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INVERSION OF ULTRAHYPERBOLIC BESSEL OPERATORS

SUSANA ELENA TRIONE

ABSTRACT. Let Gy = Gy(P * io, m, n) be the causal (anticausal)

distribution defined by
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K., m(P £ io)Z] s
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where m is a positive real number, o € C, Ku designates the

modified Bessel function of the third kind and Ha(m,n) is the

constant defined by
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Ga(P t oi,m,n) = Ha(m,n) (P % io)
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The distributions GZk(P t jio,m,n), where n = integer = 2 and
k =1,2,... , are elementary causal (anticausal) solutions of

the ultrahyperbolic Klein-Gordon operator, iterated k-times:
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Let B*f be the ultrahyperbolic Bessel operator defined by the
formula

B%f = Gy * £,
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Our problem consists in the obtainment.of an operator
T = (B%) 7! such that if
B% = o ,
then
™% =f .
In this Note we prove (Theorem III.1, formula (III,7)) that

™ =6_, ,
for all a € C.
We observe that the distribution Gy (P * io,m,n) is a causal
(anticausal) analogue of the kernel due to N.Aronszajn - K.T.
Smith and A.P.Calder6n (cf.[1] and [2] , respectively).
The particular radial case of our problem was solved by Nogin,
for o # 1,2;3,... (cf.[3]).

I. INTRODUCTION

Let x = (xl,xz,...,xn) be a point of the n-dimensional Eucli-

dean space R". Consider a non-degenerate quadratic form in n
variables of the form

2 2 2 2

P="P(x) = X] + ...t Xy T Xpap T oeer T Xpig o (1,1)
’ A
where n = p+q. The distribution (P t io) is defined by
. A . . 2,2
(P £ io)" = 1lim {P * ie|x|“} , (1,2)
. e>0
where ¢ > 0, |x|? = xi + .. 4 xi', A €C.

The distributions (P % io)A are analytic in A everywhere except
at A = - % -k, k=0,1,...; where they have simple poles
(c£. [4], p.275).
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The distributions (m2 + Q¢ io)x are defined in an analogue
manner as the distributions (P % io)A.ILet us put (cf. [4],
.p.289)

; A
(m® + Q + i0)* = 1im (m? + Q * iely|H" (1,3)
’ €0 '

where m is a positive real number, A € C, € is an arbitrary
positive number. In the formula (I,3) we have written

_ - 2 2 _ 2 _ o v2
Q=Q() =¥] * «ev * Y T Vo4 T T Ypaq o (1)
P+q=n,
2 2 2
and Iyl = y] + * Ya

It is useful to state an equivalent definition of the distri-
butions (m2 +Q = io)x.

In this definition appear the distributions

) L= @ +* if n®+qQ>0,
(m™ + Q} _ 2 (1,5)
=0 if m® + Q<0 .
: ) 2
=0 if m* +Q>0,
m® + @t o) e w2 (1,6)
= -.m - Q) if m +Q<0

We can prove, waiu.o* *3fticulty, that the following formula
is valid (cf.[7], p.566)

A

(n? + Q io)* = (n® + Q) + & M® + @} . (1,7
From this formula we conclude immediately that
(n? +Q+ i)t = @ + Q- 10 = @+ @, (1,8

when A = k = positive integer.

We observe that (m2 +Q ¢ io)k are entire distributional func-
tions of A.

Let Gy(P * ib,m,n) be the causal (anticausal) distribution de-
fined by



72

1(a—n)
Tk, L m(e ¢ i0)] , (1,9)
=l |

Ga(P t jo,m,n) = Ha(m,n)(P t io)

where m is a positive real number, o € C, K, designates the
well-known modified Bessel function of the th1rd kind (cf. [5],
p.78, formulae (6) and (7)):

I.,() - I,(2)

K (2) = % (1,10)
v 2 sen v ’
2m+v
= (3 _
Iv(Z) = _— (1,11)
m=0 m! T(m+v+1)
and Hy(m,n) is the constant defined by
m T o 1. n-o
| ':7q1 Jz 2 (m%707—)
H,(m,n) = . ‘ (1,12)

en? &
The following formula is valid (cf. [6], p.35, formula (II,1.8)):

im
L e (m

N

g
2 2

G, (P ¢ io,m,m)1" = + Q¢ io) (1,13)

n.

(2m)?

Here A denotes the Fourier transform of a distribution.

We observe that the right-hand member of (I,13) is an entire
distribution of a; therefore qxis also an entire distributio-
nal function of a.

II. THE PROPERTIES OF Ga(P t jo,m,n)

The Bessel potential of order o (o being any complex number)

of a temperate distribution f, denoted by J*f is defined by
a

@O6)r = (1 + an?|x|?) 2 gh (11,1)
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was introduced by N.Aronszajn - K.T.Smith and A.P.Calderén (cf.
[1] and [2], respectively).

'A.P.Calderdn proves in [2], Theorem 1, that

J% =G % f (11,2)

2 n-o-1

G, = 6,(x) = y(a) e Xl j: e IxIt (¢ % oa, L3

o

Re o < n+1., and
n-1
2

y(@1 ' = (2m)

r raseth (11,4)

We start by obsefving that the-distributional function
Gy(P tio,m,n) (cf. formula (I,9)) is an (causal, anticausal)
analogue of the kernel defined by the formula (II,3).

The distributions Gy = G4 (P * io,m,n) share many properties
with the Bessel kernel of which they are (causal, anticausal)
analogues.

The following theorems hold:

THEOREM- II1.1. Let us put o« € C, k = 0,1,..., then
n
I\ 2 A A
{Ga * G-Zk} .= (2m) {Ga} .{G_Zk} . (11,5)

Here * designates, as usual, the convolution.

THEOREM 1I1.2. The following formula is valid

G, * G, = G (11,6)

2k © “a-2k ?

when oo € C, k =-0,1,2,...

More generally, the following formulae are valid for all
a,B € C,

GO(Pi io,m,n) = § , . (11,7)
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{G, * GB}A = (21r) {G }A , (11,8)
and

(11,9)

Let us deflne the n-dimensional ultrahyperbollc Klein-Gordon
operator, iterated f-times:

I O L a2 22 2%
' = 3 .« o —2 - 3 = see T Vi - m =
ax1 axp axp+1 axp+q
= {0 - mz}n s (I1,10)

where p+q =n , m € R* , ¢ = 1,2,

From the preceding results we deduce the explicit expression
of a family of elementary (causal, anticausal) solution of the
ultrahyperbolic Klein-Gordon operator, iterated k-times.

* In fact, the following proposition is valid.

THEOREM I11.3. The distributional functions Gy (Pt io,m,n)
where n = integer = 2 and k = 1,2,..., are elémentary causal
(anticausal) solutions of the ultrahyperbolic Klein-Gordon

operator, iterated k-times:

k {GZk(Pi io,m,n)} = & . (I1,11)

The proofs of the formulae (II,S5), (II,6), (II,7), (II,8),
(I1,9) and (II,11) appear in [6].

It may be observed that the elementary solutions G,y (P * io,m,n)
have the same form for all n > 2. This does not happen for
other elementary solution, whose form depends essentially on
the parity of n (cf. [7], p.580 and [8], p-403).

We observe that the particular case of Theorem II.3 correspon-
ding to n=4, k=1, q=1 is especially important.

The correspohding elementary solutions can be written
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6, (b +io,m,4) = - 2 P 1) (11,12)
+10,n, = - == ) ’
2 w? (7 s 10y 172 _
K, m(P - 10) /2]

G,(P - io,m,4) = n

: (11,13)
mé (@ - i0) /2

The formula (II,12) is a useful expression of the famous 'ma-
gic function" or ''causal propagator" of Feynman.

For this reason we have decided to call '"causal" ("anticausal'")
the distributions G (P* io,m,n).

III. THE INVERSE ULTRAHYPERBOLIC BESSEL KERNEL

Let B*f be the ultrahyperbolic Bessel operator defined by the
formula

B*f =G % f |, (II1,1)
f e 8.

T such that if

Our objective is the attainment of T (B~
¢ = B* , then T% = f.

We note that the inverse ultrahyperbolic Bessel kernel (BOL)-1

is, formally, by virtue of (I,13) and (II,10), a fractional
power of the differential Klein-Gordon operator:

a
@)1 - (@m- ndH? ., (111,2)

Therefore, here we are seeking an explicit expression for

(Ba)_1. The folldwing theorem expresses that if we put, by de-
finition,
B =g, , (111,3)
then
oay-1 _ -1 _ .
=t =6, (I11,4)

for all complex o.
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Now we 'shall state our main theorem.

THEOREM IIT1.1. If
- ¢ = B , (111,5)

Ta‘p = f s (III’6)

where

= 37 =6, (111,7)

"o € C.

Here G 18 defined by (1,9) and o being any complex number.
Proof. From the definitory formula (III,1) we have
B =G xf=9¢ (I11,8)

where Ga is given by (I,9), o € C and f € S.

Then, in view of (II,9) and (II,7), we obtain

G * (G, = f) = (G_, * G, *£f=06_,, =
= Go *x £f =6 x f=1f (II1,9)
Therefore
G, - (%) "1 (111,10)

Formula (III,10) is the desired result and this finished
the proof of Theorem III.T ®
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