne N}

Let 6 be the set of all orbits of the totality of maximal unipo-
tent subgroups of G. Since the conjugated of a maximal unipotent
subgroup of G is a maximal unipotent subgroup of G, we have that
G acts on 8 by the rule

-1 - .
(GOX_NI)-g=Go xg  (gN g H o, g in G).

From now on, we will only consider this action of G in 6. Let Gos
H,,B as in the beginning of the paper. Let N be the unipotent radical
of B. If N; is any maximal unipotent subgroup of G ( [Hl) there is

g in G such that N, =gN g'1
= (Go xgN).g.

Therefore we conclude:

= -1 _
. Thus, Go X Nl = G0 xgNg "~ =

Any element of 8 is the translate by the action of G to an orbit
of N (N being the unipotent radical of B).

Now, lemma 2 says that any N orbit is equal to an orbit of the
type G,cgw h N (where, h € H, Cg is a Cayley transform and w is
in W(G,H)). Thus, we have proved

THEOREM 4. A family of representatives of the set 0 of all the
orbits of the totality of maximal unipotent subgroups of G in
Go\G by the action of G in 8 is given by

{Gycgw h N: cg ..., w € W(G,H), h € H} and Gocgw h N = G cgiw'h'N
if and only <if S, S', w, w' are related as in lemma 3.

LEMMA 5. Let V be a real finite dimensional vector space and N a
unipotent subgroup of GL(V). Let Vg be a complexification of V

and NC the Zariski closure of N in GL(Vg) (we think of GRL(V) in-
eluded in G&(Vg) in the usual way). Then

i) For every x in V, Nc,x is equal to the Zariski closure of N.X.
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ii) nC.x) NV = N.x.

Proof. Since NC is a unipotent subgroup of Gl(VC), we have that
NC x is closed in VC [Hl , therefore NC x contains the Zariski clo-
sure of N.x. On the other hand, the map T + T(x) is a polynomial
map from NG to Ve hence, it is continuous if we set the Zariski

topology in both NC and Ve

Besides in [B] is proved that the Zariski closure of N is NC, thus

NC x is contained in the Zariski closure of N.x, and we have pro-

ved i).

In order to prove ii) we need to verify that (NC x) NV is contain
ed in N.x. We do it by induction on dimension of V. If dim V = 1,
the unipotent subgroup of G&(V) is {1}.

If dim V > 1. Since, N is a unipotent subgroup of G£(V), Engel's
theorem implies that there exists a non zero v in V such that
n(v) = v for every n in N.

Since NC is the Zariski closure of N, we have that n(v) = v for
every n in NC. By the inductive hypothesis, we conclude that if

T is in NC, a in V, c in C and Tx = a + cv, then there exists § in
N such that Tx = Sx + dv , (d in C).

Now, let T be in NC, such that Tx belongs to V. Owing to the in-
ductive hypothesis, there exist S in N, d in C such that Tx =

= Sx + dv. Since Tx and Sx belong to V, we have that d is real. If
d = 0, we are done.

Ifd #0, let Mbe M = {n in Nc: n(x) = x (Cv)}. It is clear that

M is a Zariski closed subgroup of NC and that st belongs to

M (s7lT(x) = s71(Sx + dv) = x + dsTI(v) = x + dv, STH(V) = v 1i1).
Since x and v are in V, it follows that M is invariant under the
conjugation of NC with respect to N. Therefore M has a real form

M In other words , M, =M NN is a real form of M. Now the

1° 1
map n » n(x) - x from M into Cv is non constant, because S'IT goes
to dv,, which is nonzero. Besides it is a polynomial map. Since
the unique non trivial Zariski closed subgroup of Cv is itself,

we have that the map n -+ n(x)-x is onto. Since, for n in M,
n(x)-x is a real multiple of v we conclude that there exists R in
N such that R(x)-x = -dv (d is real'!l).

Therefore -dv = s~ltx-x = R(x)-x, hence Tx = SR(x). Since SR
belongs to N we conclude the proof of the lemma.
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PROPOSITION 6. Let N be any maximal unipotent subgroup of G. Then
the orbit G, x N of G,x by N in GO\G is closed in GO\G.

Proof. Think of G as a feal Lie group and let GC be its complex-
ification. Since G is a linear Lie group ([W] Wallach) G is contain
ed in GC. Let Gg be the complexification of G, in GC. Since GC
and GS are semisimple Lie groups, the complex homogeneous manifold

GS&GC is a non singular affine variety. Since GS neG = Go, we have

? be the complex-

c X NC is
o 1

that GO\G is a real submanifold of GS\GC. Let N
ification of N; in GC. Then ([H], page 125) the orbit G
closed in Gg\GC. Since, for x in G, the orbit Go X N1 is equal to

(Gg X N?) N G, we have that the orbit Go X N1 is closed in GO\G.

PROPOSITION. Let N1 be any maximal unipotent subgroup of G and let
Gox N1 be¢ an orbit of N1 in GO\G. Let Oy be the conjugation of G
with respect to the real form x-lGo X. Then: 1) The isotropy sub-
group of N1 at Gox i8 the real form of N1 N cx(Nl) determined by

O 2) The isotropy subgroup of N1 at Gox 18 connected.

-1

Proof. {n e N;: Gox n Gox} ={neN:xnx " € Go} =

{neN;:ne x_lGox} =N N (x-lGox).

Thus, if n e N1 and Gox n-= Go x, then ox(n) = n.

[}

Hence o (N; N (x—lGox)) N, N (x'1 G,x) . Therefore
-1 - -1 -1 =
N1 N (x Gox) = (N1 N (x Gox)) n (Ox(Nl N (x GOX))

=N, n (x'ex) n o (N)) n'(x716,x) = (N} no (N))) n (x"'6 %)

Which proves 1. Let's prove the second affirmation. Since, [H],
N1 n ox(Nl) is a unipotent algebric group, it is connected. More-

over, because of a theorem of [B], the group of real points of the
algebraic group N1 n ox(Nl) has finitely many connected components.

Hence, if n belongs to N1 n °x(N1) N (x-lGox), then some power is
in the connected component of N1 N ox(Nl) n (x—lGox).

Say xk

. . -1

is in the connected component of N1 n (UX(NI)) N (x Gox).
Since the exponential map on any real nilpotent connected group
is onto, there exists y in the Lie algebra of Nlrﬁox(N)lﬁ(x-lGJO

such that xk = exp(y). On the other hand, because of Engels theo-
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~rem and ' [F]' any unipotent" aIgebra1c subgroup of Gl(n C) 1s <1mp1y
connected, ‘and hence, [F] the exponent1al map of N Ng (N ) is

,b13ect1ve Thus, the equallty xk = exp(y) = (exp(1/k, y)) implies
”;th?t,x,? exp(1/k y). Hence the group N, noa (N ) n (x G 5 X): -

coﬂn?;}§q°”ﬁ“ TooEo onaodoitiraluenn 000 'jl'. T . Q E.D."

iﬂTﬁeﬂfaq1Oangifdctﬁié‘ﬁgefulf*

PROPOSITION Let K be a complex Lte group, such that the ewponen—
ttal map of X is bzgectzve (for exampZe, K unzpotent and connect—
éd)a‘ Let ‘s be ‘an involutive real automorphtsm of iK; Zef'K e
‘the fiwed point set of 0. and K. thesubset of those elements of- G
K. K..

that are tqken by o into its inverse. Then K

Proof. We want to prove that for a given y in K, there exist x in
X, and z in K_ such that y ="xz: k B

Let b be'b =‘d(y)'1y. It is clear that o(b) = b~!. Since the ex-

ponential map is onto, there exists Y in 'k such:that-b = -exp(Y).
Since o(b) = exp(oY) = b7l = exp(-Y), and the exponential map is
injective, we have that oY = -Y. Thus ;‘=:exp(1/g Y) belongs to_
K.. Let x = yz'l. Then o..) = d(y)o(z'l)'= 0(&)0(2)'1

= Yb 0(2) L. }’ybflz‘ = }’Z:’_’l 3

.x. P 1357
Q.E.D.
PROPOSITION. Let .B .C G be any ‘Borel subgroup: (G :as usual). Let:H
be a o-invariant, Cartan subgroup of B. Let H be. the set of reaZ

points of H. Then B n Gy, = H (N nG ) (N bezng the unzpotent ra-
dtcaZ of BJ o ! e :

Proof If hn belongs to B ‘n"G then hn = o(hn) = o(h)o(n).
Therefore o(n) = o(h) 1hn belongs to B. Since H is o- 1nvarlant
‘we have that c(h) h is in H Thus (the decomp051t10n B =H N)
(says that n = o(n) and o(h) h‘= 1 Hence c(h)

Q. E D.
"The next stepbts to compute the normallzer of an orb1t of N An
G/Go, Because of the eqna11ty N x Go;?.x(x Nx).Go, we have that
anyiorbit_in_éjc”iisﬁtﬁe transiate ef‘an orbit th?pugh the coset
G;. Thus, we conclude. E

The normallzer of any N- orblt in G/G is conjugated (in G) to the
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normalizer of an orbit of the type N.O (0 = coset Go).

Now for a fixed unipotent maximal subgroup N of G, if B denotes
the'unique Borel subgroup containing N, it is clear that

(B N G,) N normalizes the orbit N.0. We would like to prove the
equality. We have been able to prove this only in particular ca-
ses.
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