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I. INTRODUCTION

We consider a heat conducting material occuping 2, a bounded domain of R" (n =1, 2, 3 in
practice ), with a sufficiently regular boundary T' = I';.U Ty U T; (with meas(T;) = | T, | > 0,
IT5| > 0and | T3 | > 0) . We assume, without loss of generality, that the phase-change temperature
is 0°C. We impose a temperature b = b(x) > 0 on I and an outcoming heat flux ¢ = q(x) > 0 on
T, ;. we also suppose that the portion of the boundary 'y (when it exists) is a wall impermeable to
heat, i.e. the heat flux on I‘3‘ is null. If we consider in Q a steady-state heat conduction problem, then
we are interested in finding sufficient and/or necessary conditions for the heat flux q on I"-_; to obtain a
change of phase in €, that is, a steady-state two-phase Stefan problem in Q. Following [Tal] we study

the temperature 0 = 0(x) , defined for x € Q. The set  can be expressed in the form :
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(1) Q= uUQUuUL.

where
Q;={xe9 / o(x)<0},
@) _n,:{xen/o(x)>o},
L ={x€Q/0(x)=0},

are the solid phase, the liquid phase and the free boundary (e.g. a surface in R?) that separates them

respectively. The temperature @ can be represented in  in the following way :
el(x)<0’ erla
©)) 0(x) = 0, xX€L,

0,(x) >0, x€Q, ,

and satisfies the conditions below :

DAg, =0 inQ (i=12) ,

D0 =0=0, kP =k P2 ot
(4)
iii) 0, | p = b, v %ip =0,
~k Plp, =a i 0lp >0,
v)
~k Gy, =a i el <0,

where ki > 0 is the thermal conductivity of phase i (i = 1 : solid phase, i = 2 : liquid phase ), b > 0

is the temperature given on I'; , and q > 0 is the heat flux given on I', .

Problem (4) represents a free boundary elliptic problem (when £ # ) where the free boundary £
(unknown a priori) is characterized by the three conditions (4ii). Following the idea of [Ba, Dul, Du2,
Fre, Tal] we shall transform (4) into a new elliptic problem but now without a free boundary. If we
define the function u in Q as follows

(5) u=k 6t -k 60— (8=guvt -Lu-) inQ ,
, k, ky

where 6%Tand 6— represent the positive and the negative parts of the function 0 respectively, then
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problem (4) is transformed into

i)Au=0 in D'(Q),
(6) ll)u|P1=B,B=k2b>0,

i) — %y, =a . Plp,=0,
whose variational formulation is given by

) a(u,v—u) = L(v—u) , VveK , uekK ,
where -
V=HQ ., V0={v€'V/v|r1=0},
(8)
K=Kg= {veV/v|y =B},

a(u,v) = J Vu.Vu dx , L(v) =Lq(v) = —I qv dy -
Q T,

Under the hypotheses L € V) (eg. q € L%T,) ) and B € Hl/z(l‘l), there exists a unique
solution of (7) which is characterized by the following minimization problem [BC, Du3, KS, Ro, Ta3]

9) J(u) < J(v) , VveK ,uekK ,

where

(10) I(v) = 3q(v) = L a(vv) — L(v) = S alvy) + Iq vdy .
r,

LEMMA 1: If u = UsB is the unique solution of problem (7) for dataqon 'y and B> 0on T, ,

then we have the monotony property :

(11) B, <B,onT,andqy < qonT, = Ug,B, < Ug,B, in Q.
Moreover,
i
) (12) q>0onT, = UgB < Ma,l),l(1 B inQ ,
and function u = UgB satisfies the equality
(13) a(u—,u—) = J qu—dy
T,

Proof. To prove (11) we shall take into account the following equivalence (Ui = Y4.B, °

iBj
i=1,2):



34

(14) u < u, inﬁéw:Oinﬁ,
where '

(15) w=(u; —u)— .

Since w € Vg , then, if weuse v=u, + w € K32 in the variational equality (7) corresponding

tou;,andv =u; + w € KB1 in the one corresponding to u, and we later subtract them, we have

(16) 0< I (@ — ap) W dy = a(uy — upw) = — a(w,w) <0 ,
r,

thatis,w:_(linQ.

+

We prove (12) in a similar way. Moreover, it is enough to choose v = u™ € K in (7) to obtain

(13).
COROLLARY 2. From (13), we deduce
(17) u—#0in8 & u—#0onT,,

whereq > 0and B > 0.

In paragraph II. we shall consider three problems ( Problem 1 to 3 ) related to (6) or (7).

Now, we replace the condition (4iii) by the following one [Tal] :

80,

—k; 2| p = a (k6 —B) it olp >0,
(18)
90, .
_kIEIIH: a(k 6, —B) if 9|I‘1<0 ,

where a = const. > 0 represents a heat transfer coefficient on I'; . We are interested in studying the

temperature § = 0, , represented in by (3), which satisfies the conditions
(19)  (4i,ii,iv,v) and (18) .

If we define the function uy in Q by (5), then problem (19) is transformed into
i) Au =0 in D'(), '
(20) ii)-g—g|rl=a(u—3),3=k,b>o,

s Ou _ du —
iii) 3n|p2—Qy3;|1"3—0,
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whose variational formulation is given by (u = UsqB ):

-(21) aqg(u,v) = Lan(v) ,VveV,ueyv,
where
sa(ur) = a(uv) +a [uvdy,

(22 h

Lan(v) =Lq(v) + « J Bv dy.
Iy

1/2

Under the hypotheses Lan €V'(eg qeL¥ry)and B € H (Ty) ), there exists a unique

solution of (21) which is characterized by the following minimization problem [BC, Du3, KS, Ro, Ta3]:

(23) G <G(v) , VveV , ueV ,
where
(24) G(v) = Gan(v) = %aa(v,v) - Lan(v) =Jq(v) + % J vidy — «a j Bvdy.
I8} T,
LEMMA 3: Ifu = UaqB is the solution of problem (21) for.data q > 0 on I'y, B> 0 on I} and
a > 0, then we have the following properties (for a given B > 0 ):
(i)uanSBinQ,Va>0,Vq>0.
(u)uangquSBmQ,Va>0,Vq>0,

(25) (iii) uﬂ'lqlB < uﬂzQzB inQ,Va <a;,¥q;<q,
(‘iv)Mzsuan5M1 nQ,YVa>0,Yq>0,
where
(26) M; = My(a,q,B) = MiIr‘l, UsgB * M; = My(a,q,B) = MaLI)\(l UaqB -
Moreover, we have that
(27) aEn_x’_oo UsqB = Uaq strongly in V,

where uqgq is the solution of (7).

Proof. We use a similar method to the one developed in Lemma 1 taking into account that the

bilinear form a, is coercive on V, i.e. [ KS, Tal, Ta3 ]

(28) 3 A >0 / ayv,v) = a(v,v) + I vidy > A “V"V2 ,Vvev.
T,

Moreover , so it is the bilinear form a, and we have
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(29) a‘a(vlv) 2 Ao ”V“V2 yVVvEV, Ag = A1 Min(lva) .

COROLLARY 4 : From (25), we deduce

(30) Ma;_(z UqB =M1 Mia UgqB = Mz -

where the elements M; and M, are defined in (26).
.In paragraph II. we shall consider a problem ( Problem 4 ) related to (20) or (21).

~ NOTE 1. iVlany others free boundary problems for elliptic or parabolic partial differential
equations (of Stefan type) can be found in [ BC, CJ, Cr, Di, Du2, EO, Fri, Li, Ma2, Pr, Ro, Ru, Ta3,
Ta4, Ta6 ).

NOTE 2. We shall denote by (N—n) the formula (n) of Section N and we shall omit N in the

same paragraph. Idem for theorems, lemmas, corolaries, remarks and notes.

We shall also omit the space variable x € 2 for every function defined in Q.

II. ELLIPTIC DIFFERENTIAL PROBLEMS WITH OR WITHOUT PHASE CHANGE.

We shall give four problems, with their corresponding solutions, which are related to mixed
elliptic partial differential equations (three of them are related to problem (I-6) or (I-7) and one of
them is related to problem (I-20) or (I-21)).

Problem 1: For the constant case B > 0 and q > 0, find a constant qy = qo(B) > 0 such that
for q > qo(B) we have a steady-state two-phase Stefan problem in £, that is the solution u of (I-7) is a

function. of non-constant sign in Q.

Remark 1: From (I-17) we deduce that an answer to problem.l is the element q for which u takes

negative values on the boundary T, .
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LEMMA 1: Letu = uq be the unique solution of the variational equality (I-7) for q > 0 (for a
given B > 0). Then
i) The mappings
(1) @>0—ugeV and g>0 — Juqd7 €R
Iy
are strictly decreasing functions.

ii) For allq > 0 and h > 0 we have the following estimates :

/2
@ E gy — vy <0 = 122l 0,

3 I (4 = ugyp) oy S Co=Cullmoll
where 7, is the trace operator (linear and continuous, defined on V), and ay > 0 is the coercivity

constant on V of the bilinear a , i.e. :

@) avv) 2 eollvIE Vv eV, .

iii) For all @ > 0 and h > 0 we have

2
(5) 0< Juqd7— Juq+hd7503h(Ca=CZIFQI1/>0)
r, r,
and therefore the functionq > 0 — J uq dy is continuous.
. T,

Proof. If u; = uq, is the solution of (I-7) for q >0 (i = 1, 2), then we have the following
i

equalities :
(6) a(uy — uy, Uy — uy) = (q; — qy) I(uz —u)dy ,
T,
(7 a(ug,up) — a(uy,uy) = a(uy + uy, uy — uy) = (q; + 92) J(“l —uy)dy ,

Iy
because we take v = u, € K in the variational equality corresponding to u; , and v = u; € K in the

one corresponding to u, , and we add up and subtract both equalities. From (6) and (7) we obtain (2)

and (3).

Let f: RT — R be the real function defined by

®  fa) = uq) = alugquq) +a [ uq dv -
r?
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Remark 2. To solve Problem 1 it is sufficient to find a value q > 0 for which we have f(q) < 0.
We shall further see that this technique can still be improved.

THEOREM 2. i) The function f is differentiable. Moreover, f' .is a continuous and strictly

decreasing function, and it is given by the following expression

(9) f(q) = J ugdy .
. r \
ii) There exists a constant C > 0 such that
(10) a(ug,uq) = C q,
(1)  fa)=-$e¢®+B|T;la .

/

iii) If ¢ > qo(B) , then we obtain a two-phase steady-state Stefan problem in Q (i.e. uq is a function. of

non-constant sign in ), where

(12) qo(B) = 5

iv) Constant C = C(Q,I';,T'y) > 0 is given by
(13) C = a(ug,ug) = j ug dv,
. r,

where uj is the solution of the variational equality

(14) a(ug,v) = I vdy , VveE V, , uz3 € Vg
L,

Moreover, C can be calculated by
(15) c=4[®-uwar,
! £, ‘
for someq > 0.

Proof. We deduce (%) by considering the fact that

flg +h) — f
ag ~ Naxh T (Q)=%juqd~,+§juq+hd¢

Iy [y
which is obtained from (I-7) after elementary manipulations.

Moreover, we have
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(17) uq'=B—qu3 inQ ,

(18) f'(a(B) =0 .

We obtain the thesis by using the fact that if [ uqgdy <0 thenug= # 0 in Q.
T, ’

Remark 3. The|sufficient condition f(q) < 0, to solve Problem 1, was improved by the condition
f (q) < 0, which is!optimal (see examples more later). In the case where, because of symmetry, we
find that the function uq is constant on T, , the sufficient condition, given by (Th.2-iii), is also

necessary to have a steady-state two-phase Stefan problem.

Remark 4. Constant C has the physical dimension :

(19) [C] = (cm)®

where n is the dimension of the space R" .

COROLLARY 3. If we consider the general case b = b(x) > 0 on I'; , we obtain : If function q

satisfies the inequality

(20) Inf _q(x) > k—gchzl Sup b(x)
xe’l, xel
then we have a two-phase steady-state Stefan problem in 2, that is function u = Ugb is of non-

constant sign in Q.

Proof. We apply part (iii) of Theorem 2 and the monotony property (I-11).

Let qc > 0 be the critical heat outgoing flux which characterizes a steady-state two-phase Stefan

problem, that is

q > qc ¢ 3 2-phases,
(21)
q < q¢ ¢ 3 l-phase (tiie liquid phase).

We shall give now some estimates for the critical flux qc [BST).

LEMMA 4. i) Let w denote the solution to

(22) Aw=0in9,w|F1=B,w|F2=0,g—:|F3=0.
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If we det"me

(@) 4 =Mp (- )

thenug > w > 0in @, Vq < q; - Moreover, we have
(24) q; <qc . )
ii) Let P, € T'; and the affine function 7 such that
L | Fl Z B ]

(25) ’(P2)=0 !'II‘,ZO’

ox
. on | Ts 20 .
If we define

- )
(26) 9 = Malz; (-5 lr)

then ug < 7 in Q, Vq > qg . Moreover, we have uq(Pz) <0,Vq >qs and then

27 qc < gs -
iii) On the other hand w < 7in Q and if w # 7 we have q <gs.

Proof. We apply the maximum principle [KS, PW].

Remark 5. A sufficient. condition for such 7 to exist is the existence of supporting hyperplanes o
to Q at P, € T, which are a positive distance away from T, : construct an affine function 7 vanishing
on o (and at P,), such that = | T, > B and there is P, € T, with #(P,) = B . The optimal g5 can
be obtained by selecting P, , ¢ = p, such that dist(s, T',) is the largest. This construction fails if
T, is a flat portion of T, e.g. the side of a triangle @ C R?, T'; being formed by the other two sides and
‘T3 = 0. The fact that ug(P;) < 0 suggests that the second phase appears at P, € T, , the point
\”farthest” from T, . In many cases (c.f. [BST]) the function 7 can be oBtained by satisfying (25) and

,lw(Pl) = B, where P, € T, , P, € T, and dist( P;, P, ) =  Sup  dist(x,T,) . There is no

. x €T,
uniqueness in general for the points Py € T, and P, € T, . For instance, in Example 1 (see below)

there are many P, = (0,y) and P, = (xqo,y), with y € [0,y,].

We shall consider g¢ = qc(2) as a function of the domain Q. Let Q, and 2, be two bounded
domains, with regular boundaries, such that [BST] : -

@) - @ cy, 0@) =TV ur,ur,, a@) =T Ur,uTs,
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where the boundary conditions on I‘Sl) i=12),Tl;and Ty are of the same type as the ones defined
before. Let u; (i = 1, 2} be the solution to problem (I-7) for the domain ©; with data B = B(x)>0
on I‘El)‘a_nd q; = q(x) on Ty (i = 1, 2), that is

(29) 8;(y;, v—u;) = — I q(v—-u)dy ,VveK; ,y €K (=1, 2,
Iy

where
(30) K, = {v € H'(Qi) /v Q)= B}, a;(uv) = I Vu.Vvdx (i=1,2).

THEOREM 5. Under the above hypotheses, we obtain the following property :

(31) 9 <q ol = <y ind.

Moreover, we have that

(32) qc(R3) < ac(y)

that is, g¢ = ‘q¢(R) is a non-increasing function of the domain Q where the order is represented by

conditions (28).
Proof. To prove (31) we shall takg into account the following equivalence
(33) 4, <y ind, & z2=0in8,
where z = (v, — ul)+ € HY(Q,) . Moreover, z | r(l) = 0 because u; < B in Q, , ie
1

u, | 1"(1) < B.By usiﬂg (29) with v = u; + 2 € K, , we have
1

G ayue) = - [ asdy.
Iy

If we extend by 0 the function z to the whole set Q; and we put v = u; + z € K, in (29), we obtain

(35) - Iq, z2dy = ay(uy2) = I Vu, . Vz dx = J Vu, . Vz dx = a,(ug,2) .
T, Q, R
From (34) and (35) we obtain
0 < a,(2,2) = ay(u; — uyz) = I (1 —q3)2dy <0,
Iy
that isz = 0 in £, . On the other hand, (32) follows from (31) by putting q; = q, (= q) .
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We shall bgive now another estimate for qc, by using Poincaré type barriers. Let § € T, be such
that there exists x, ¢ §, with

@) lx-€ll=a>0, {x/Ix-xll<a}nf={¢},
. where a is a positive parametet and || - || is the euclidean norm in R™. The Poincaré barriers at £ €T,
are [Ke] :
p{ -t !, @23
{3“_’ Tx =% 1" } )

(37) vD,a(x’E) = V(x¢) =

where D is a another positive parameter. Let P, € T, , P, € T, be such that

(38) d =Sup dist (xT,) =||P, =P || >0.
x€eT,

Let § = P, € Ty be .Thex“n we have

THEOREM 6. We assume the following hypotesis :

(39) Vip 2B ¢ V(P 2B .
Let qy be defined by o
(40) LRy Y () -

Then we obtain that

(41) Y(x,E) >ug(x) , VYx€Q, Vq>aqy
(42) qc < Qv -
Proof. It following from the monotony property (I-11) and relations ([BST])

AxV(x€) =0 inQ ,

(x = %) . n(x)
PP

o B0 = B0 =~ .

uq(§) <0 . '

%%(x,f) = , Vx€Tr,,

(43)
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Remark 6. Equivalence (39) is an immediate consequence of the monotonicity of V on || x — x|,

for special domains.

Ramuk'l.tLet
4 0={(xy)eR/-E<x<E,~h<y<h},E>0,h>0.

Let T, be the top and bottom sides of this rectanglé, and let T'; be the two vertical sides. We
maintain a temperature b > 0 on T'; ( B=k;b > 0 ) and ask for the minimum heat flux q on T, for
~which the zone { (x,y) € @/ u(x,y) >0 } (whose boundary obviously contains I';) is disconnected, a
region where u < 0 joins the two components of I'; . By introducing a variant of the Poincaré barriers
(37) we obtain that [BST]

(45) q> 'LZTO—E%:T (withh > E) = { u>0 } is disconected.

Problem 2 : For the general case b = b(x) > 0 on I'; and q = q(x) on I, , we consider the
following optimization problem : Find q € Q+ that produces the maximum heat flux on I'; , without
change of phase within Q , i.e. [GT1) :

(46) Max F(q)
q€ Q+

where
F:Q—R / F(q)=lqd'r,
I,
7) Q=H1/2(I‘2),S—={veK/Av=0inQ,%|rs=0},

S+={veS/~v20inQ}, Q+=T1(s+)={qu/uq§o inﬂ}.

The application T : Q — - S is defined by

(48) T(q) = u
where u =uq is the unique solution of (I-7). We consider that the domain Q and the data ~B onT, (eg.
Be 33/2(1‘1)) and q on I'; (e.g. q € Q) are sufficiently regular to have the regularity property u€e
H*(Q) N C%f) (for n < 3, H3(Q) C C°(R) ) [Fri, Gr, MS, Ne]. Moreover, in the three examples
given below, the solution satisfies this condition for the constant case. Therefore, we have that there

will not exist a phase change in € for any heat flux q € Q+.
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THEEOREM 7. (i) The operator T, defined by (48), is an affine and monoctone increasing operator,
that is, there exist u; € S and two new operator T, and T, so that T = T, + T, , where

T,:Q = §/Tiqg=uv, €S ,¥q€Q,
49 |
' T;:Q — 'V / T, is linear and continuous.
(i) Q+ is a convex set and F is a linear (then, convex) functional.

(iii) There exists a unique § € Q+ such that

(50) F(g) = Max + F(q) .
9€Q

Moreover, the element q is defined by
= _ _ Ow
(51) a=-%Ip,

where w is given by (22).

Proof. (i) Let u; € K and u; = uy(q) € V; be the unique solutions to the following problems
[KS] : '
(52) a(u,v—-uy)=0,VWeK, vy €K,

(53) a(uz,v)= —lj qvdy , VveVo,u,GVo .
. 2

We have that u = u; + u; from the uniqueness of problem (I-7); then T, and T can be defined

as follows :

(54) Ty(@)  = v, Tyq) =u; , VqeQ .

(i) Q+ is a convex set due to the fact that T is an affine operator and S* is a convex set.

(iii) The element § € Q+ verifies F(q) < F(3), Vq € Q+, by using the maximum principle.

LetI1: S — R be the linear functional, defined by :

(55) I(v)=—j%d7,Vv€S.
i N I"

Wecan consider a new formulation of the optimization problem (46), as follows :

(56) : Max  I(v) .
ve st

Let ¥, P and G be
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¥ = CYT,) , P={p€\ll/p200n[‘,} (cone)
(87)
Go:S — \I'/Go(v)z—vlr2 ,

then the problem (56) is equivalent to

(58) (v) .

Max I
veES Gyv) <0
If u is a solution of (58), there exists a Lagrange multiplier 4 € ¥* (dual of ¥) with z > 0 (i.e.
<p,p> = [ ppdy 20, Vp € P) that satisfies the following conditions [Ben, ET] :
Iy
I(u) + <p,Go(v)> 2 1(v) , Vv € S,
(59)
<‘l,G0(u)> =0.
We can deduce that u = w and p = %?—19 | r,’ where the element Z is given by

. 0z
(60) AZy=0inQ, Zolp =0, Z|p =1, 32 =0,

and therefore we obtain the uniqueness of the solution of (50).

Problem 3 : For the general case b = b(x) > 0 on I'; and q = q(x) > 0 on T, , we consider the
following optimization problem : Find the maximum upper bound for q such that there is no change of
phase within €, i.e. [GT1]

(61) Findq%a>0/uq_>_0inﬂ,Vq=q(x)$quonl‘,.

THEOREM 8. (i) For the case @ = const. > 0, we obtain that

62 0 — ()
(62) ™M xlé T, up(x) ’
where u; and ug are given respectively by
. Ou
(63) Aul‘-,—-O in @, ulp =B ,3;1|qur3=0 (cf. (52)),
. . u © du
(64) Aug =0 in Q , “3|I‘1=0’ -ErTalrg =1, 5 |r3=0 (cf. (14)).

(ii) If ¢ = q(x) > 0 on T, satisfies the condition
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65 Sup  q(x) < q¥y
(65) xer,() ay

where q°M is defined by (62), then uq > 0 in Q.

(iif) For the constant case, we have that

(66) ' qoM =4qc

where q¢ is the critical heat outgding flux (21).

Proof. (i) follows from Theorem 7 with u,(q) = — q uz , (ii) from Lemma 1 and (iii) from the
definition of q‘l’u and qc respectively.

Problem 4. For the constant case B> 0,q >0and a > 0, ﬂﬁd conditions betw'een a, q (for a
given B > 0) to have a steady-state two-phase Stefan problem in €2, that is the solution u of (I-21) is a

function of non-constant sign in Q.

We shall .consider that the domain Q and the data b (or B) on T} and q on T, are sufficiently
regular to have the regularity property u agB € H%(Q) N C°(Q). Moreover, in the three éxamples, the

solution u , qB satisfies this requirement.

Remark 8. (i) The problem (I-21) is a two-phase Stefan problem in Q if and only if :

(67) Ix; € T1,x € Ty [ ugap(x) >0, uy plxs) <0 .
(ii) If u agqB satisfies the following condition
(68) I UyqB dy>0 , Iuan dy <0
I, Iy
then the problem (I-21) is a two-phase problem.
LEMMA 9. For all B > 0, we have the following expressions :
(69) Iuand-yr:BII‘ll—gII‘,l,‘v’a,q>0,

I
(70)  a(ugp, uqg) = Lq(uqg) + Bal| I‘z'v| y Vg> 0,

(71) a(uan, ugg) = a(qu,qu) y Va,q> 0.
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Proof. It is enough to choose v =1 € V in (I-21) and to use the definition of ugg and u,, B’

given by (I-7) and (I-21) respectively.

THEOREM 10. If q > qo(B), then (I-21) is a steady-state two-phase Stefan problem in £ for all
"a > ag(q,B), where '

T,
72 B) = 4lTal
(72) ag(q,B) BIT,]
Proof. As q > qo(B), we have that
and therefore, by using (I-25-ii), we deduce that M; < 0, Vo > 0 . Besides, by using (69), we have
that

(74) I Upqd7 >0 & a> ao(q;B),
I, '

then we obtain the thesis.

Remark 9. In the case where, due to symmetry, we find that function u agB is constant on T'; ,
then the sufficient condition, given by Theorem 10, is also necessary for problem (I-21) to be a steady-
state two-phase Stefan problem. -

Let g : (R+)3 — R be the real function defined by

(75) g(a’q’B) = Gan(uan) y & Qq, B > 0 1)

which is equivalent to the following expressions

8(“1Q1B) == %%(“an’ “an) =- % Lan(uan) =

=9
-il UaqB d"_gfﬂl UaqB dy<0.
r
2 1

(76)

THEOREM 11. (i) Function g has partial derivatives with respect to-variables a, q and B, and
they are given by the following expressions for all a,q, B > 0 : :

(77) %(G,Q,B) = I ( i “thB -B “an )d7 4
. I
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(1) BaB) = [ upgpd .
Y

é
(79) 5%(a,q,B) =-a I UqB 47 -
. . r!

(ii) There exists a function A = A(a) > 0, defined for @ > 0, such that

6)  geaB) = -2 Bqir, ) - B3 1y,

(81) juand~,=B|r,|—qA(a), Vg, B> 0.
Iy

(iii) Function A = A(a) is a decreasing positive function of & which verifies

Aa) > ||r13l'|2 L (then A(OY) = + o)

. _ . ' _
(82) o hm+°° A(e) =C , N £m+°° aA(a)=0,

(@ A@) =% alugqpiagn) »

where C > 0 is the constant defined in Theorem 2.

Proof. (i) For example, for the partial derivative of g with respect to a, we can obtain :

‘ (83) I Ah“(a) Il v<Eh, Il Ahu(a) I LX(T,) <Eh,
where
(84) E = "—‘ﬁ‘” IIB—u,q ||£2(rl) y B2 =E |l 7l ,

and A, u(a) is defined by ( h = const. > 0)

(85) Ahu(a) = ua+h,qB - llan EV .

Moreover, we can obtain

A, g(a) .
h8®) _1
L3 I (a+h,qB "aqB = B (Va4ngB *+ Yaqs)) 47 -
(86) ‘ I
. —_ 2
lim +I Uy +h,gB YaqB dy = I UaqB dy ,
h - 0 l.‘l : rl

where Ahg(a) is defined by

(87) Ah&(a) = S(a"’h’q’B) - g(a’q)B) .
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We can given an analogous definition for A} u(q) , A} g(q) and Apu(B), A} g(B) [TT].
(ii) — (iii) Function u agB €20 be expressed as follows

(88) . g =B-alUs in®,
where Uy is defined by
- b 6U - aUa _ aUa -
(89) AUa—OmQ,—3n—"|rl_aUa,—a;|r2—1,7;n—|ra—0,

whose variational formulation is given by

(90) aa(Uayv) =I vdy , WeV ,Ug€ V,
Iy

and verifies that Ug > 0 in . Moreover, function Uy verifies the following properties :

(1) JUad-y=|1Pr"’|,Va>_0,
T,

(92) ] Uady = Aa) , Ya >0,
T,

93)  a(UaUag)=C , Ya >0 .

Taking into account [GT2; TT) the thesis is achieved.

We can complete the above results by the following Theorem [GT2,TT) :

THEOREM 12. (i) Problem (I-21) represents a steady-state two-phase Stefan problem if and only
if the heat flux q verifies the following inequalities /
(94) a(*B) <q< qyB) , a>0,B>0,
where q; = q,(a,B) and q, = q,(a,B) are given by

09 oo =g () wlom = e ()

(ii) Let qm = qm(a,B) and Qy = qM(a,B) be real functions, defined for a, B > 0 by the following

expressions

(96) qm(a,B) = BA|(£; l ’ qM(a’B) =

Ba|l|
Irzi .

They verifies the conditions
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am(0*,B) = a0 B) =0 ,
am(@B) < qpq(a,B) , Va >0,B>0,

(97) o Mmoo am(@,B) = qqo(B)  (defined by (II-12)) ,
qm is an increasing function of variable a ,

and the estimates

(98) q(a,B) < qm(a,B) < qM(avB) < Q_?(C'OB) y Vo, B> 0.
Moreover, we have

q;(a.B) = q!n(a’B) & Uy | rz = const. ( = lAJI‘:_)| ) [
(99)
a(eB) = qy(@,B) & Uq | p = const. (= al lrlz‘xli )

and the set , _ _
100)  s7(B) = {(@sa) € (R*)? / am(@B) < a < ay(aB), a >0}

is not empty, forall B > 0.

(iii) We have the following equivalences :

(101) i) I “anAd" >0 & q < qM(a,B) , ii)[ UyqB dy <0 & q> qp(e,B) .

COROLLARY 13. If (a,q) € S(z)(B) , then (I-21) is a two-phase steady-state Stefan problem.

Remark 9. In [Ta5] and [ST], the numerical results to compute qo(B) and the set S(z) (B)
respectively were obtained by using the software MODULEF [Ber] (finite element code).

Remark 10. In the case where, due to symmetry, we find that u agB °F Uq is constant on I'; and
T, respectively, then the sufficient condition, given by corollary 13 is also necessary for problem (I-21)
to be a two-phase Stefan problem.

The function A = A(e) , defined for a > 0, is not explicitly known but has properties (82) and
(92). Now, we shall consider a particular case for which we can obtain more information about the

‘expression of A(a). /
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We consider the particular case when u_, qB verifies the condition [TT]
(102) :]11 a(uan, uan) = Const. (= Const(a,q,B) ), Va,q,B >0,

-or in an equivalent way

(103) (aAa)) = A(e) + a A'(a) = const., Va > 0,

due to (82). In this case, we have necessarily that

(104) Const(a,q,B) = C >0, Va,q,B>0,

where C is the constant defined in Theorem 2.

LEMMA 14. (i) We have the following equivalence

(105) Ugp ~ UYugB is constant in @ & (a A(a) )' =C.

(ii) For the particular case (102), we have the following properties :

_ . | IT,] .
. (106) qu uan = m in Q 3
=B — q|T,|
(A0  voqplr, =B~ GTET -
(108) auan l = q l r! I
on ' [T, ]
6u
qB
(109) T | rl = const.

Moreover, the function A(a) is given by the expression

r,?
110 A@=c+ iRl
(110) @ =c+i{5if
Proof. (i) Owing to (71), we deduce

UgB ~ UaqB is constant in @ & a(ugg — UsqB' Y4B ~ “an) =0 &

g a(“an'“qu) = 3(“qB’“¢iB) Aad a(“anvuan =Cq & (aA(e)) =C.

Remark 11. For the particular case (102), a complete description of the set S(z)(B) was obteined.
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We shall give three examples in which the solution is explicitly known [Ta2] so that we can verify
all the _theoreticgl results obtained in this work. :

Example 1, We consider the following data
n=2 , n=(01Xo)"(0,¥o)‘ ' X >0, Yo>0 ,
1) 1, ={0}:[0w] , Tp={xe} =[Oy .

T3 = (0,xo) . {0} U (0,x;) = {yo}

Example 2. Next we consider
n=2 , 0<r,<r,. ,l3=¢,

Q : annulus of radius r, and r, , centered at (0,0) ,
(112) T, : circumference of radius r, and center (0,0) |,

T'; : circumference of radius r, and center (0,0) .

Example 3. Finally, we take into account the same information of Example 2 but now for the

casen = 3.

‘ Remark 12. The three examples verifies condition (102), that is, they are particular cases.
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