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STURM-LIOUVILLE PROBLEMS FOR THE SECOND“ORDER EULER
OPERATOR DIFFERENTIAL EQUATION

Lucas Jédar

SUMMARY . By means of the reduction to an algebraic operator problem,
explicit expressions for solutions of Sturm-Liouville problems for
the second order Euler operator differential equation are given.

1. INTRODUCTION.

The classical theory of ordinary differential equations [2,6], stu-
dies the eigenvalue problem and the expressions of solutions for
Sturm-Liouville problems of the type

(p(t)x")"+A(r(t)-q(t))x = 0
alx(a)+azx'(a) =0
blx(b)+b2x'(b) =0

0<a<t<b

where A is a real parameter and p,q and r are continuous functions
on the interval [a,b]. Second order differential equations in Hil-
bert space occur frequently in vibrational systems [5,9], statis-
tical physics [17], etc. These equations have been studied by se-
veral authors with different techniques [3-4,8,10,12,13,17].

In this paper we consider the Sturm-Liouville problem
£2x() () +a X (£)+2A X(2) = 0
E,X(2)+E XM (a) = 0
(1.1
F,X(b)+F, X1 (b) = 0
0<as<t<b

where X(t), Aj, for j = 0,1, E;,F,, for i = 1,2, are bounded 1i-
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near operators on a complex separable Hilbert space H and A is a
complex parameter. We are interested in finding existence conditions
and explicit expressions of solutions for the problem (1.1). Some

analogous problems to (1.1) have been studied with different tech-
niques in [11].

Throughout this paper L(H) denotes the algebra of all bounded 1li-
near operators on H. If T lies in L(H), its spectrum o(T) is the
set of all complex numbers z such that zI-T is not invertible in
L(H). The point spectrum of T, denoted cp(T) is the set of all com-
plex numbers z such that zI-T is not injective. From [1,p.240], it
follows that z lies in op(T), if and only if, zI-T is a left divi-
sor of zero in L(H), this is, there exists a nonzero operator S in
L(H) such that (zI-T)S = 0.

Finally we recall that if W is an operator in L(H) with a closed
range, then the orthogonal generalized inverse of W is a bounded
operator in L(H) denoted by W', see [14,p.60-65].

2, EXPLICIT SOLUTIONS

Let us consider the second order Euler operator differential equa-
tion

tzx(z)(t)+tA1X(1)(t)+AA°X(t) =0 (1.2)
Making the change of variable t = exp(u), the equation (1.2) is re-

duced to an equivalent one with independent variable u. This new
equation takes the form

i+(A1-1)X+AA°x =0 (2.2)

In an analogous way to the scalar case we can obtain a pair of so-
lutions of equation (2.2) from a pair of solutions of the associ-
ated algebraic operator equation

UZ+ (A -I)USA = 0 (3.2)
It is clear that if X;, for i = 0,1, are solutions of equation

(3.2), then Z;(t) = exp(tX;), are solutions of equation (2.2).

The resolution problem of equation (3.2) is closely related to the
problem of the linear factorization of the polynomial operator

L(z) = zz+(A1-I)z+AAO. In fact, equation (3.2) is solvable, if and

only if, L(z) admits a linear factorization [5]. If H is a finite-
dimensional space, it occurs if the companion operator
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0 I
C. =
L A I-A
o 1

is diagonalizable, [15]. For instance, if the eigenvalues of Cj
are simple, that is, when the Jordan matrix of Cy is diagonal. In
[71 it is proved that if H is infinite-dimensional a lot of equa-
tions of the type (3.2) are solvable. However, equation (3.2) can
be unsolvable, for instance, if A, =T and XA, is an unilateral
weighted shift operator, equation (3.2) is unsolvable, [16,p.63].
A methodology for solving equation (3.2) by reduction to an
easier equation of first order is given in [7].

By reduction to a first order extended linear system on H®H in
the natural way, it is well known that a Cauchy problem for equa-
tion (2.2) has only one solution. The following result permits to
éxpress any solution of (2.2) in terms of the exponential func-
tions Zi(t) = exp(txi), for i = 0,1. Notice that it is like the
scalar case, but we need to impose certain conditions to the solu-
tions Xi of the algebraic operator equation (3.2).

LEMMA 1. Let us consider the operator differential equation (2.2)
where X,, X;, are solutions of equation (3.2) such that X;-X, is
invertible in L(H), then any solution X(t)‘of equation (2.2) <s
uniquely expressed in the form

X(t) = Zo(t)C+Zl(t)D (4.2)

where the operators C,D are given by the expressions

C = exp(-aX ){C_+(X;-X )" (X C -C;)}

-1 (5.2)
D = exp(-aXl){Xl-Xo) (Cl-XOCO)}

where

c =x , ¢ =xWP.

o 1
Proof. It is clear that for any operators C and D, the operator
function X given by (4.2) satisfies the equation (2.2). From the
uniqueness of solutions for a Cauchy problem related to this equa
tion [8], in order to prove the lemma we must show that given a
solution X of (2.2), there is a unique pair of operators C and D
such that the representation (4.2) is available.

By differentiation in (4.2) it follows that X} (t) = Z,(t)X,C +

+2,(t)X;D, thus taking into account the initial conditions, the
operators C and D must verify

Co= X(a) = exp(aXO)C+exp(aX1)D
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. -
C1 = X( )(a) = exp(axo)X°C+exp(aX1)X1D
or equivalently

exp(axo) exp(axl) C Co

) = (6.2)
Xoexp(axo) Xlexp(axl) D ¢,

Let S be the operator matrix appearing in the left hand side of
eduation (6.2). It is easy to show that S is invertible and that

st is given by the operator matrix

. exP(-aXo){I+(X1-X°)_1X°} -exp(-a)(o)()(1-)(0)'1
S- =

-exp(-aX;) (X, -X_) 7'X_ exp(-aX,) (X,-X_)71]
Hence the result is established.

The following result characterizes the existence of nontrivial so-
lutions of the boundary value problem (1.1) and it yields an ex-
plicit expression of solutions when they exist.

THEOREM 2. Let us consider the boundary value problem (1.1) and
let X,,X; be solutions of (3.2) such that X,-X, 8 invertible.
Let W be the following operator matrixz

(E1+E2X°)exp(axo) (E1+E2X1)exp(aX1)
W= (7.2)
(F1+F2X°)exp(bxo) (F1+F2X1)exp(bxl)

Then

(i) The only solution of problem (1.1) is the trivial one
X(t) = 0, 2f and only if 0 & cp(W).

(ii) If the operator E1+E2X° 18 itnvertible and we define the ope-
rator )
V= (F1+F2X1)exp(bxl)-(F1+F2Xo)exp((b-a)xo)(E1+E2Xb)- (E1+E2X1)exp(axl)
then the condition 0 & UP(V) 18 equivalent to the condition
0 ¢ op(W) expressed in (i).

(iii) If H Zs finite-dimensional, there are nontrivial solutions
of (1.1), 2f and only if W is singular.

(iv) If W has a closed range and wh denotes its orthogonal gene-
ralized inverse, then the general solution of (1.1) Zs gi-
ven by (4.2) where C,D are given by the expression
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C
[ ] = (I-W'wWz ,
D

where 1 is the identity operator in L(H® H) and Z is an ar-

A

bitrary operator of the form L = [ 1] » with Z; € L(H),
lz,

for i ='1,2.

Proof. (i) From lemma 1, it is sufficient to find operators C,D,
non simultaneously zero, such that the operator function defined

by (4.2) satisfies the boundary value conditions appearing in (1.1).
Notice that this is equivalent to the existence of an nonzero so-
lution (C,D)‘of the algebraic system

-0

From (8.2), there are operators C,D non simultaneously zero which
satisfy this equation, if and only if, W is a left divisor of zero,
this is, 0 & o,(W).

(ii) Let W = (Wij), for 1 < i, j <2, the operator matrix defined
by (7.2). From the hypothesis, the operator Wl1 = (E1+E£ggexp(axo)

is invertible. Thus we can decompose W in the following way

-1
I 0 w 0 I W, W
11 1171

W= . . 2 (9.2)
UYL B U PP PPLITLIPY I

It is clear that the first and the third factor in the right hand

side of (9.2) are invertible operators on H® H. From here the con-

dition 0 ¢ op(W) is equivalent to the condition

-1 - -1 .
0 ¢ op(wzz-WZIWIIle). Notice that sz-wuwuw12 is-the operator

V given in (ii).
(iii) If H is finite-dimensional then the point. spectrum op(W)

coincides with the spectrum o(W).

(iv) The result is a consequence of proposition (1.4) of [14,p.8]
and from [14,p.60-65]. .



[1]
[2]

[3)
[4]

{5}
(6]
7]
(8]
{91
[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

77

REFERENCES

S.K.Berberian, Lectures on funciional analysis and operator
theony, Springer Verlag, N.Y., 1974,

E.A.Coddington and N.Levinsecn, Theory of oadinany differen-
tial equations, McGraw-Hill, 1955,

Ju.A.Dubinskii, On some operaforn differential equations of
arbitrary onder, Math.U.S.S.R. Sbornik, Vol.19 (1973),N°1,
pp.l1-21,

B.0.Fattorini, Second Order Linear Differeniial Equaitions in
Banach Spaces, North-Holland Math. Studies N°.108 (Bd.L.
Nachbin), 1985.

1.Gohberg, P.Lancaster and L.Rodman, Matrix Polynomials, Aca
demic Press 1982.

E.L.Ince, Oadinary differential equations, Dover, 1527.

L.J8dar, Boundary Value ProbLems and Cauchy Problems fox
Second Order Operator Equaiions, Linear Algebra and its Ap-
plications 83(1986), 29-38.

S.G.Krein, Linear Differential Equations in Banach Space,
Trans.Math.Mon. Vol.29, Amer.Math.Soc., 1971,

P.Lancaster, Lambada Matrices and Vibrating Systems, Perga-
mon, Oxford, 1966.

V.G.Limanski, On differential operator equaitions of second
onder, Math. U.S.S.R. Izvestija Vo0l1l.9(1975), N°6,pp.1241-1277,

P.A.Misnaevski, On the spectral theory for the Stuam-Liou-
ville equation with operator coefficient, Math.U.5.S5.R.
Izvestija, Vol.10(1976), pp.145-180.

J.P.McClure and R.Wong, Indinite systems of differential
equations, Canad.J.Math.(1976), 1132-1145.

J.P.McClure and R.Wong, Infinite systems of differential
equations 11, Carad.J.Math.(19279), 596-603,

M.Z.Nashed and G.F.Votruba, A Unified Theory o4 Generalized
Inverses, 4in Generalized Inverses and Applicaticns (M.Z.
Nashed Ed.), Academic Press, N.Y., 1976.

L.Rodman, On factorization of operator polynomials and ana-
Lytic operator functions, Rocky Mountain J.Math.16(1986),
153-162.

. A.L.Shields, Wedighted shift operators and anafytic function

theory, Math.Surv.N°13, Amer.Math.Soc.(C.Pearcy,Ed.),1974.

S.Steinberg, Infinile systems of oadinary. differenticl equa-
tions with unbounded coefficients and moment problems, J.
Math.Anal.Appl.41(1973), 685-694.

Departamento de Matemdtica Aplicada
Universidad Polit&cnica de Valencia
Apdo. 22.012, Valencia, Spain.

Recibido en abril de 1986.
Versidn corregida febrero de 1989.



