Revista de la Unión Matemática Argentina Volumen 33, 1987

HOROSPHERES IN PSEUDO-SYMMETRIC SPACES

Jorge Vargas

Let G be a connected complex semisimple Lie group and G_o an inner real form of G. In this paper we study the space θ of all orbits in G/G_o of the totality of unipotent maximal subgroups of G.

INTRODUCTION

Let G, G_0 , θ be as above. In this paper we provide a cross section of the action of G in θ (Theorem 4). We also prove that the orbits of a unipotent maximal subgroup of G in G/G₀ are closed (Proposition 6) and an analogous of the Bruhat decomposition for G (Proposition 1).

STATEMENTS AND PROOFS

Let G be a complex, connected, semisimple, Lie group. G_o an inner real form of G, and B a Borel subgroup of G, such that $H_o = B \cap G_o$ is a compact, Cartan subgroup of G_o . Let H be the complexification of H_o . Lie groups will always be denoted by capital Roman letters. The corresponding Lie algebra will be denoted by the corresponding lower case german letter. The complexification of a real vector space, will be denote by adding the upperscript C.

Let $\Phi(g,h)$ denote the root system of the pair (g,h). Fix K a maximal compact subgroup of G_o , such that $H_o \cap K$ is a maximal torus of K. K determines a Cartan decomposition of $g_o = k \oplus p$. If α is a root of the pair (g,h) its corresponding root space lies in $k^{\mathbb{C}}$ or $p^{\mathbb{C}}$. In the former case α is called compact and in the second case noncompact. Let σ or bar denote the conjugation of g with respect to g_o . Then for each α in $\Phi(g,h)$ it is possible to find root vectors Y_{α} , $Y_{-\alpha}$ such that:

Supported by CONICET, CONICOR and FAMAF.

$$Y_{\pm \alpha}$$
 lies in k^{C} , $\sigma(Y_{\pm \alpha}) = -Y_{\mp \alpha}$, $[Y_{\alpha}, Y_{-\alpha}] = Z_{\alpha}$ and $\alpha(Z_{\alpha}) = 2$ for α compact.

 $Y_{\pm \alpha}$ lies in $p^{\mathbb{C}}$, $\sigma(Y_{\pm \alpha}) = Y_{\pm \alpha}$, $[Y_{\alpha}, Y_{-\alpha}] = Z_{\alpha}$ and $\alpha(Z_{\alpha}) = 2$ for α noncompact.

Two roots are called strongly orthogonal if neither their sum nor their difference is a root. Let Ψ denote the system of positive roots in $\Phi(g,h)$ determined by the Lie algebra n of the unipotent radical N of B. For each noncompact root α in Ψ , let

$$c_{\alpha} = \exp(\frac{\pi}{4} (Y_{-\alpha} - Y_{\alpha}))$$

the inner automorphism associated to c_{α} is usually called "The Cayley transform associated α ". In [S] is proved that if two positive noncompact roots are strongly orthogonal, then the associated Cayley transform commutes. Thus, if S denotes a subset of Ψ consisting of noncompact strongly orthogonal roots, then, the product

$$c_s = \prod_{\alpha \in S} c_\alpha$$

is well defined.

For any two Lie groups $G \supset H$, let

W(G,H) "The Weyl group of H in G"

denote the normalizer of H in G divided by H. Keeping in mind the notation written from the beginning we state and prove the first result of this paper.

PROPOSITION 1. $G = \cup G_0 c_S w B$.

Here, the union runs over a set of representatives of W(G,H) and all the subsets S of Ψ , such that S consists of strongly orthogonal noncompact roots.

Proof. Since every Borel subgroup of G is equal to its own normalizer, the coset space G/B can be identified with the set of maximal solvable subgroups of G via the map $xB + xBx^{-1}$. It follows that this map is equivariant. Now if B_1 is any Borel subgroup of G, B_1 contains a σ -invariant Cartan subgroup. Because $\sigma(B_1)$ is another Borel subgroup of G and by Bruhat's lemma $B_1 \cap \sigma(B_1)$ contains a Cartan subgroup. Fix a regular element h in $B_1 \cap \sigma(B_1)$ since, in [F] pag.479 is proved that for any regular element h, $zh + \overline{z}\sigma(h)$ is regular for suitable z in C, we have that B_1 contains a σ -invariant regular element. Thus, B_1 contains a σ -invariant Cartan subgroup T. In [S] is proved that if T is any σ -invariant Cartan subgroup of G, there exists a strongly orthogonal subset S of the set of noncompact roots in Ψ , such that T is G_o -conjugated to $c_s \ H \ c_s^{-1}$. Therefore B_1 is G_o -conjugated to a Borel subgroup contain ing $c_s \ H \ c_s^{-1}$, for some strongly orthogonal set of noncompact roots in Ψ . Since any two Borel subgroups of G containing H are W(G,H) conjugated, we conclude that

Now, if x is in G, $B_1 = x B x^{-1}$ is a Borel subgroup, hence, via the map *between* G/B and the set of maximal solvable subgroups of G described above, we have that $x = g c_S w b$. Q.E.D.

COROLLARY. If A is any Borel subgroup of G, then A contains a $\sigma\text{-in-variant}$ Cartan subgroup.

Towards the uniqueness of the decomposition in proposition 1 we prove

LEMMA 2. Let a be any Borel subalgebra of g and h_1, h_2 two σ -invariant Cartan subalgebras of g contained in a. Then, there exists $x \in A \cap G_0$ such that $h_2 = Ad(x)h_1$. Here, A stands for Borel subgroup of G, corresponding to a.

Proof. Let *n* be the nilpotent radical of *a*. Since $a = h_1 \oplus n$ and that a Cartan subalgebra of *g*, is a Cartan subalgebra of *a* ([F] 17.7), and any two Cartan subalgebras of *a* are A-conjugated ([F] 17.8) we have that $h_2 = Ad(n)h_1$, where n is an element of the unipotent radical of A. Because h_1 and h_2 are σ -invariant we have that

$$h_2 = \sigma(h_2) = \sigma(\operatorname{Ad}(n)h_1) = \operatorname{Ad}(\sigma(n))\sigma(h_1) = \operatorname{Ad}(n)h_1$$

Hence, $Ad(n^{-1}\sigma(n))h_1 = h_1$, so if H_1 is the Lie group with Lie algebra h_1 , we have that $n^{-1}\sigma(n) = w$ is in W(G,H).

If $z \in h_1$, in [F] is proved, for any n in the unipotent radical of a that

$$Ad(n)Z = Z + n(Z)$$

where n(Z) is an element of n, which depends on Z and n.

Therefore, for any $Z \in h_1$, since $n = \sigma(n)w$ we have that

 $Z + n_1(Z) = Ad(w)Z + n_2(Z)$

where $n_1(Z)$ is in *n* and $n_2(Z)$ is an element of *n* plus its opposite, Lie algebra. Because g is the direct sum of a plus the opposite Lie algebra to n, we have that

Ad(w)Z = Z for any Z in h_1 .

This allows us to conclude that

 $n = \sigma(n)h_0$ with h_0 in H_1 .

The equality $h_o = \sigma(n)^{-1}n$ implies $\sigma(h_o) = h_o^{-1}$, and because H_1 is abelian connected and σ -invariant, we can find h_1 in H_1 such that

$$h_o = h_1^2$$
; $\sigma(h_1) = h_1^{-1}$.

Let $n_1 = nh_1^{-1}$, then n_1 is in B. On the other hand, $\sigma(n_1) = \sigma(n)\sigma(h_1^{-1}) = \sigma(n)h_1 = \sigma(n)h_0h_1^{-1} = \sigma(n)\sigma(n)^{-1}nh_1^{-1} = nh_1^{-1} = n_1$. Thus n_1 is in $A \cap G_0$. Also $Ad(n_1)h_1 = Ad(n) Ad(h_1^{-1})h_1 = Ad(n)h_1 = h_2$. Q.E.D.

COROLLARY. If A is any Borel subgroup of G and H_1 , H_2 are σ -invariant Cartan subgroups of G which are in A, then H_1 is $G_o \cap A$ conjugated to H_2 .

We keep the hypothesis and notation as in proposition 1 and lemma 2.

LEMMA 3. We write

 $G_{o} c_{S} w B = G_{o} c_{S} w' B \qquad (*)$

Here c_S , $c_{S'}$ are Cayley transforms and w,w' are in W(G,H). Then, the equality (*) holds if and only if there exists w_3 in W(G₀,H) such that $w_3(S \cup (-S)) = S' \cup (-S')$ and there exists w in W(G,H) which is c_S -conjugated to an element of W(G₀, $(c_SHc_S^{-1}) \cap G_0)$), and if w_4 is in W(G,H) satisfying

 $c_{S'} = w_3 c_S w_4 c_S^{-1}$ then w' = w_3 w_4 w_5 w in W(G,H).

Proof. If the equality holds, then, there are g in G_0 and b in B, such that

 $gc_{s}wb = c_{s}w'$

Hence, A = g c_s w b B $b^{-1}w^{-1}c_s^{-1}g^{-1} = c_s$, w' B w'⁻¹ c_s^{-1} , or A = g c_s w $B^{-1}w^{-1}c_s^{-1}g^{-1} = c_s$, w' Bw'⁻¹ c_s^{-1} .

Thus $g c_s w H w^{-1} c_s^{-1} g^{-1} = g c_s H c_s^{-1} g^{-1}$ and $c_s, w' H w'^{-1} c_s^{-1} = c_s, H c_s^{-1}$ are σ -invariant Cartan subgroups of A [S]. Because of

lemma 2, there exists $b_1 \in A \cap G_0$ which carries $g c_s H c_s^{-1} g^{-1}$ onto c_s , $H c_s$,. Thus, $c_s H c_s^{-1}$ and c_s , $H c_s^{-1}$ are G_0 -conjugated. [S] implies that there exists $w_3 \in W(G_0, H)$ such that

$$w_{2}(S \cup (-S)) = S' \cup (-S').$$

Now, if β is any noncompact root c_{β}^2 is equal to "the reflection about β ". Thus, c_{β} is equal to $c_{-\beta}$ times an element of W(G,H). More over, in [V] is proven that, if $w \in W(G_o, H)$, then $c_{w\beta}$ is equal to $wc_{\beta}w^{-1}$ or $wc_{\beta}S_{\beta}w^{-1}$ (S_{β} = "reflection about β ") depending on whether $Ad(w)Y_{\beta} = Y_{w(\beta)}$ or $Ad(w)Y_{\beta} = -Y_{w(\beta)}$.

Therefore, we conclude that the equality $gc_Swb = c_S'w'$ implies that there exist $w_3 \in W(G_o, H)$, w_4 product of reflections about roots in S, such that

$$g c_{s} w b = w_{3}c_{s}w_{4}w_{3}^{-1}w'$$

Set $g_1 = w_3^{-1}g$, and $w_6 = w_4 w_3^{-1} w'$ then we have that g_1 is in G_0 , w_6 is in W_C and

 $g_1 c_s w b = c_s w_6$

Thus, $wbBb^{-1}w^{-1} = wBw^{-1}$ is a Borel subgroup containing $wHw^{-1} = H$, hence $(wBw^{-1}) \cap G_o = H_o$ (G_o is inner!). Now, $c_s^{-1}g_1^{-1}c_sw_6Hw_6^{-1}c_s^{-1}g_1c_s^{-1} = c_s^{-1}g_1^{-1}c_sHc_s^{-1}g_1c_s = wbHb^{-1}w^{-1}$ is a σ -invariant Cartan subgroup of wBw^{-1} . By lemma 2, there exists h in $(wBw^{-1}) \cap G_o = H_o$ such that $wbHb^{-1}w^{-1} = hHh^{-1} = H$. Therefore, b lies in the normalizer of H in G and in B, which implies b is in H. Thus w and wb represent the same element of W(G,H). Finally, let $w_5 = c_s^{-1}w_3^{-1}gc_s$. Because $w_5 = w_4w_3^{-1}w'wb$, we have that $w_5 \in W(G,H)$. Hence w_5 is in W(G,H) $\cap c_s^{-1} W(G_o, (c_sHc_s^{-1}) \cap G_o)c_s$. In words, w_5 is conjugated to an element of the Weyl group of $c_sHc_s^{-1}$ in G_o .

 $G_o c_S W B = G_o c_S W'B$ implies that there are W_3 in $W(G_o, H_o)$, W_5 in W(G, H) such that $W_3(S U (-S)) = S' U (-S')$

 w_5 is in W(G,H) and is conjugated by c_8 to an element of $W(G_o, (c_8Hc_8^{-1}) \cap G_o)$; and if w_4 is in W(G,H_o) such that

$$c_{S'} = w_3 c_S w_4 w_3^{-1}$$

w' = w_3 w_4 w_5 w.

then

Conversely. Let w, \mathbf{w}_3 , \mathbf{w}_4 , \mathbf{w}_5 and w' as in the hypothesis of the lemma. Then

$$G_{o}c_{S}, w'B = G_{o}w_{3}c_{S}w_{4}w_{3}^{-1}w_{3}w_{4}w_{5}w B =$$

= $G_{o}c_{S}w_{5}w B = G_{o}c_{S}w_{5}c_{S}^{-1}c_{S}w B = G_{o}c_{S}w B.$
Q.E.D.

Lemmas 2 and 3 allow us to parametrize in a useful manner the space of orbits of $G_0 \setminus G$ by the action of the maximal unipotent subgroup of G.

Let N_1 be any maximal unipotent subgroup of G. The orbit of N_1 by G_0x in $G_0\backslash G$ is the set $\{G_0x n: n \in N_1\}$.

Let θ be the set of all orbits of the totality of maximal unipotent subgroups of G. Since the conjugated of a maximal unipotent subgroup of G is a maximal unipotent subgroup of G, we have that G acts on θ by the rule

$$(G_{o} \times N_{1}) \cdot g = G_{o} \times g^{-1} (g N_{1} g^{-1}) (x, g \text{ in } G).$$

From now on, we will only consider this action of G in θ . Let G_o , H_o , B as in the beginning of the paper. Let N be the unipotent radical of B. If N_1 is any maximal unipotent subgroup of G ([H]) there is g in G such that $N_1 = g N g^{-1}$. Thus, $G_o \propto N_1 = G_o \propto g N g^{-1} = (G_o \propto g N) \cdot g$.

Therefore we conclude:

Any element of θ is the translate by the action of G to an orbit of N (N being the unipotent radical of B).

Now, lemma 2 says that any N orbit is equal to an orbit of the type $G_o c_S w$ h N (where, $h \in H$, c_S is a Cayley transform and w is in W(G,H)). Thus, we have proved

THEOREM 4. A family of representatives of the set θ of all the orbits of the totality of maximal unipotent subgroups of G in $G_o \setminus G$ by the action of G in θ is given by $\{G_o c_S w \ h \ N: \ c_S \ \dots, \ w \in W(G,H), \ h \in H\}$ and $G_o c_S w \ h \ N = G_o c_S w'h'N$ if and only if S, S', w, w' are related as in lemma 3.

LEMMA 5. Let V be a real finite dimensional vector space and N a unipotent subgroup of GL(V). Let $V_{\mathbf{C}}$ be a complexification of V and N^C the Zariski closure of N in GL(V_C) (we think of GL(V) included in GL(V_C) in the usual way). Then

i) For every x in V, N^{C} , x is equal to the Zariski closure of N.x.

ii) $(N^{\mathbf{C}}.x) \cap V = N.x.$

Proof. Since $N^{\mathbb{C}}$ is a unipotent subgroup of $G^{\ell}(V_{\mathbb{C}})$, we have that $N^{\mathbb{C}}$ x is closed in $V_{\mathbb{C}}$ [H], therefore $N^{\mathbb{C}}$ x contains the Zariski closure of N.x. On the other hand, the map $T \rightarrow T(x)$ is a polynomial map from $N^{\mathbb{C}}$ to $V_{\mathbb{C}}$, hence, it is continuous if we set the Zariski topology in both $N^{\mathbb{C}}$ and $V_{\mathbb{C}}$.

Besides in [B] is proved that the Zariski closure of N is N^{C} , thus N^{C} x is contained in the Zariski closure of N.x, and we have proved i).

In order to prove ii) we need to verify that $(N^{\mathbb{C}} x) \cap V$ is contained in N.x. We do it by induction on dimension of V. If dim V = 1, the unipotent subgroup of $G\ell(V)$ is {1}.

If dim V > 1. Since, N is a unipotent subgroup of $G\ell(V)$, Engel's theorem implies that there exists a non zero v in V such that n(v) = v for every n in N.

Since N^{C} is the Zariski closure of N, we have that n(v) = v for every n in N^{C} . By the inductive hypothesis, we conclude that if T is in N^{C} , a in V, c in C and Tx = a + cv, then there exists S in N such that Tx = Sx + dv, (d in C).

Now, let T be in N^C, such that Tx belongs to V. Owing to the inductive hypothesis, there exist S in N, d in C such that Tx = = Sx + dv. Since Tx and Sx belong to V, we have that d is real. If d = 0, we are done.

If $d \neq 0$, let M be M = {n in N^C: $n(x) \equiv x (C_v)$ }. It is clear that M is a Zariski closed subgroup of N^C and that S⁻¹T belongs to M (S⁻¹T(x) = S⁻¹(Sx + dv) = x + dS⁻¹(v) = x + dv, S⁻¹(v) = v !!!). Since x and v are in V, it follows that M is invariant under the conjugation of N^C with respect to N. Therefore M has a real form M₁. In other words , M₁ = M \cap N is a real form of M. Now the map n \rightarrow n(x) - x from M into Cv is non constant, because S⁻¹T goes to dv₁, which is nonzero. Besides it is a polynomial map. Since the unique non trivial Zariski closed subgroup of Cv is itself, we have that the map n \rightarrow n(x)-x is onto. Since, for n in M₁, n(x)-x is a real multiple of v we conclude that there exists R in N such that R(x)-x = -dv (d is real!!).

Therefore $-dv = S^{-1}Tx - x = R(x) - x$, hence Tx = SR(x). Since SR belongs to N we conclude the proof of the lemma.

PROPOSITION 6. Let N be any maximal unipotent subgroup of G. Then the orbit $G_{o} \ge N$ of $G_{o} \ge N$ in $G_{o} \setminus G$ is closed in $G_{o} \setminus G$.

Proof. Think of G as a real Lie group and let G^{C} be its complexification. Since G is a linear Lie group ([W] Wallach) G is contain ed in G^{C} . Let G_{o}^{C} be the complexification of G_{o} in G^{C} . Since G^{C} and G_{o}^{C} are semisimple Lie groups, the complex homogeneous manifold $G_{o}^{C} \setminus G^{C}$ is a non singular affine variety. Since $G_{o}^{C} \cap G = G_{o}$, we have that $G_{o} \setminus G$ is a real submanifold of $G_{o}^{C} \setminus G^{C}$. Let N_{1}^{C} be the complexification of N_{1} in G^{C} . Then ([H], page 125) the orbit $G_{o}^{C} \times N_{1}^{C}$ is closed in $G_{o}^{C} \setminus G^{C}$. Since, for x in G, the orbit $G_{o} \times N_{1}$ is equal to $(G_{o}^{C} \times N_{1}^{C}) \cap G$, we have that the orbit $G_{o} \times N_{1}$ is closed in $G_{o} \setminus G$.

PROPOSITION. Let N_1 be any maximal unipotent subgroup of G and let $G_0 \times N_1$ be an orbit of N_1 in $G_0 \setminus G$. Let σ_x be the conjugation of G with respect to the real form $x^{-1}G_0 \times I$. Then: 1) The isotropy subgroup of N_1 at $G_0 \times I$ is the real form of $N_1 \cap \sigma_x(N_1)$ determined by σ_x . 2) The isotropy subgroup of N_1 at $G_0 \times I$ is connected.

Proof. { $n \in N_1$: $G_0 x n = G_0 x$ } = { $n \in N_1$: $x n x^{-1} \in G_0$ } = = { $n \in N_1$: $n \in x^{-1}G_0 x$ } = $N_1 \cap (x^{-1}G_0 x)$.

Thus, if $n \in N_1$ and $G_o x n = G_o x$, then $\sigma_x(n) = n$. Hence $\sigma_x(N_1 \cap (x^{-1}G_o x)) = N_1 \cap (x^{-1}G_o x)$. Therefore $N_1 \cap (x^{-1}G_o x) = (N_1 \cap (x^{-1}G_o x)) \cap (\sigma_x(N_1 \cap (x^{-1}G_o x))) =$ $= N_1 \cap (x^{-1}G_o x) \cap \sigma_x(N_1) \cap (x^{-1}G_o x) = (N_1 \cap \sigma_x(N_1)) \cap (x^{-1}G_o x).$

Which proves 1. Let's prove the second affirmation. Since, [H], $N_1 \cap \sigma_x(N_1)$ is a unipotent algebric group, it is connected. Moreover, because of a theorem of [B], the group of real points of the algebraic group $N_1 \cap \sigma_x(N_1)$ has finitely many connected components. Hence, if n belongs to $N_1 \cap \sigma_x(N_1) \cap (x^{-1}G_ox)$, then some power is in the connected component of $N_1 \cap \sigma_x(N_1) \cap (x^{-1}G_ox)$. Say x^k is in the connected component of $N_1 \cap (\sigma_x(N_1)) \cap (x^{-1}G_ox)$. Since the exponential map on any real nilpotent connected group is onto, there exists y in the Lie algebra of $N_1 \cap \sigma_x(N) \cap (x^{-1}G_ox)$ such that $x^k = \exp(y)$. On the other hand, because of Engels theo-

rem and [F] any unipotent algebraic subgroup of Gl(n,C) is simply connected, and hence, [F] the exponential map of $N_1 \cap \sigma_x(N_1)$ is bijective. Thus, the equality $x^k = \exp(y) = (\exp(1/k y))^k$ implies that x = exp(1/k y). Hence the group $N_1 \cap \sigma_{v}(N_1) \cap (x_2^{-1}G_x x)$ is connected. ni 3 to martsuffraignon and of 10 tal . 20(E.D.* b The following fact is useful. $e_{n}^{\infty} e^{\mathbf{c}}$ is a non-singular affine variaty. Since $e_{n}^{\mathbf{c}} \in \mathbb{G}$ a e_{n} we have PROPOSITION. Let K be a complex Lie group, such that the exponential map of K is bijective (for example, K unipotent and connected). Let σ be an involutive real automorphism of K; let K, be the fixed point set of σ and $K_{\rm L}$ the subset of those elements of Gthat are taken by σ into its inverse. Then $K = K_{\alpha}K_{\alpha}$. Proof. We want to prove that for a given y in K, there exist x in K and z in K such that y = xz. Let b be $b = \sigma(y)^{-1}y$. It is clear that $\sigma(b) = b^{-1}$. Since the exponential map is onto, there exists Y in k such that $b = \exp(Y)$. Since $\sigma(b) = \exp(\sigma Y) = b^{-1} = \exp(-Y)$, and the exponential map is injective, we have that $\sigma Y = -Y$. Thus $z = \exp(1/2 Y)$ belongs to K_. Let x = yz⁻¹. Then $\sigma_{(..)} = \sigma(y)\sigma(z^{-1}) = \sigma(y)\sigma(z)^{-1} =$ $= yb^{-1}\sigma(z) \xrightarrow{-1} \xrightarrow{-1} yb^{-1}z \xrightarrow{-1} yz^{+1} \xrightarrow{-1} x \cdot (x_{2} + x_{2}) yb^{-1}z \xrightarrow{-1} yz^{+1} \xrightarrow{-1} x \cdot (x_{2} + x_{2}) yb^{-1}z \xrightarrow{-1} yz^{+1} \xrightarrow{-1} x \cdot (x_{2} + x_{2}) yb^{-1}z \xrightarrow{-1} yz^{+1} \xrightarrow{-1} x \cdot (x_{2} + x_{2}) yb^{-1}z \xrightarrow{-1} yz^{+1} \xrightarrow{-1} x \cdot (x_{2} + x_{2}) yb^{-1}z \xrightarrow{-1} yz^{+1} \xrightarrow{-1} x \cdot (x_{2} + x_{2}) yb^{-1}z \xrightarrow{-1} yz^{+1} \xrightarrow{-1} yz^{+1} \xrightarrow{-1} x \cdot (x_{2} + x_{2}) yb^{-1}z \xrightarrow{-1} yz^{+1} \xrightarrow{-1} yz^{+1}$ Q.E.D. $(\mathbf{x}_{i})^{(m)}\mathbf{x}_{i} \otimes \mathbf{x}_{i} \otimes \mathbf{x}$

PROPOSITION. Let $B \subset G$ be any Borel subgroup (G as usual). Let H be a σ -invariant, Cartan subgroup of B. Let H_{σ} be the set of real points of H. Then $B \cap G_{\sigma} = H_{\sigma}$ ($N \cap G_{\sigma}$) (N being the unipotent radical of B).

Proof. If hn belongs to $B \cap G_o$ then $hn = \sigma(hn) = \sigma(h)\sigma(n)$. Therefore $\sigma(n) = \sigma(h)^{-1}hn$ belongs to B. Since H is σ -invariant, we have that $\sigma(h)^{-1}h$ is in H. Thus (the decomposition B = H N) says that $n = \sigma(n)$ and $\sigma(h)^{-1}h = 1$. Hence $\sigma(h) = h$.

The next step is to compute the normalizer of an orbit of N in G/G_o . Because of the equality N x $G_o = x(x^{-1}Nx) \cdot G_o$, we have that any orbit in G/G_o is the translate of an orbit through the coset G_o . Thus, we conclude.

The normalizer of any N-orbit in G/G_{o} is conjugated (in G) to the

normalizer of an orbit of the type N.O ($0 = \text{coset } G_0$).

Now for a fixed unipotent maximal subgroup N of G, if B denotes the unique Borel subgroup containing N, it is clear that $(B \cap G_0)$ N normalizes the orbit N.O. We would like to prove the equality. We have been able to prove this only in particular cases.

REFERENCES

- [B] Borel-Tits, Algebraic Groups Publications IHES, 27 (1965).
- [F] Frendenthal de Vries, Linear Lie Groups, Academic Press. N.Y.
- [H] Humphreys, Linear Algebraic Groups, Springer Verlag.
- [S] Schmid, W. On the characters of the Discrete Series (The Hermitean Symmetric case) Inv.Math, Vol. 30, 47-144, (1975).
- [V] Vargas, J. Some explicit formulae for the Discrete Series of a split Semisimple Lie Group. Notas de Matemática IMAF, N°1.
- [W] Wallach, Harmonic Analysis on homogeneous spaces. Marcel Dekker.

FAMAF-CIEM Ciudad Universitaria 5000 Córdoba, Argentina

Recibido en julio de 1987. Versión final diciembre de 1988.