INVERSION OF ULTRAHYPERBOLIC BESSEL OPERATORS

SUSANA ELENA TRIONE

ABSTRACT. Let $G_{\alpha} = G_{\alpha}(P \pm io, m, n)$ be the causal (anticausal) distribution defined by

$$G_{\alpha}(P \pm oi,m,n) = H_{\alpha}(m,n) (P \pm io)^{\frac{1}{2}(\frac{\alpha-n}{2})} K_{\frac{n-\alpha}{2}}[m(P \pm io)^{\frac{1}{2}}]$$
,

where m is a positive real number, $\alpha \in C$, K_{μ} designates the modified Bessel function of the third kind and $H_{\alpha}(m,n)$ is the constant defined by

$$H_{\alpha}(\mathfrak{m},\mathfrak{n}) = \frac{e^{\pm i\frac{\pi}{2}}q}{e} \frac{i\frac{\pi}{2}\alpha}{e} \frac{1-\frac{\alpha}{2}}{2} \frac{1-\frac{\alpha}{2}}{(\mathfrak{m}^2)^{\frac{1}{2}}(\frac{\mathfrak{n}-\alpha}{2})}{(2\pi)^{\frac{n}{2}}} .$$

The distributions $G_{2k}(P \pm io,m,n)$, where $n = integer \ge 2$ and k = 1,2,..., are elementary causal (anticausal) solutions of the ultrahyperbolic Klein-Gordon operator, iterated k-times:

$$K^{k}\{G_{2k}\} = \delta ;$$

$$K = \left\{ \frac{\partial^{2}}{\partial x_{1}^{2}} + \ldots + \frac{\partial^{2}}{\partial x_{p}^{2}} - \frac{\partial^{2}}{\partial x_{p+1}^{2}} - \ldots - \frac{\partial^{2}}{\partial x_{n}^{2}} - m^{2} \right\}^{k} .$$

Let $\textbf{B}^{\alpha}\textbf{f}$ be the ultrahyperbolic Bessel operator defined by the formula

$$B^{\alpha}f = G_{\alpha} * f ,$$

 $f \in S$.

Our problem consists in the obtainment of an operator $T^{\alpha} = (B^{\alpha})^{-1}$ such that if

$$B^{\alpha}f = \varphi$$
.

then

$$T^{\alpha} \varphi = f$$

In this Note we prove (Theorem III.1, formula (III,7)) that

$$T^{\alpha} = G_{-\alpha} ,$$

for all $\alpha \in C$.

We observe that the distribution $G_{\alpha}(P \pm io,m,n)$ is a causal (anticausal) analogue of the kernel due to N.Aronszajn - K.T. Smith and A.P.Calderón (cf. [1] and [2], respectively). The particular radial case of our problem was solved by Nogin, for $\alpha \neq 1,2,3,\ldots$ (cf. [3]).

I. INTRODUCTION

Let $x = (x_1, x_2, ..., x_n)$ be a point of the n-dimensional Euclidean space R^n . Consider a non-degenerate quadratic form in n variables of the form

$$P = P(x) = x_1^2 + ... + x_p^2 - x_{p+1}^2 - ... - x_{p+q}^2$$
, (I,1)

where n = p+q. The distribution $(P \pm io)^{\lambda}$ is defined by

$$(P \pm io)^{\lambda} = \lim_{\epsilon \to 0} \{P \pm i\epsilon |x|^2\}^{\lambda}$$
, (I,2)

where $\varepsilon > 0$, $|x|^2 = x_1^2 + \ldots + x_n^2$, $\lambda \in C$.

The distributions $(P \pm io)^{\lambda}$ are analytic in λ everywhere except at $\lambda = -\frac{n}{2} - k$, k = 0,1,...; where they have simple poles (cf. [4], p.275).

The distributions $(m^2 + Q \pm io)^{\lambda}$ are defined in an analogue manner as the distributions $(P \pm io)^{\lambda}$. Let us put (cf. [4], .p.289)

$$(m^2 + Q \pm io)^{\lambda} = \lim_{\epsilon \to 0} (m^2 + Q \pm i\epsilon |y|^2)^{\lambda}$$
, (I,3)

where m is a positive real number, $\lambda \in C$, ϵ is an arbitrary positive number. In the formula (I,3) we have written

$$Q = Q(y) = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_{p+q}^2$$
, (I,4)

p + q = n,

and

$$|y|^2 = y_1^2 + \dots + y_n^2$$
.

It is useful to state an equivalent definition of the distributions $(m^2 + Q \pm io)^{\lambda}$.

In this definition appear the distributions

$$(m^2 + Q)^{\lambda}_{+} = (m^2 + Q)^{\lambda}$$
 if $m^2 + Q \ge 0$,
if $m^2 + Q < 0$. (1,5)

$$(m^2 + Q)^{\lambda}_{-} = 0$$
 if $m^2 + Q > 0$,
= $(-m^2 - Q)^{\lambda}$ if $m^2 + Q \le 0$. (1,6)

We can prove, without difficulty, that the following formula is valid (cf. [7], p.566)

$$(m^2 + Q \pm io)^{\lambda} = (m^2 + Q)^{\lambda}_{\perp} + e^{\pm i\pi\lambda} (m^2 + Q)^{\lambda}_{\perp}$$
. (1,7)

From this formula we conclude immediately that

$$(m^2 + 0 + io)^{\lambda} = (m^2 + 0 - io)^{\lambda} = (m^2 + 0)^{\lambda}$$
, (1.8)

when $\lambda = k = positive integer$.

We observe that $(m^2 + Q \pm io)^{\lambda}$ are entire distributional functions of λ .

Let $G_{\alpha}(P \pm io,m,n)$ be the causal (anticausal) distribution defined by

$$G_{\alpha}(P \pm io,m,n) = H_{\alpha}(m,n)(P \pm io)^{\frac{1}{2}(\frac{\alpha-n}{2})} K_{\frac{n-\alpha}{2}}[m(P \pm io)]$$
, (I,9)

where m is a positive real number, $\alpha \in C$, K_{μ} designates the well-known modified Bessel function of the third kind (cf.[5], p.78, formulae (6) and (7)):

$$K_{v}(z) = \frac{\pi}{2} \frac{I_{-v}(z) - I_{v}(z)}{\text{sen } \pi v}$$
, (I,10)

$$I_{\nu}(z) = \sum_{m=0}^{\infty} \frac{(\frac{z}{2})^{2m+\nu}}{m! \Gamma(m+\nu+1)}$$
 (1,11)

and $H_{\alpha}(m,n)$ is the constant defined by

$$H_{\alpha}(m,n) = \frac{e^{\frac{\pm \frac{\pi}{2}qi} e^{\frac{i\frac{\pi}{2}\alpha}{2}} - \frac{i^{\frac{\pi}{2}\alpha}}{2} - \frac{1-\frac{\alpha}{2}}{2}}{(2\pi)^{\frac{n}{2}}} \cdot \Gamma(\frac{\alpha}{2})}{(2\pi)^{\frac{n}{2}} - \Gamma(\frac{\alpha}{2})}.$$
 (I,12)

The following formula is valid (cf.[6], p.35, formula (II,1.8)):

$$[G_{\alpha}(P \pm io, m, n)]^{\Lambda} = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{i\pi \frac{\alpha}{2}} (m^2 + Q \pm io)^{-\frac{\alpha}{2}}.$$
 (I,13)

Here Λ denotes the Fourier transform of a distribution.

We observe that the right-hand member of (I,13) is an entire distribution of α ; therefore G_{α} is also an entire distributional function of α .

II. THE PROPERTIES OF $G_{\alpha}(P \pm io,m,n)$

The Bessel potential of order α (α being any complex number) of a temperate distribution f, denoted by $J^{\alpha}f$ is defined by

$$(J^{\alpha}f)^{\Lambda} = (1 + 4\pi^{2}|x|^{2})^{-\frac{\alpha}{2}}f^{\Lambda}$$
, (II,1)

was introduced by N.Aronszajn - K.T.Smith and A.P.Calderón (cf. [1] and [2], respectively).

A.P.Calderón proves in [2], Theorem 1, that

$$J^{\alpha}f = G_{\alpha} * f$$
 , (II,2)

where

$$G_{\alpha} = G_{\alpha}(x) = \gamma(\alpha) e^{-|x|} \int_{0}^{\infty} e^{-|x|t} (t + \frac{t^{2}}{2})^{\frac{n-\alpha-1}{2}} dt$$
, (II,3)

Re $\alpha < n+1$, and

$$\left[\gamma(\alpha)\right]^{-1} = (2\pi)^{\frac{n-1}{2}} \Gamma(\frac{\alpha}{2}) \Gamma(\frac{n-\alpha+1}{2}). \tag{II,4}$$

We start by observing that the distributional function $G_{\alpha}(P \pm io, m, n)$ (cf. formula (I,9)) is an (causal, anticausal) analogue of the kernel defined by the formula (II,3).

The distributions $G_{\alpha} = G_{\alpha}(P \pm io,m,n)$ share many properties with the Bessel kernel of which they are (causal, anticausal) analogues.

The following theorems hold:

THEOREM II.1. Let us put $\alpha \in C$, k = 0,1,..., then

$$\{G_{\alpha} * G_{-2k}\}^{\Lambda} = (2\pi)^{\frac{n}{2}} \{G_{\alpha}\}^{\Lambda} \cdot \{G_{-2k}\}^{\Lambda}$$
 (II,5)

Here * designates, as usual, the convolution.

THEOREM II.2. The following formula is valid

$$G_{\alpha} * G_{-2k} = G_{\alpha-2k}$$
, (II,6)

when $\alpha \in C$, k = 0,1,2,....

More generally, the following formulae are valid for all $\alpha,\beta\in C$,

$$G_{o}(P \pm io, m, n) = \delta$$
 , (II,7)

$$\{G_{\alpha} * G_{\beta}\}^{\Lambda} = (2\pi)^{\frac{n}{2}} \{G_{\alpha}\}^{\Lambda} \cdot \{G_{\beta}\}^{\Lambda} ,$$
 (II,8)

and

$$G_{\alpha} * G_{\beta} = G_{\alpha+\beta}$$
 (II,9)

Let us define the n-dimensional ultrahyperbolic Klein-Gordon operator, iterated ℓ -times:

$$K^{\ell} = \left\{ \frac{\partial^{2}}{\partial x_{1}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{p}^{2}} - \frac{\partial^{2}}{\partial x_{p+1}^{2}} - \dots - \frac{\partial^{2}}{\partial x_{p+q}^{2}} - m^{2} \right\}^{\ell} =$$

$$= \left\{ \Box - m^{2} \right\}^{\ell} , \qquad (II, 10)$$

where p+q = n, $m \in R^+$, $\ell = 1, 2, \ldots$.

From the preceding results we deduce the explicit expression of a family of elementary (causal, anticausal) solution of the ultrahyperbolic Klein-Gordon operator, iterated k-times.

In fact, the following proposition is valid.

THEOREM II.3. The distributional functions $G_{2k}(P \pm io,m,n)$ where n = integer ≥ 2 and k = 1,2,..., are elementary causal (anticausal) solutions of the ultrahyperbolic Klein-Gordon operator, iterated k-times:

$$K^k \{G_{2k}(P \pm io,m,n)\} = \delta$$
. (II,11)

The proofs of the formulae (II,5), (II,6), (II,7), (II,8), (II,9) and (II,11) appear in [6].

It may be observed that the elementary solutions $G_{2k}(P \pm io,m,n)$ have the same form for all $n \ge 2$. This does not happen for other elementary solution, whose form depends essentially on the parity of n (cf. [7], p.580 and [8], p.403).

We observe that the particular case of Theorem II.3 corresponding to n=4, k=1, q=1 is especially important.

The corresponding elementary solutions can be written

$$G_2(P + io, m, 4) = -\frac{mi}{4\pi^2} \frac{K_1[m(P + io)^{1/2}]}{(P + io)^{1/2}},$$
 (II,12)

$$G_2(P - io, m, 4) = \frac{mi}{4\pi^2} \frac{K_1[m(P - io)^{1/2}]}{(P - io)^{1/2}}$$
 (II,13)

The formula (II,12) is a useful expression of the famous "magic function" or "causal propagator" of Feynman.

For this reason we have decided to call "causal" ("anticausal") the distributions $G_{\alpha}(P \pm io, m, n)$.

III. THE INVERSE ULTRAHYPERBOLIC BESSEL KERNEL

Let $B^{\alpha}f$ be the ultrahyperbolic Bessel operator defined by the formula

$$B^{\alpha}f = G_{\alpha} * f$$
, (III,1)

 $f \in S$.

Our objective is the attainment of $T^{\alpha} = (B^{\alpha})^{-1}$ such that if $\varphi = B^{\alpha}f$, then $T^{\alpha}\varphi = f$.

We note that the inverse ultrahyperbolic Bessel kernel $(B^{\alpha})^{-1}$ is, formally, by virtue of (I,13) and (II,10), a fractional power of the differential Klein-Gordon operator:

$$(B^{\alpha})^{-1} = (\Box - m^2)^{\frac{\alpha}{2}}.$$
 (III,2)

Therefore, here we are seeking an explicit expression for $(B^{\alpha})^{-1}$. The following theorem expresses that if we put, by definition,

$$B^{\alpha} = G_{\alpha} , \qquad (III,3)$$

then

$$(B^{\alpha})^{-1} = (G_{\alpha})^{-1} = G_{-\alpha}$$
 (III,4)

for all complex α .

Now we shall state our main theorem.

THEOREM III.1. If

$$\varphi = B^{\alpha}f$$
 , (III,5)

where $B^{\alpha}f$ is defined by (III,1), $f \in S$; then

$$T^{\alpha} \varphi = f \qquad (III, 6)$$

where

$$T^{\alpha} = (B^{\alpha})^{-1} = G_{-\alpha} \qquad (III,7)$$

 $\alpha \in C$.

Here G_{α} is defined by (I,9) and α being any complex number.

Proof. From the definitory formula (III,1) we have

$$B^{\alpha}f = G_{\alpha} * f = \varphi$$
 , (III,8)

where G_{α} is given by (I,9), $\alpha \in C$ and $f \in S$.

Then, in view of (II,9) and (II,7), we obtain

$$G_{-\alpha} * (G_{\alpha} * f) = (G_{-\alpha} * G_{\alpha}) * f = G_{-\alpha+\alpha} * f =$$

$$= G_{\alpha} * f = \delta * f = f. \qquad (III,9)$$

Therefore

$$G_{-\alpha} = (B^{\alpha})^{-1} \qquad (III, 10)$$

Formula (III,10) is the desired result and this finished the proof of Theorem III.1 \blacksquare

REFERENCES

- [1] N.ARONSZAJN and K.T.SMITH, Theory of Bessel potentials, Part I, Ann.Inst.Fourier II, 385-475, 1961.
- [2] A.P.CALDERON, Singular integrals (notes on a course taught at the Massachusetts Institute of Technology), 1959 and Lebesgue spaces of differential functions and distributions, Sympos. Pure Math., 4, 33-49, 1961.
- [3] V.A.NOGIN, Inversion of Bessel Potentials, Plenum Publishing Corporation, 997-1000, 1983.
- [4] I.M.GELFAND and G.E.SHILOV, Generalized Functions, Vol.I, Academic Press, New York, 1964.
- [5] G.N.WATSON, A treatise on the theory of Bessel functions, Second Edition, Cambridge, University Press, 1944.
- [6] S.E.TRIONE, Distributional Products, Serie II, Cursos de Matemática, N°3, Instituto Argentino de Matemática, IAM-CONICET, 1980.
- [7] D.W.BRESTERS, On distributions connected with quadratic forms, S.I.A.M., J.Appl.Math., Vol.16, 563-581, 1968.
- [8] J.J.BOWMAN and J.D.HARRIS, Green's distributions and the Cauchy problem for the iterated Klein-Gordon operator, J.Math.Phys., Vol.3, 396-404, 1964.

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires.

Instituto Argentino de Matemática Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires, Argentina.